用户名: 密码: 验证码:
高效连铸结晶器铜材表面涂层制备、性能表征及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁行业在国民经济中占有举足轻重的作用,在该领域里,连铸工艺因流程短效率高的特点被广泛应用,其生产效率和可靠性直接决定钢铁冶金的质量和产量。结晶器是连铸机的关键部件,运用于结晶器中的铜合金内套质量和使用寿命直接影响着铸坯的质量、产量和生产效率。由于结晶器内套长期与钢液直接接触,服役条件苛刻,导致其成为水平连铸生产线上关键的易耗件,随着钢铁冶金的需求逐年递增,结晶器内套的使用量和报废量也逐年增加,每年国内冶金行业铜结晶器的消耗在20亿元以上。因此,选择合理高效的表面处理技术,对结晶器铜合金内套材料进行表面改性,提高其耐高温钢液侵蚀、高温摩擦磨损等性能,不仅可以提高铜合金内套的使用寿命保证生产可靠性,还能降低生产成本,节约资源,满足国民经济的可持续发展。
     本文选择了耐蚀、耐疲劳、导热性良好的CuCo2Be合金作为结晶器内套的基体材料,并对其进行热处理;合理设计了多涂层结构,选用高温耐磨的Cr3C2-NiCr作为工作层,NiAl为打底层,来提高界面结合强度,以及过渡工作层与基体材料热膨胀系数差异;运用等离子喷涂技术,在基体试样表面分别制备了厚度大于0.3mm的Cr3C2-NiCr涂层、NiAl打底层、Cr3C2-NiCr/NiAl复合涂层。通过试验,优化了三种涂层的喷涂参数,运用SEM、EDS、XRD等系统分析研究了三种涂层的组成、显微结构、形貌、界面行为及成形机理;并对最佳工艺参数下制备的三种涂层进行高温热震试验,研究对比了Cr3C2-NiCr/NiAl复合涂层与Cr3C2-NiCr涂层冷热疲劳寿命的差异及涂层的失效机理;并通过摩擦磨损试验研究了涂层摩擦磨损性能与喷涂工艺参数之间的变化规律,以及涂层在不同温度下摩擦磨损失效机理。研究并建立了涂层的组织、性能、成形机理与喷涂工艺之间的关系规律,以期确定最佳的喷涂工艺制备高性能使用寿命长的涂层,本试验研究结果将对结晶器用铜材的表面改性及后续的服役条件控制提供科学依据。
     通过研究得出如下结论:优化后的三种涂层的喷涂工艺为:Cr3C2-NiCr涂层喷涂工艺及因素影响规律:功率(20kw)>送粉速率(18g.min-1)>主气流量(58L·min-1)>喷涂距离(95mm),在此条件制备的涂层结合强度为:43MPa; NiAl涂层喷涂工艺及因素影响规律:功率(20kw)>喷涂距离(90mm)>送粉速率(25g·min-1)>主气流量(61L.min1)。在此工艺条件下制备的NiAl涂层的结合强度为:48MPa;Cr3C2-NiCr/NiAl复合涂层喷涂工艺及因素影响规律:功率(22kw)>喷涂距离(100mm)>主气流量(64L·mm1)>送粉速率30·min-1)。在此条件下制备的复合涂层的结合强度为:47MPa。通过DTA验证了NiAl复合粉末在600℃C至671.8℃发生两次放热反应,结合XRD分析得知在此温度涂层中生成了AlNi3、Al3Ni2、AINi相。通过SEM分析可知三种涂层界面结合紧密,涂层致密呈现连续层状分布,工作层中有Cr23C6,Cr7C3,Cr3C2硬质相,打底层中有角状镍铝化合物;XRD分析了三种涂层不同层深处的物相表明:Cr3C2-NiCr涂层主要由Cr23C6, Cr7C3, Cr3C2, NiCr非晶相组成;NiAl涂层外表面主要由镍、铝单相组成,接近界面处检测到Cu3Al2、Cu0.81Ni0.19、Al1.1Ni0.9等化合物相。Cr3C2-NiCr/NiAl工作层与打底层界面处生成了AlCr2, Cr3Ni2,在接近界面0.05mm处存在Al2Cu、Cu0.81Ni0.19、Al1.1Ni0.9等相,结合EDS分析可知三种涂层与基体的结合以机械锚合为主,而在打底层与基体、工作层与打底层之间存在一定的元素扩散形成了微冶金结合。
     选择500℃、550℃、600℃、650℃对最佳工艺参数下制备的Cr3C2-NiCr/NiAl复合涂层、Cr3C2-NiCr涂层进行抗热震性能试验。500℃时,复合涂层完全失效的次数为235次,单一工作层平均119次,说明通过合理的涂层结构设计有效过渡了工作层与基体之间体积膨胀的差异,使得应力的分布更加平缓,提高了涂层的抗热震性能。在550-650℃温度范围内进行热震实验,复合涂层完全失效的次数从120次突然变少至1-2次,单一工作层完全失效的次数从83次突然变少至1-2次,这说明随着温度升高至600℃以后,涂层的抗热震性能迅速变弱。通过SEM、XRD、EDS分析表明失效的主要机制是涂层及界面存在空隙、缩松,易吸入大量氧发生氧化,以及打底层与工作层之间存在热应力,这些因素共同作用导致涂层脱落。在500℃对最佳工艺参数下制备的NiAl打底涂层进行抗热震性能试验,发现Ni/Al涂层在冷热循环350次后涂层未开裂,说明NiAl涂层在500℃时具有非常良好的抗热震性能。对Cr3C2-NiCr/NiAl复合涂层进行摩擦磨损试验,确立了喷涂工艺与涂层摩擦磨损性能之间的关系。研究结果表明:室温时,其摩擦磨损机制为以磨粒磨损为主,粘着摩擦、刮擦摩擦为辅;高温时,磨损机制为粘着磨损。在不同温度下,由于摩擦磨损机制不同,摩擦系数的变化出现不同情况。常温时,摩擦副还没有进入摩擦副磨合区,摩擦系数是比较高的,而且不稳定,当进入磨合区之后,摩擦系数降低而且比较稳定。涂层高温摩擦磨损试验时由于摩擦副很快磨合,很快进入粘着摩擦区,摩擦系数上升到一定程度便稳定在一定数值,说明基体的耐摩擦磨损的性能低于涂层。
The iron and steel industry played an important role in national economy. Because of its short process and high efficiency, the continuous casting process was widely used in steel metallurgy. Quality and output of the iron and steel metallurgy depended on the efficiency and reliability of continuous casting. Crystallizer was the key component of continuous caster. Copper alloy was used in crystallizer's inner sleeve, its quality and service life directly affected the quality, yield and production efficiency of continuous casting. Due to the crystallizer's inner sleeve directly contacting liquid steel for a long time and tough serving conditions, Crystallizer became a key consumable in the process line of horizontal continuous casting. With the increasing demand of iron and steel metallurgy, amount of scrap crystallizer inner sleeve also increasing year by year, the domestic annual consumption of copper crystallizer was more than2billion Yuan in metallurgical industry. So the surface treatment technology and the modified material of crystallizer's inner sleeve copper alloy were important. Improving inner sleeve's copper alloy performance of erosion resistance on high temperature liquid steel, friction and wear resistance, it not only could improve the service life of crystallizer that ensure the production reliability, also could reduce the cost of production, save resources that meet the needs of national economy sustainable development.
