用户名: 密码: 验证码:
高强度TiZrAlV合金的制备及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金由于具有高比强度、优异的抗腐蚀性,低密度(密度仅为钢和镍基超合金的一半)等优点,在早期就被广泛应用于航空工业和化学工业中;而锆及锆合金具有中子吸收截面积小、抗辐照、抗氧化、耐腐蚀、热膨胀系数小以及密度小等优异的理化性能,目前被广泛应用于核工业和化学工业中。随着科技的迅猛发展,钛合金及锆合金在航天领域的应用正在逐渐增多。但由于现有钛合金的抗辐照性能差、膨胀系数大,而锆合金的强度比较低,两者均不适合作为航天飞行器的结构材料来使用。基于上述现状,本文以发展新型空间结构材料为目标,通过对合金成分的设计和优化和对锻造和热处理工艺参数的探索,设计具有优异力学性能的TiZr基合金体系,并系统研究TiZr基合金体系的相变、组织演化和强化机制。
     本文以Ti-6Al-4V为基体,以各元素对合金的相组成以及力学性能的影响作为依据,设计出新型TiZr基合金体系中各元素的含量,并且对TiZrAlV合金的成分进行了优化。使用非自耗电弧炉制备了一系列成分的TiZrAlV合金,其力学性能测试结果表明:Zr含量在15wt.%~20wt.%的范围内时,合金的强度得到较大的提升,并且密度控制在4.6g/cm~3左右;传统Ti合金中最主要的强化元素Al的含量控制在4.5wt.%~6.9wt.%的范围内时,可有效的提高合金的强度;β相稳定元素V元素的含量则控制在3.5wt.%~4.5wt.%的范围内;其余为Ti。TiZrAlV合金体系的β相转变温度随着Zr含量的增加而降低,其综合力学性能随Zr含量的增加而升高。
     根据成分优化的结果,使用水冷铜坩埚电磁感应悬浮熔炼以及工业自耗电弧炉熔炼制备了成分为Ti-15Zr-6Al-4V(T15Z合金)、Ti-20Zr-6.5Al-4V(T20Z合金)以及Ti-51Zr-4.5Al-4V(T51Z合金)高强度合金。通过开坯锻造、精锻和后续的热处理,合金的性能得到进一步的改善。主要的力学性能指标如下:T15Z合金经过退火后具有较好的塑性(大于13%);T51Z合金在不同温度淬火后,其延伸率在15%左右;固溶时效态T20Z合金的最大抗拉强度可达1740MPa,延伸率为2.3%;T20Z合金700℃时效后的强度为1437MPa,延伸率为6.69%;退火态的T20Z合金的强度在1300MPa左右,延伸率大于10%。
     利用XRD、OM、FE-SEM以及TEM研究T20Z合金在不同热处理制度下的相变以及组织演化规律。结果如下:950℃固溶处理后的样品中出现了面心立方结构相,其晶格参数a=0.4385nm,而700℃时效后该fcc相转变成为α相。550℃~850℃保温120min退火后合金主要是由α相和β相组成,并且在650℃和750℃退火后出现面心立方结构相;在750℃以下退火后合金中残余β相的含量随着退火温度的升高而有所降低;在退火温度达到750℃以上时残余β相的含量则随着退火温度的升高而增加。T20Z合金在800℃~1050℃保温30min退火后合金由α相和β相组成;在950℃以下即双相区退火时,合金中残余β相的含量随退火温度的升高先增加后降低;在950℃以上退火时,合金中残余β相的含量随着退火温度的升高而增加。此外,在相同退火温度下,保温时间越长,T20Z合金中β相的含量也越高。退火态下的α相板条的厚度对退火温度很敏感。随着退火温度的升高,α相的形貌趋向于等轴状(1050℃除外)。T20Z合金在经过1000℃退火处理后,α相板条厚度达到了最大值4.22μm。
Titanium and its alloys have been widely used in aviation and chemical industry todate, due to the exceptional strength-to-weight ratio, good corrosion resistance and theirdensity being only half of the steel and Ni-based super alloys. Meanwhile, zirconium andits alloys have been mainly used in nuclear and chemical industries because of theirunique physic-chemical properties, such as a small capture cross-section for thermalneutron, good anti-irradiation, favourable oxidation resistance and corrosion resistance,small expansion coefficient, and low density. The application of Ti and Zr alloys in spaceis also gradually increasing with the development of science and technology. At present,Ti alloys, which do not possess good irradiation resistance and have large expansioncoefficient, are not suitable to use in the extreme space environment as structural materials.Furthemore, besides the good anti-irradiation, low density and a small expansioncoefficient are also the desired properties of structural materials for space crafts, the lowstrength of Zr alloys restricts their applications as structural materials. Therefore, thisdissertation is aiming to develop new type aerospace materials by means of the alloycomposition design and optimization, forging and heat treatment process to design a seriesof TiZr-based alloys with exceptional mechanical properties. And the dissertation alsosystematically studys phase transition, microstructural evolution and strengtheningmechanism of the TiZr-based alloy.
     A series of TiZrAlV alloys designed are melted by utilizing a vaccumnon-consumable electro-arc furnce. Based on Ti-6Al-4V alloy, the composition of theTiZrAlV alloys are optimized according to the influence of various elements on phasecontents and mechanical properties. The strength and hardness of TiZrAlV alloysobviously increase and the densities of the alloys are around4.6g/cm~3, when the contentsof Zr is15wt.%~20wt.%. Al is the most major strengthening element in Ti alloys, andthe strength of alloys will increase distinctly when Al content is about4.5wt.%~6.9wt.%.The content of V, as a β-stabilized element, is about3.5%~4.5%. The β transustemperatures are decreased with Zr, and mechanical properties also increase.
     Based on the results of the composition optimization, the high-strength alloys, i.e.Ti-15Zr-6Al-4V (T15Z alloy), Ti-20Zr-6.5Al-4V (T20Z alloy) and Ti-51Zr-4.5Al-4V(T51Z alloy), are prepared by electro-magnetic induction melting and vaccum consumableelectro-arc furnace. After the break-down forging and subsequent heat treatment, themechanical properties of the alloys are obviously changed. After annealing, T15Z alloyhas good ductility (about13%). The ductility of T51Z alloy undergone water quenching atdifferent temperatures is about15%. The ultimate strength of T20Z alloy undergonesolution treatment and aging treatment reaches1740MPa with the low plasticity. Afteraging at700oC, the strength and ductility of alloy are1437MPa and6.69%respectively.The strength of the annealing T20Z alloy is about1300MPa and the ductility is greaterthan10%.
     Phase transition and microstructural evolution of T20Z alloy undergone different heattreating regime are investigated by means of XRD, OM, FE-SEM and TEM. FCC phasewas found after solution treatment at950oC and the lattice parameter was determined tobe a=0.4385nm. The FCC phase disappeared after aging at700oC. Annealing between550and850oC for120min, all TiZr-based alloys are mainly composed of α and β phase,and the FCC phase appeared between650and750oC. The volume fraction of β phasedecreases with anneraling temperatures below750oC, whereas the volume fraction of βphase increases with the annealing temperature over750oC. Annealing between800oCand1050oC for30min, all TiZr-based alloys are composed of α and β phase. The volumefraction of β phase is sensitive to the annealing temperature. Furthermore, at the sameannealing temperature (eg. annealing at850oC), the longer the holding time is, the higherthe volume fraction of β phase. Under the high temperatures annealing for short timeconditions, the thickness of lamellar α phase of T20Z alloy is sensitive to the annealingtemperatures. With the annealing temperature increasing, the morphology of α phase tendsto equiaxed grain, except alloy annealed at1050oC.
引文
[1] Polmear I.J., Light Alloys: Metallurgy of the Light Metals[M].3rd ed., Arbold, London,1995.
    [2] Sibum H., Titanium and Titanium Alloys—From Raw Material to Semi-finished Products[J].Advanced Engineering Materials.2003,5:393-398.
    [3] Schauerter O., Titanium in Automotive Production[J]. Advanced Engineering Materials.2003,5:4114.