     CuCo2Be alloy was chose as the base material of crystallizer inner sleeve in this paper, because it had good thermal conductivity, corrosion resistance and fatigue resistance. Then it was set heat treatment. The multilayer structure of coating was designed reasonable. Cr3C2-NiCr was used as working layer because of its good performance of high temperature wear resistance. NiAl was used as bonding layer, it not only can improve the interface bonding strength, but also reduce the thermal expansion difference about transition layer and the substrate material; Plasma spraying technology was used to prepare Cr3C2-NiCr coating, NiAl bonding coating and Cr3C2-NiCr/NiAl multilayer coating on the sample surface respectively, the thickness of those coating was more than0.3mm.Through a series of spray test, three kinds spraying parameters of coatings was optimized. Using SEM, EDS, XRD and other means, we studied three kinds of coating's microstructure, morphology, interfacial behavior, the element and the forming mechanism. And then, the three kinds of coating prepared by optimum parameters was tes under high temperature thermal shock, the differences of cold and hot fatigue life and failure mechanism of the coating were studied and compared between Cr3C2-NiCr/NiAl composite coating and Cr3d-NiCr coating at high temperature. And through friction and wear test, the change rule between coating wear performance and spraying process parameters were studied, and the wear failure mechanism of coating was also studied under different temperature. The relationship between spraying process and organization, performance, forming mechanism of the coating, was studied and established, in order to determine the best preparation of high performance and long working life spraying coating, the test results will provide a scientific basis for improving the crystallization used copper surface and subsequent production use.
     The following conclusions were drawn through studing:the optimized spraying process parameters of three coating:the spraying process parameters and influence law of Cr3C2-NiCr coating:Power (kw)20> feeding rate (18g·min-1)> main gas flow (58L·min-1)> spraying distance (95mm), bond strength of Cr3C2-NiCr coatings under preparation for this condition:43Mpa; The spraying process parameters and influence law of NiAl coating: Power (20kw)> spraying distance (90mm)> feeding rate (25g·min-1)>main gas flow (61L·min-1), bond strength of NiAl coatings under preparation for this condition:48MPa; The spraying process parameters and influence law of Cr3C2-NiCr/NiAl composite coating: Power (22kw)>spraying distance (100mm)> main gas flow (64L·min-1)> feeding rate (30g·min-1). bond strength of the composite coatings under preparation for this condition:47MPa; Two exothermic reaction of NiAl composite powder were verified by means of DTA in600℃to671.8℃, it was proved that coating generated AlNi3, Al3N12, AlNi phase in this temperature range by means of XRD. Through SEM it was analysed three coating interface combined closely, coating present continuous layer, there were undeformed Cr23C6, Cr7C3, Cr3C2hard phase in working layer, there was angular nickel aluminum compound in bonding layer; through XRD analysis of the phase of three different kinds of coating layer in the depth, it was showed that:Cr3C2-NiCr coating was mainly composed of Cr23C6, Cr7C3, Cr3C2, NiCr amorphous phase composition; External surface of the NiAl coating was mainly composed of nickel, aluminum single phase, Cu3Al2, Cu0.81Ni0.19, Al1.1Ni0.9compounds such as phase were detected at close to interface. The interface of Cr3C2-NiCr/NiAl working layer and bottom layer generated AlCr2, Cr3Ni2, there were Al2Cu, Cu0.81Ni0.19, Al1.1Ni0.9phase near the interface about0.05mm, EDS analysis showed the substrate bonding three kinds of coating and matrix was the machinery anchor-based bonding, between bottom layer and base, coating and bottom layer, metallurgical bonding was formed because of element diffusion.