    [4] Schutz R.W., Watkins H.B., Recent developments in titanium alloy application in the energyindustry[J]. Materials Science and Engineering: A.1998,243(1-2):305-315.
    [5]胡清熊.钛的应用及前景展望[J].钛工业进展,2003(Z1):5-8.
    [6] Chatterjee S., Shah P.K., Dubey J.S. Ageing of zirconium alloy components[J]. Journal of NuclearMaterials.2008,383(1-2):172-177.
    [7] Negut G., Ancuta M., Radu V., et. The irradiation effects on zirconium alloys[J]. Journal OfNuclear Materials.2007,362(2-3):300-308.
    [8] Cupp C.R. The effect of neutron irradiation on the mechanical properties of zirconium-2.5%niobium alloy[J]. Journal of Nuclear Materials.1962,6(3):241-255.
    [9] Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation[J].Journal of Nuclear Materials.1988,159:190-218.
    [10] Kim H.G., Park S.Y., Lee M.H., et. Corrosion and microstructural characteristics of Zr-Nb alloyswith different Nb contents[J]. Journal of Nuclear Materials.2008,373(1-3):429-432.
    [11] Zander D., Kster U. Corrosion of amorphous and nanocrystalline Zr-based alloys[J]. MaterialsScience and Engineering A.2004,375-377:53-59.
    [12] Lee J.H., Hwang S.K. Effect of Mo addition on the corrosion resistance of Zr-based alloy in watercontaining LiOH[J]. Journal of Nuclear Materials.2003,321(2-3):238-248.
    [13] Klepfer H.H. Zirconium-niobium binary alloys for boiling water reactor service part II-corrosionhydrogen embrittlement[J]. Journal of Nuclear Materials.1963,9(1):77-84.
    [14] Kim J.M., Jeong Y.H., Jung Y.H. Correlation of heat treatment and corrosion behavior ofZr-Nb-Sn-Fe-Cu alloys[J]. Journal of Materials Processing Technology.2000,104(1-2):145-149.
    [15] Mukherjee P., Nambissan P.M.G., Barat P., et. The study of microstructural defects andmechanical properties in proton-irradiated Zr-1.0%Nb-1.0%Sn-0.1%Fe[J]. Journal of NuclearMaterials.2001,297(3):341-344.
    [16] Boyer R.R. An overview on the use of titanium in aerospace industry[J]. Materials ScienceandEngineering A.1996,213:103-114.
    [17] Leyens C., Peter M., Titanium and Titanium alloys. Fundamentals and Applications[M].WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim,2003:3
    [18] Boyer R.R., Welsch G., Collings E.W. Materials Properties Handbook: Titanium Alloy, ASTMInternational, Metals Park, OH,1994.
    [19]王乐安.难变形合金锻件生产技术[M].北京:国防工业出版社,2005:203-205.
    [20]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985:66.
    [21] Bieler T.R., Glavicic M.G., Semiatin S.L. Using OIM to investigate the microstructural evolutionof Ti-6Al-4V[J]. Journal of Metals,2002,54:31-36.
    [22]赵永庆,曲恒磊,冯亮,等.高强高韧损伤容限型钛合金TC21研制[J].钛工业进展,2004,21(1):22-24.
    [23] Boyer R.R. Design properties of a high strength titanium alloys, Ti-10V-2Fe-3Al[J]. Journal ofMetals,1980,(32)61.
    [24] Bania P., Beta Titanium Alloys and Their Role in the Titanium Industry, in: Beta Titanium Alloysin the1990’s[C], D. Eylon et al.(eds), TMS, Warrendale, PA, USA,1993,6.
    [25] Boyer R.R., Applications of Beta Titanium Alloys in Airframes, in: Beta Titanium Alloys of the1990’s[C], D. Eylon et al.(eds.), TMS, Warrendale, PA, USA (1993)335.
    [26] Dunlop D.C., Schulz R.W., Utilisation of Beta-C. Titanium Components in Downhole Service: in:Beta Titanium in the1990’s[C], D. Eylonet al.(eds.), TMS Warrendale, PA, USA (1993)347.
    [27]丁道云(译).材料科学与技术丛书第8卷非铁合金的结构与性能.北京:科学出版社.1998.
    [28]李佩志.我国锆合金的研究现状.稀有金属材料与工程.1993;22:7.
    [29] Rickover H G., History of development of zirconium alloys for use in nuclear reactors[R]. UnitedStates Energy Research and Development Administratin NR: D.
    [30] IAEA-TECDOC-996. Waterside corrosion of zirconium alloys in nuclear power plants[C].International Atomic Energy Agency,1998.
    [31] Kassam Z.H.A., Wang Z. Bauschinger effect in a modified Zr-2.5wt.%Nb pressure tubematerial[J]. Materials Science and Engineering: A.1993,171(1-2):55-63.
    [32] Hammad A.M., El-Mashri S.M., Nasr M.A. Mechanical properties of the Zr-1%Nb alloy atelevated temperatures[J]. Journal of Nuclear Materials.1992,186(2):166-176.
    [33] Amouzouvi K.F., Cann C.D., Clegg L.J., et. The effect of the addition of1.7at.z yttrium on themechanical properties of Zr-2.5Nb alloy[J]. Scripta Metallurgica et Materialia.1991,25(5):1155-1160.
    [34] Trojanov Z., Lukc P., Krl F., et. Discontinuouslow temperature deformation of Zr---Sn alloys[J].Materials Science And Engineering: A.1991,137:151-155.
    [35] Zee R.H., Watters J.F., Davidson R.D. Diffusion and chemical activity of Zr-Sn and Zr-Tisystems[J]. Physical Review B.1986,34(10):6895-6901.
    [36] Northwood D.O., Fong W.L. Modification of the structure of cold-worked Zr-2.5wt%Nb nuclearreactor pressure tube material[J]. Metallography.1980,13(2):97-115.
    [37] El-Shanshoury I.A., Voronin I.M., Bassim M.N., et. The effect of hydrogen and extension rates onthe mechanical properties of Zr-1%Nb alloy over the temperature range30to600oC[J]. Journalof Nuclear Materials.1968,27(1):102-107.
    [38] Ells C.E., Cheadle B.A. Aging and recovery in cold rolled Zr-2.5wt%Nb Alloy[J]. Journal ofNuclear Materials.1967,23(3):257-269.
    [39]刘建章.核结构材料[M].北京:化学工业出版社,2007: p44.
    [40] Mitchell A.Melting casting and forging problems in titanium alloys [J].Materials Science andEngineering1998A243(1-2)257-262.
    [41] Sikka V.K., Wilkening U.D., Liebetrau J., Melting and casting of FeAl2based castalloy[J].Materials Science and Engineering A.1998,258(1-2):229-235.
    [42] Valry Imayev Renat Imayev Andrey Kuznetsov.Mechanical properties of thermomechanicallytreated Ti-rich γ+α2titanium aluminide alloys[J]. Scripta Materialia200349(10)1047-1052.
    [43] Kattner U R Lin J C Chang Y A.Thermodynamic assessment and calculation of Ti-Alsystem[J].Metall. Trans A.199223A (8):2081-2090.
    [44]王琛,毛小南,于兰兰,高平.钛合金熔炼技术的进展[J].金属铸锻焊技术2009(38),42-45.
    [45]黄金昌.等离子冷床熔炼钛合金[J].钛工业进展1994(5)19-20.
    [46]陈显明.钛合金熔炼与铸造技术新进展[J].肇庆学院学报.2010,32(2):20-25.
    [47]陈振华.钛与钛合金[M].北京:化学工业出版社,2006:p258-260.
    [48] Jayaraman A., Klement W., Kennedy G.C. Solid-Solid Transitions in Titanium and Zirconium atHigh Pressures[J]. Physics Review.1963,131:644-649.
    [49] Zilbershteyn, V.A., Chistotina, N.P., Zharov, A.A., et. Physics of Metals and Metallography,1975,39:208.