     Cr3C2-NiCr/NiAl composite coating, Cr3C2-NiCr coating prepared by optimum process parameters was chose to be carried out the thermal shock experiment in500℃,550℃,600℃,650℃.When500℃, the composite coating complete failure times was235, single working layer times was average119. It can be concluded that through the reasonable structure design of the coating, the difference of volume expansion between working layer and matrix was effectively buffered, the stress distribution was more litter, the thermal shock resistance of the coating was improved. Thermal shock test was carried out in550-650℃complete failure times of composite coating suddenly from120times to1-2times, the complete failure number of single working layer suddenly from83times to1-2times, it showed that as the temperature up to600℃, thermal shock resistance of the coating declined rapidly. Through SEM, XRD, EDS analysis it was concluded that the main failure mechanism was coating and interface had gap and shrinkage, they were easy inhalation of much oxygen and oxidizing, and the existence of thermal stress between bottom layer and working layer, all of these factors together caused coating peeling. NiAl bottom coating prepared by optimum process parameters was choosed to be carried out the thermal shock experiment in500℃, it was found that Ni/Al coating was not cracking after hot-cold cycle350times, we can conclude NiAl coating had very good thermal shock resistance. To establish the relationship between the friction and wear performance and coating spraying process, Cr3C2-NiCr/NiAl composite coating was carried out friction and wear test. Results showed:when room temperature, the friction and wear mechanism was mainly abrasive wear, adhesive friction and scratches friction were complementary, and the high temperature, wear mechanism was adhesive wear. Because the friction and wear mechanism was different at the different temperature, the coefficient of friction of changes would occur. At the room temperature, friction pair had not yet entered the friction pair in area, the friction coefficient was relatively high and unstable, After entering in pair area, coefficient was reduced and relatively stable.When high temperature friction and wear test was going on, the friction pair entered the friction pair in area soon and fast entered into the sticky friction area, and then friction coefficient was up to a certain degree of stability, so it was showed friction and wear resistance of matrix was lower than the coating.
引文
[1]殷瑞钰.我国炼钢连铸技术发展和2010年展望[J].炼钢,2008,24(6):1-12.
    [2]田燕翔.连铸新工艺[M].北京:当代中国音像出版社,2004.
    [3]霍树斌,王志平CrZrCu铜合金表面高速火焰喷涂涂层对其疲劳性能的改善[J].焊接,2006(6):61-64.
    [4]Tao Shunyan, Yin Zhijian, Zhou Xiaming. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions [J]. Tribology International,2010, 43:69-75.
    [5]He J, Ice M, Lavernia E. Particle melting behavior during high-velocity oxygen fuel thermal spraying[J]. Journal of Thermal Spray Technology,2001,10(1):83-93.
    [6]温维新,刁承民.高拉速连铸机结晶器铜板裂纹原因分析及预防措施[J].连铸,2009(1):23-25.
    [7]朱诚意,倪红卫.连铸结晶器材料研究进展[J].连铸,2001(6):20-29.
    [8]洪昌,朱才进,谢春生.水平连铸结晶器铜合金内套表面强化工艺及性能研究[J].热加工工艺,2011,40(4):115-119.
    [9]王冀恒,洪昌,谢春生.水平连铸结晶器铜套失效分析[J].热加工工艺,2011,40(1):169-171.
    [10]徐滨士.表面工程[M].北京:机械工业出版社,2000:34.
    [11]王强,梁淑华,范志康.连续铸钢机结晶器材质的现状和发展趋势[J].特种铸造及有色合金,2001(2):24-25.
    [12]Shipway P H, McCartney D G, Sudaprasert T. Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC-Co coatings [J]. Wear,2005,259:820-827.
    [13]Allcock B W, Lavin P A. Novel composite coating technology in primary and conversion industry applications [J]. Surface and Coating Technology,2003,163/164:62-66.
    [14]Miguel J M, Guilemany J M, Vizcaina S. Tribological study of NiCrBSi coating obtained by different processes [J]. Tribology International,2003,36:181-187.
    [15]Planche M P, Liao H, Normand B, et al. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying process[J]. Surface and Coating Technology,2005,200:1-9.
    [16]Rodriguez J, Martin A, Fernandez R, et al. An experimental study the wear performance of NiCrBSi thermal spray coatings[J]. Wear,2003,255:950-955.
    [17]Sanz A. Tribological behavior of coatings for continuous casting of steel[J]. Surf Coat Technol, 2001,146/147:55-64.
    [18]李京龙,李长久.等离子喷涂熔滴与基体的相互作用机理研究[J].机械科学与技术,2000,19(11):88-90.
    [19]李京龙,李长久.等离子喷涂熔滴的瞬时碰撞压力研究[J].西安交通大学学报,1999,33(12):30-34.
    [20]伍超群,周克崧,邓畅光.连铸结晶器表面强化层的研究现状和发展趋势[J].材料导报,2006,(3):37-39.