    [50] Vohra Y.K., Olijnyk H., Grosshans W., et. High Pressure in Research and Industry[M](eds C.M.Backmann, T. Johannisson and L. Tegner) Arkitektkopia, Uppsala,1982:354.
    [51] Xia H., Duclos S.J., Ruoff A.L., et. New high-pressure phase transition in zirconium metal[J].Physics Review Letters.1990,64:204-207.
    [52] Xia H., Parthasarathy G., Luo H., et. Crystal structures of group IVa metals at ultrahighpressures[J]. Physics Review B.1990,42:6736-6738.
    [53] Bundy F.P.(1963) General Electric Report,63-RL-3481C.
    [54] Young D.A., Phase Diagrams of the Elements, University of California Press, Berkeley,1991.
    [55] McQueen R.G., Marsh S.P., Taylor J.W., et. High Velocity Impact Phenomena(ed. R. Kinslow)Academic Press, New York,1970:344.
    [56] Kutsar A.R., Pavlovskii M.N., Komissarov V.V., Observation of a two-wave shock configurationin titanium[J]. JETP Letters.1982,35:108.
    [57] Kiselev A.N., Falkov A.A. Phase transformations in titanium in shock waves[J]. Combust. Explos.Shock Waves,1982,18:94.
    [58] Gyanchandani J.S., Gupta S.C., Sikka S.K. et. The equation of state and structural stability oftitanium obtained using the linear muffin-tin orbital band-structure method[J]. J. Phys.: Conde.Matt.,1990,2:301.
    [59] Banerjee S., Mukhopadhyay P. Phase Transformations Examples from Titanium and ZirconiumAlloys[M]. Amsterdam: Elsevier,2007: p282.
    [60]辛社伟,赵永庆,曾卫东,钛合金固态相变的归纳与讨论(I)—同素异构转变[J],钛工业进展2007,24:23-27.
    [61] Tewari R., Srivastava D., Dey G.K., et. Microstructural evolution in zirconium based alloys[J].Journal of Nuclear Materials.2008,383(1-2):153-171.
    [62] Molchanova, E.K. Phase Diagrams of Titanium Alloys,(Israel Program for Scientific Translations,Jerusalem,1965.
    [63] Bania PJ, Hall JA. Titanium Science and Technology[M]. Germany: Oberursel,1985.
    [64] Sun F.S., Cao C.X., Kim S.E.,et. Alloying mechanism of beta stabilizers in a TiAl alloy[J].Metallurgical and Materials Transactions A.2001,32(7):1573-1589.
    [65]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985:208~211.
    [66]郭鸿镇,姚泽坤,冯超,等.温度和应变速率对Ti-1023合金等温压缩行为的影响[J].稀有金属材料与工程.2003,32(7):566-568.
    [67]鲍如强,黄旭,黄利军. Ti-10V-2Fe-3Al合金热工艺的研究[J].稀有金属.2005,29(2):214-21.
    [68] Williams, J.C., Taggart, R. and Polonis, D.H. The morphology and substructure of Ti-Cumartensite[J]. Metallurgical Transactions,1970,1:265.
    [69] Williams, J.C., Pollonis, D.H., Taggart, R. The Science, Technology and Applications ofTitanium[M].(eds R.I. Jaffee and N. Pfomisel), Pergamon Press, London,1970:733.
    [70] Banerjee, S. Krishnan, R. Martensite transformation in zirconium-niobium[J]. Acta Metallurgical,1971(19):13-17.
    [71] Banerjee, S. Krishnan, R. Maretensite transformation in Zr-Ti alloys[J]. MetallurgicalTransformation,1973,4:1811.
    [72] Hofmann D.C., Suh J., Wiest A., et. Designing metallic glass matrix composites with hightoughness and tensile ductility[J]. Nature.2008,45:1085-1090.
    [73] Sauer C., Luetjering G., Thermo-mechanical processing of high strength β-titanium alloys andeffects on microstructure and properties[J]. Materials Processing Technology.2001,117:311-317.
    [74] Cai S., Daymond M.R., Holt R.A. Modeling the room temperature deformation of a two-phasezirconium alloy[J]. Acta Materialia.2009,57(2):407-419.