    [21]Hyytinen T.高效不锈钢板坯连铸机[J].钢铁,2004,39(12):18.
    [22]钟春生,朱庆桂.提高水平连铸结晶器使用寿命的实践[J].钢铁研究,2007,35(4):5-8.
    [23]王文学.不锈钢特性及其对板坯连铸机的要求[J].重型机械,2010(S1):32-35.
    [24]蔡开科.连铸结晶器[M].北京:冶金工业出版社,2008.
    [25]胡会军,蔡庆辉,王洪兵.宝钢板坯连铸结晶器使用技术实践[J].宝钢技术,2008,(4):59-61.
    [26]张舟,卢文渊,刘亮.太钢新炼钢连铸结晶器新技术及应用[J].科技情报开发与经济,2008,18(12):134-135.
    [27]秦小忙,韩英娟.高效结晶器长寿命技术[J].山西冶金,2004,96(4):34-36.
    [28]王隆寿.宝钢结晶器窄边铜板长寿化对策[J].连铸,2004, (3):26-28.
    [29]Cellard A, Gamier V, Fantozzi G. Wear resistance of chromium oxide nanostructured coatings[J]. Ceramics International,2009,35:913-916.
    [30]刘升.板坯结晶器铜板材质及镀层的优化与应用[J].铸造设备研究,2004(4):28-30.
    [31]郭凯旋.铜和铜合金牌号与金相图谱速用速查及金相检验技术创新应用指导手册[M].西安:中国知识出版社,2005.
    [32]黄伯云.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [33]Bolelli G, Cannillo V, Lusyarghi L. Wear behavior of thermally sprayed ceramic oxide coatings [J]. Wear,2006,261:1298-1315.
    [34]Songrg G, Wang C, Jiang Y, Li H, Lu G, Wang Z X. Microstructure and properties of Al2O3/TiO2 nanostructured ceramic composite coatings prepared by plasma spraying [J]. Journal of Alloys and Compounds,2012,544:13-18.
    [35]付会敏,赵文辉.高强高导CrZrCu合金结晶器的研制[J].铸造技术,2002,23(4):230-232.
    [36]马宇光,李红,刘益民.高性能连铸机结晶器铜板的研制[J].鞍山钢铁学院学报,2001,24(1):21-24.
    [37]王海龙.刘和法,戴学礼.具有优良传导性与强、硬度的系列铜合金的研制及应用[J].机械工程材料,2001,25(7):34-36.
    [38]谢春生,翟启明,徐文清.高强度高导电性铜合金强化理论的研究与应用发展[J].金属热处理,2007,32(1):15-18.
    [39]刘和法,戴学礼,任合.水平连铸用结晶器内壁铜套的研制[J].钢铁研究学报,1992,4(3):23-30.
    [40]田汉蒲,肖鸿光,谢春生.水平连铸结晶器用CuCo2Be合金铜套划伤失效分析[J].热加工工艺,2011,40(3):60-63.
    [41]Otsubo F, Era H, Kishitake K. Structure and phases in nickle-base self-fluxing alloy coating containing high cromium and boron[J]. Journal of Thermal Spray Technology.2000,9(1): 107-113.
    [42]华绍春,王汉功,汪刘应.热喷涂技术的研究进展[J].金属热处理,2008,33(5):82-87.
    [43]侯峰岩,吕春雷,连铸结晶器铜板表面处理关键技术的研究与应用[J].表面技术,2012(4):33-36.
    [44]刘金良.铜合金表面处理技术研究进展[J].有色金属加工,2008,37(4):45-47.
    [45]任虎平,杨贵荣,宋文明.铜及铜合金表面改性技术的研究进展[J].铸造,2002,54(3):213-216.
    [46]Herman H, Sampath S, Mccune R. Thermal spray:current status and future trends [J]. Material Resource Society Bull,2000,25(7):17-25.
    [47]王建丽,李光强,朱诚意.表面改性技术在连铸结晶器上的应用进展[J].电镀与涂饰,2005,24(12):58-62.
    [48]戴达煌,周克崧,袁镇海.现代材料表面技术科学[M].北京:冶金工业出版社,2004:126-148.
    [49]万安元.国内外板坯结晶器镀层情况简介[J].材料保护,2001,34(1):37.
    [50]兰英斌,于金库.提高连铸结晶器耐磨耗性能的Ni-Fe合金单层电镀技术的研究[J].物理测试,1999(4):1-4.
    [51]刘淑兰,郭鹤桐,王保玉.稀士在镍铁合金电沉积中的作用[J].材料保护,1998,31(1):12-14.
    [52]何跃林.功能性超厚镍-铁合金电镀工艺[J].材料保护,1997,30(5):22-23.
    [53]苏顺德.电镀Ni-Co合金工艺连铸工字形异型坯结晶器铜板工作面[J].连铸,2004(4):19-22.
    [54]方克明,张宏杰,陈增琪.连铸机结晶器铜板用Ni-Co金镀层的探讨[J].连铸,2002(3):14-15.
    [55]Matsuyama Tetsuya, Ota Takuo. Continuous casting mold for steel and its manufacturing method[P]. JAPAN:2000-218346,2000-08-08.
    [56]董允,林晓娉.电刷镀Ni-W-Co三元合金镀液及工艺研究[J].河北工业大学学报,1997,26(3):68-72.
    [57]杨明铎,张铁军.连铸机结晶器铜板电镀镍-钴(Ni-Co)合金工艺[J].鞍钢技术,2003(1):8-20.
    [58]Chen Shenqi, Zhou Yanchun, Li Yiyi. Synthesis and characterization of nanocrystalline Ni-Ti and Ni-Cr powder by mechanical alloying[J]. J Mater Sci Techno,1997,13(2):86-90.
    [59]Wang W, Hou F Y, Wang H, etal.Fabrication and characterization of Ni ZrO2 composite nano-coatings by pulse electrodeposition [J]. Scripta Materialia,2005,53(5):613-618.
    [60]曹旭,李宁,黎德育.氨基磺酸盐镀液在结晶器铜板电镀中的应用[J].电镀与精饰,2008(6)50-55.
    [61]侯峰岩,谭兴海,蒋丽敏.连铸结晶器表面电镀技术的应用进展[J].表面技术,2007,36(3):61-63.
    [62]Brower J K, Rapp K D, Powers M J. Advanced alternative coating for mold copper liners[J]. Iron and steel technology,2006,3(7):32-43.
    [63]Kein Goode, David Jenkinson, Brian Stalker连铸结晶器技术的开发最新全陶瓷镀层结晶器[J].钢铁,2004,39(增刊):634-636.
    [64]侯峰岩,王为,刘家臣.ZrO2纳米颗粒在NiZrO2复合镀层中的分散性对镀层结构及性能的影响[J],材料工程,2004,250(3):21-23.
    [65]Hou F Y, Wang W, Guo H T. Effect of the dispersibility of ZrO2 nanoparticles in NiZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings [J]. Applied SurfaceScience,2006,252 (10):3812-3817.
    [66]Bourque G, Lamontagne M, Moreau C. A new sensor for on Line monitoring the temperature and velocity of thermal spray particles[C]. Proceedings of the International Thermal Spray Conference, 2000:45-50.
    [67]Siewicz B. Ni-P composite coatings containing TiO2 and PTFE [J]. Thin Solid Films,1999,349(1): 43-47.
    [68]袁庆龙,侯文义.连铸机结晶器电刷镀Ni—P合金强化机理研究[J].太原理工大学学报,2001,32(2):162-164.
    [69]朱诚意,姚华新,倪红卫.钨酸钠加入量对铜基镍-钨-磷合金镀层性能的影响[J].电镀与涂饰,2003,22(2):1-3.
    [70]吴化.耐磨Ni-Al2O3复合镀层组成机理及性能研究[J].表面技术,2004,33(6):28-30.
    [71]Hyun KiKang, Suk Bong Kang. Effect of feedstock injection methodson oxidation behavior and microstructure of plasm a sprayed W/Cu composites [J]. Surface and Coatings Technology,2004, 182(1):124-1301.
    [72]Dolatabadi A, Pershin V, Mostaghimi J. New attachment for controlling gas flow in the HVOF process [J]. Journal of Thermal Spray Technology,2005,14(1):91-99.
    [73]Fau chairs P. Und erstanding plasma spraying [J]. Journal of Physics D:Applied Physics,2004, 37(9):86-108.
    [74]毕刚.连铸结晶器铜板表面涂层热喷涂技术研究[J].表面技术,2009,38(4):75-76.
    [75]华绍春,王汉功,汪刘应.热喷涂技术的研究进展[J].金属热处理,2008,33(5):82-87.
    [76]P. Fauchais, A. Vardelle. Heat mass and momentum transfer in coating formation by plasma spraying [J]. International Journal of Thermal Sciences.2000,39:852-870.
    [77]滨谷秀树,小原昌弘,金子志克.连统铸造铸型ぉよ溶射方法[P].日本,公开号.特開平11-226700,1999-08-24.
    [78]滨谷秀树,下田信之,北口三郎.钢の连统铸造用铸型ぉよ溶射方法[P].日本,公开号.特開平9-285844,1997-11-04.
    [79]FinckeJ.R., Swank W. D, Bewley R. L. Diagnostics and control in the thermal spray process [J]. Surface and Coatings Technology,2001,146-147:537-543.
    [80]洪昌.水平连铸结晶器铜合金内套组织与性能研究[D].江苏科技大学硕士研究生学位论文.2011.
    [81]花思明.水平连铸结晶器铜合金内套的表面强化及组织与性能研究[D].江苏科技大学硕士研究生学位论文.2012.
    [82]梶谷敏之,江阪久雄,荻林成章.鋼の连统铸造用铸型[P].日本,特開平8-267182,1996-10-15.
    [84]刘芳,刘常升,陶兴启等.结晶器铜板上激光熔覆镍基合金[J].东北大学学报(自然科学版),2006,27(10):1106-1109.
    [85]陶兴启,黄旭东,刘芳等.在结晶器表面激光快速熔覆制备耐磨抗热复合涂层工艺[P].中国,公开号CN1932082A,2006-10-12.
    [86]刘雪飘.结晶器铬锆铜板表面等离子喷涂镍铬-碳化铬涂层的研究[D].江苏科技大学硕士研究生学位论文,2011.
    [87]徐建林,杨波,高威.青铜表面激光熔覆层组织与性能研究[J].航空材料学报.2009,(1):50-55.