    [75] Mccabe R.J., Proust G., Cerreta E.K., et. Quantitative analysis of deformation twinning inzirconium[J]. International Journal of Plasticity.2009,25(3):454-472.
    [76] Lee M.H., Kim J.H., Choi B.K., et. Mechanical properties and dynamic strain aging behavior ofZr-1.5Nb-0.4Sn-0.2Fe alloy[J]. Journal of Alloys and Compounds.2007,428(1-2):99-105.
    [77] Saldaa L., Mndez-Vilas A., Jiang L., et. In vitro biocompatibility of an ultrafine grainedzirconium[J]. Biomaterials.2007,28(30):4343-4354.
    [78] Tan J., Ying S., Li C., et. Effect of zirconium hydrides on cyclic deformation behavior ofZr-Sn-Nb alloy[J]. Scripta Materialia.2006,55(6):513-516.
    [79] Puls M.P., Shi S., Rabier J. Experimental studies of mechanical properties of solid zirconiumhydrides[J]. Journal of Nuclear Materials.2005,336(1):73-80.
    [80]梁顺星.高强度Zr合金的制备及组织性能研究[D].秦皇岛:燕山大学工学博士学位论文,2012.
    [81] Morinaga M., Yukawa N., T.Maya, et. Theortical design of titanium alloys[C]. Sixth worldconference on titanium.1988: Cannes.
    [82] M.Morinaga, M. K., Kamimura T., Fukumoto M., et. Theoretical design of beta-type titaniumalloys[C]. World Titanium Conference,7th.1993: San Diego, CA; UNITED STATES.217-224.
    [83] Mohamed Abdel-Hady, Hiroki Fuwa, Keita Hinoshita, et. Phase stability change with Zr contentin β-type Ti–Nb alloys[J], Scripta materialia2007(57)1000-1003.
    [84] Laheurte P., Prima F., Eberhardt A., et. Mechanical properties of low β modulus titanium alloysdesigned from the electronic approach[J]. Journal of the Mechanical Behavior of BiomedicalMaterials.2010,3(8):565-573.
    [85] Saito T., Furuta T., Hwang J., et. Multifunctional Alloys Obtained via a Dislocation-Free PlasticDeformation Mechanism[J]. Science.2003,300(18):464-467.
    [86] Lin C., Yin G., Zhao Y., et. Analysis of the effect of alloy elements on martensitic transformationin titanium alloy with the use of valence electron structure parameters[J]. Materials Chemistry andPhysics.2011,125(3):411-417.
    [87] Zhilyaev A.P., Sabirov I., Gonzlez-Doncel G., et. Effect of Nb additions on the microstructure,thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions[J].Materials Science And Engineering: A.2011,528(9):3496-3505.
    [88] Sabirov I., Perez-Prado M.T., Molina-Aldareguia J.M., et. Anisotropy of mechanical properties inhigh-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformationroute[J]. Scripta Materialia.2011,64(1):69-72.
    [89] Grosdidier T., Philippe M.J., Deformation induced martensite and superelasticity in a β-metastabletitanium alloy[J]. Materials Science and Engineering: A.2000,291:218-223.
    [90] Grosdidier T., Combres Y., Gautier E., et. Effect of microstructure variations on the formation ofdeformation-induced martensite and associated tensile properties in a β metastable Ti alloy[J].Metallurgical Materials and Transaction A.2000,31:1095-1106.
    [91] Hanada S., Ozeki M., Izumi O., Deformation characteristics in β phase Ti-Nb alloys[J].Metallurgical Transaction A.1985,16:789-795.
    [92] Karasevskaya O.P., Ivasishin O.M., Semiatin S.L., et. Precipitation and recrystallization behaviorof beta titanium alloys during continuous heat treatment[J]. Materials Science and Engineering: A.2003,354:121-132.
    [93] Munroe N, Tan X, Gu H. Orientation dependence of slip and twinning in HCP metals[J]. ScriptaMater1997,36:1383.