    [88]陈志坤,刘敏,曾德长.铜表面激光熔覆镍基合金的显微组织与硬度[J].机械工程材料,2009,1:55-60.
    [89]马文有,陈兴驰,周克崧.铜合金表面热喷涂镍基合金层激光重熔后的显微组织及耐磨性能[J].材料保护,2010,2:56-60.
    [90]郭永利,祝超,卢学刚.激光重熔NiCrAlY涂层研究[J].化学工程,2011(2):72—75.
    [91]符寒光,邢建栋,张立.自蔓延高温合成陶瓷内衬复合铜管的研究[J].有色金属,2002,54(3):13.
    [92]张大伟,雷廷权,李强.激光熔敷金属表面改性研究进展(下)[J].中国表面工程,1999,12(4):11-16.
    [93]张建军.激光熔覆技术在机械修复中的应用[J].自动化与仪器仪表,2011(5):99—100.
    [94]Wu Xiaolei. In situ formation by laser cladding of a TiC composite coating with a gradient distribution [J]. Surface and Coating Technology,1999,115 (2/3):111-115.
    [95]Pei Y T, Hosson De, J Thm. Functionally graded materials produced bylaser cladding[J]. Acta Materialia,2000,48(10):2617-2624.
    [96]Tam K F. Cheng F T. Man H C. Cavitation erosion behavior of laser clad Ni-Cr-Fe-WC on brass [J]. Materials Research Bulletin,2002(37):1341-1351.
    [97]Dehm G, Bamberger M. Laser cladding of Co-based hard facing on Cu substrate [J]. Journal of Materials Science,2002,37(24):5345-5353.
    [98]Dehm G, Medres B, Shepeleva L. Microstructure and tribological properties of Ni-based claddings on Cu substrates [J]. Wear,1999,225-229:18-26.
    [99]刘敏,周克崧,李福海.一种铜基结晶器表面激光熔覆方法[P].中国,公开号:CN101532133A,2009-09-16.
    [100]Von Niessen K, Gindrat M, Refke A. Vapor phase deposition using plasma spray-PVDTM [J]. Journal of Thermal Spray Technology,2010,19(12):502-504.
    [101]Dejang N, Watcharapasorn A. Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings:A role of nano-sized TiO2 addition [J]. Surface & Coatings Technology,2010,204: 1651-1657.
    [102]李行志,等离子喷涂涂层的工艺、组织与性能研究[D],武汉科技大学硕士学位论文,2004.
    [103]Lech Pawlowski. The science and engineering of thermal spray coatings [M]. Beijing:China Machine PRESS,2011:121-138.
    [104]吴子健.热喷涂技术与应用[M].北京:机械工业出版社.2007.
    [105]陈和兴,周克藉,金展鹏.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(12):116-119.
    [106]Monticelli C, Balbo A, Zucchi F. Corrosion and tribocorrosion behavior of thermally sprayed ceramic coatings on steel [J]. Surface & Coatings Technology,2011,205:3683-3691.
    [107]张罡,武颖娜,梁勇.A1203对等离子喷涂热障涂层高温氧化及热震性能的影响[J].中国有色金属学报,2002,12(3):409-414.
    [108]刘彦学,袁晓光.镁合金表面锌铝合金冷喷涂层的磨损行为[J].沈阳工业大学学报,2005,27(4):385-388.
    [109]Yilmaz R, Kurt A O, Demir A. Effects of TiO2 on themechanical properties of the Al2O3-TiO2 plasma sprayed coating [J]. Journal of the European Ceramic Society,2007,27(2):1319-1323.
    [110]杜志科,胡兆奇,王家峰.铜合金熔铸设备技术要点探讨(续)[J].有色金属加工,2012,41(5):31-33.
    [111]肖文奎,李耀群.《铜及铜合金熔炼与铸造技术》[M].北京:冶金工业出版,2007.
    [112]徐滨十.表面工程的理论与技术(第2版)[M].北京:国防工业出版社,2010.
    [113]王海军.热喷涂材料及应用[M].北京:国防工业出版社,2008.
    [114]段忠清,王泽华.等离子喷涂NiCrAl黏结涂层工艺优化研究[J].新技术新工艺,2008,(5):80-82.
    [115]徐仲安,王天保,李常英.正交试验设计法简介[J].科技情报开发与经济,2002,12(5)146-158.
    [116]段忠清,张宝霞,王泽华.等离子喷涂Cr2O3-8TiO2涂层参数优化研究[J].表面技术,2008,37(4):39-41.
    [117]Ozkan Sarikaya. Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process [J]. Surface & Coatings Technology,2005,190: 388-393.
    [118]周天乐,谢春生,董明水.新型无钴低铍铜基电阻焊电极合金性能研究[J].华东船舶工业学院学报(自然科学版),2002,16(2):21-26.
    [119]Jovanovic M. Aging of Cu-Be alloys with and without cobalt addition [M]. Materials Science and Technology,1986(2):122-128.
    [120]袁远,宋练鹏,张俊.工业结晶器用Cu-Co-Be合金时效强化机制[J].金属热处理,2009,34(5):14-17.
    [121]Guilemany J.M, Espallargas N, Suegama P.H. Comparative study of Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings[J]. Corrosion Science,2006 (48):2998-3013.
    [122]Sukhpal Singh Chatha, Hazoor S. Sidhu, Buta S. Sidhu. High temperature hot corrosion behaviour of NiCr and Cr3C2-NiCr coatings on T91 boiler steel in an aggressive environment at 750℃[J]. Surface & Coatings Technology,2012,206:3839-3850.
    [123]Zhenyu Zhang, Xinchun Lu, Jianbin Luo. Tribological properties of rare earth oxide added Cr3C2-NiCr coatings. Applied Surface Science 2007,253:4377-4385.
    [124]Ma Zhibin, Wang Jianhua, Wu Qinchong. Preparation of flatad-herent diamond films on thin copper substratesusing a nickel interlayer [J]. Surface and CoatingsTechnology,2002 (22): 5045-5052,
    [125]Ji Gangchang, Li Changjiu, Wang Yuyue. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3Cr-NiCr coating. Surface & Coatings Technology 2006 (200): 6749-6757.
    [126]Li J.F, Li L, Ding C.X. Thermal diffusivity of plasma-sprayed Cr3C2-NiCr coatings[J]. Materials Science and Engineering,2005 (A 394) 229-237.
    [127]Sidhu T.S, Prakash S, Agrawal R.D. Hot corrosion studies of HVOF sprayed Cr3C2-NiCr and Ni-20Cr coatings on nickel-based superalloy at 900℃. Surface & Coatings Technology,2006 (201) 792-800.
    [128]高阳,史雅琴,辛刚.等离子喷涂碳化钨涂层组织与喷涂条件的关系[J].机械工程材料,2002,26(8):25-27,31.
    [129]谷春艳,霍树斌,王吉孝.冷喷涂Al涂层性能及沉积行为的分析[J].焊接,2006,(12):42-45.
    [130]陈健,刘雪飘,梁欢.结晶器铬锆铜板表面等离子喷涂镍铬-碳化铬涂层的研究[J].材料导报,2010,S2:525-526.
    [131]Yuan Youjun, Zhou Jiansong, Chen Jianmin. Preparation, microstructure and tribological behavior of laser cladding NiAl intermetallic compound coatings[J]. Wear,2012(274-275):298-305.
    [132]Wang Y, Yang Y, Yan M.F. Microstructures, hardness and erosion behavior of thermal sprayed and heat treated NiAl coatings with different ceria[J]. Wear,2007 (263):371-378.
    [133]王红星,盛晓波,储成林.Cu基体电镀Ni层表面渗A1组织及其形成机理[J].中国有色金属学报,2007,17(10):1616-1620.
    [134]Xi Wenjun, Li Neng, Zhang Tao. Thermite reaction synthesis of nano-sized NiAl reinforced FeNiCr-TiC composite coating[J]. Journal of Alloys and Compounds,2010, (504S) S414-S417.
    [135]张本.陶瓷/金属复合耐磨涂层的试验研究[D].武汉理工大学硕士学位论文,2001.
    [136]Enayati M.H, Karimzade F. h, Jafari M. Thermite reaction synthesis of nano-sized NiAl reinforced FeNiCr-TiC composite coating[J]. Journal of Alloys and Compounds,2010 (504S):S414-S417.
    [137]李振铎,于月光,刘海飞.高温耐磨损Cr3C2-25%NiCr涂层制备及其性能研究[J].有色金属(冶炼部分),2006(增刊):37-40.
    [138]Stuia M H, Valente T, Bartuli V. Characterization of Cr3C2-25% NiCr reactive plasma sprayed coatings produced at different pressures[J]. Surface and coatings technology,2001, (146-147): 553-562.
    [139]郭作兴,沈平,胡建东.Cu-Al系粉末压坯激光反应烧结研究[J].激光技术,2005,29(1)11-13.
    [140]Matthews S, Hyland M, James B. Microhardness variation in relation to carbide development in heat treated Cr3C2-NiCr thermal spray coatings[J]. Acta Materialia,2003,51:4267-4277.
    [141]王俊,张立,李克.爆炸喷涂Cr3C2-NiCr涂层及其在连铸辊上的应用[J].上海交通大学学报,2000,34(8):66-69.
    [142]He Jianhong, Enrique J, Lavernia. Precipitation phenomenon in nanostructured Cr3C2-NiCr coatings[J]. Materials Science and Engineering,2001, A301:69-79.
    [143]Movahedi B. Fracture toughness and wear behavior of NiAl-based nanocomposite HVOF coatings [J]. Surface & Coatings Technology,235 (2013) 212-219.
    [144]郭建亭,任维丽,周健.Ni-Al合金化研究进展[J].金属学报,2002,38(6):667-672.
    [145]徐卓辉,唐国翌.铝/镍层状复合金属的工艺制备技术研究[J].稀有金属材料与工程,2007,36(2):296-301.
    [146]Lopez G A, Sommadossi S, Zieba P. Kinetic behaviour of diffusion-soldered Ni/Al/Ni interconnections[J]. Materials Chemistry and Physics,2003,78(2):459-463.
    [147]Wu Qiong, Li Shusuo, Ma Yue. Study on behavior of NiAl coating with different Ni/Al ratios. Vacuum,2013,93:37-44.
    [148]蒋淑英,李世春. Ni-Al固/液扩散偶的组织结构演变及其形成机理[J].中国有色金属学报,2010,20(8):1553-1558.
    [149]Yang T Y, Wu S K, Shiue R K. Interfacial reaction of infrared brazed NiAl/Al/NiAl and Ni3Al/Al/Ni3Aljoints[J]. Intermetallics,2001,9(4):341-347
    [150]高伟丽,严红革,盛绍顶.气相沉积制备Ni-Al合金纳米粉末的相生成规律[J].中国有色金属学报,2006,16(2):339-345.
    [151]索进平,冯涤,骆合力.耐磨耐蚀Ni-Al金属间化合物基复合保护层的研制[J].材料保护,2002,35(2):34-36.
    [152]王红星,盛晓波,储成林.包渗时间对Cu表面Ni-Al涂层组织和性能的影响[J].材料工程,2008(8):52-57.
    [153]田浩亮,魏世丞,徐滨士.高速电弧喷涂FeAlCr涂层的组织与耐磨性研究[J].稀有金属材料与工程,2014,43(1):135-139.
    [154]尹海龙Cu-Al-Ni三元体系界面反应研究[D].中国石油大学(华东),2009.
    [155]Matthews S, James B, Hyland M. The role of microstructure in the high temperature oxidation mechanism of Cr3C2-NiCr composite coatings. Corrosion Science,2009,51:1172-1180.
    [156]Huang Chuanbing, Du Lingzhong, Zhang Weigang. Preparation and characterization of atmospheric plasma-sprayed NiCr/Cr3C2-BaF2-CaF2 composite coating[J]. Surface & Coatings Technology 2009, 203:3058-3065.
    [157]沈金文,吕广庶,马壮.在热震试验中热障涂层的裂纹形成和扩展[J].新技术新工艺,2002,(4):3941.
    [158]陈方明,李勇.等离子涂层热震过程中显微组织及热震性能研究[J].新技术新工艺,2004,(3):40-42.
    [159]柳彦博,王全胜,王富耻.功能梯度热障涂层热震表面裂纹[J].新技术新工艺,2006,(7):50-51.
    [160]马壮,王富耻,吕广庶.等离子喷涂功能梯度涂层抗热震性研究[J].材料工程,2003,z1:181-183,186.
    [161]张琦,李丘林,李廷举.电磁连铸内结晶器侧换热系数的模拟与研究[J].中国有色金属学报,2004,14(12):2073-2078.
    [162]Li Shibo, Li Haolin, Zhou Yang. Mechanism for abnormal thermal shock behavior of Cr2AlCu [J]. Journal of the European Ceramic Society,+Model JECS-9432.
    [163]Subhash Kamal, Jayaganthan R, Prakash S. High temperature oxidation studies of detonation-gun-sprayed Cr3C2-NiCr coating on Fe and Ni based superalloys in air under cyclic condition at 900℃. Journal of Alloys and Compounds,2009,472:378-389.
    [164]Mohammad RezaLoghman-Estarki, RezaSrojaRazavi, HosseinEdris. Life time of new SYSZ thermal barrier coatings produced by plasmn spraying method under thermal shock test and high temperature treatment. Ceramics International,2014,40:1405-1414.
    [165]陈和兴,周克藉,金展鹏.离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116-119.
    [166]Zhou Shengfeng, Dai Xiaoqin, Zheng Haizhong. Microstructure and wear resistance of Fe-based WC coating bymulti-track overlapping laser induction hybrid rapid cladding [J]. Optics & Laser Technology,2012,44(1):190-197.
    [167]霍树斌,王志平,王佳杰.CoCrMoSi涂层冷热疲劳和磨损性能[J].焊接学报,2007,8(5):73-76.
    [168]Lu Xuecheng, Yan Dianran, Yang Yong. Phase evolution of plasma sprayed Al2O3-13%TiO2 coatings derived from nanocrystalline powders [J]. Trans. Nonferrous Met. Soc. China,2013 (23): 2951-2956.
    [169]苟国庆,陈辉,涂铭旌.热喷涂NiCr/Cr3C2、NiCrCOAlY涂层的微观组织结构及抗震性能[J].电焊机,2005(11):36-39.
    [170]罗暹.李琼.等离子喷涂Al2O3(13%TiO2)涂层和NiCr-Cr3C2涂层的组织性能研究[J].热加工工艺,2009,38(2):73-78.
    [171]Yu Z, Hass D D, Wadley. NiAl bond coats made by a directed vapor deposition approach [J].Materials Science and Engineering,2005, A394:43-52.
    [172]Mann B.S, Braham Prakash. High temperature friction and wear characteristics of various coating materials for steam valve spindle application [J].Wear,2000,240:223-230.
    [173]杨中元,李学锋,张彬.超音速火焰喷涂CoCrW涂层的磨损特性[J].热喷涂技术,2012,4(4):31-33.
    [174]Wang Hongyu. High temperature frictional wear behaviors of nano-partlcle reinforced NiCoCIA1Y cladded coatings [J]. Transactions of Nonferrous Metals Society of China,2011,21:1322-1328.
    [175]姚小飞,谢发勤,韩勇.温度对TC4钛合金磨损性能和摩擦系数的影响[J].稀有金属材料与工程,2012,41(8):1464-1466.
    [176]师昌绪,钟群鹏,李成功.中国材料工程大典第一卷[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700