    [94] Grosdidier T., Combres Y., Gautier E., et. Effect of Microstructure Variations on the Formation ofDeformation-Induced Martensite and Associated Tensile Properties in a β Metastable Ti Alloy[J].Metallurgical and Materials Transactions A.2000(31)1095-1106.
    [95] Li Y., Cui Y., Zhang F., et. Shape memory behavior in Ti–Zr alloys[J], Scripta materialia2011(64)584-587.
    [96] Auffredic J.P., Etchessahar E., Debuigne J., Remarks on the Ti--Zr Phase Diagram:Microcalorimetric Study of the Alpha<-> Beta Transition[J]. J. Less Common Met.1982,84:49-64.
    [97] Polmear I.J. Recent developments in light alloys[J]. Materials Transactions,1996(37):12-31.
    [98] Bagariatskii I.A., Nosova G.I., Tagunova T.V., Factors in the formation of metastable phases intitanium-base alloys[J]. Soviet Physics Doklady English translation.1959,3:1014-1018.
    [99] Bania P.J., Beta titanium alloys and their role in the titanium industry[J]. Journal of Metals.1994,16-19.
    [100] Dobromyslov A.V., Elkin V.A., Martensitic transformation and metastable β-phase in binarytitanium alloys with d-metals of4–6periods[J]. Scripta Mater.,2001,44:905-910.
    [101] Liang S.X., Ma M.Z., Jing R., et. Preparation of the ZrTiAlV alloy with ultra-high strength andgood ductility[J]. Materials Science and Engineering: A,2012,539:42-47.
    [102] Ho W.F., Chen W.K., Wu S.C., et. Structure, mechanical properties, and grindability of dentalTi–Zr alloys[J]. J. Mater. Sci.: Mater. Med.2008,19:3179-3186.
    [103] Sauer C., Luetjering G., Thermo-mechanical processing of high strength β-titanium alloys andeffects on microstructure and properties[J], Journal of Materials Processing Technology,2001,(117):311-317.
    [104] Hsu H.C., Wu S.C., Sung Y.C., et. The structure and mechanical properties of as-cast Zr–Tialloys[J]. Journal of Alloys Compounds.2009,488(1):279-283.
    [105] Liang S. X., Ma M. Z., Jing R., et. Microstructure and mechanical properties of hot-rolledZrTiAlV alloys[J]. Materials Science and Engineering: A2012,532:1-5.
    [106] Williams J., Thermo-mechanical processing of high-performance Ti alloys: recent progress andfuture needs[J]. Journal of Materials Processing Technology.2001,117(3):370-373.
    [107] Fleischer R., Acta Mater.1963,11:203–207.
    [108] Roy G. Le, Embury J.D., Edwards G., et. A model of ductile fracture based on the nucleation andgrowth of voids[J]. Acta Metallurgical.1981,19:1509-1522.
    [109] Leyens C., Peters M., Titanium and Titanium Alloys. Fundamentals and Applications[M].WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim2003289-291.
    [110]稀有金属材料加工手册编写组.稀有金属材料加工手册[M].北京:冶金工业出版社,1984.
    [111]鲍利索娃E.A.钛合金金相学[M].陈石卿,译.北京:国防工业出版社,1986:173-176.
    [112] Leyens C., Peters M., Titanium and Titanium Alloys. Fundamentals and Applications[M].WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim2003,294-296.
    [113] Zhou Y.G., Zeng W.D., Yu H.Q. A new high-temperature deformation strenthening andtoughening process for titanium alloys[J]. Materials Science And Engineering: A.1996,221(1-2):58-62.
    [114]李英龙,李体彬.有色金属锻造与冲压技术[M],北京:化学工业出版社,2008:188-193.
    [115] Jing R., Liang S.X., Liu C.Y., et. Structure and mechanical properties of Ti–6Al–4V alloy afterzirconium addition[J]. Materials Science and Engineering: A.2012,(552):295-300.
    [116] Jing R., Liang S.X., Liu C.Y., et. Aging effects on the microstructures and mechanical propertiesof the Ti–20Zr–6.5Al–4V alloy[J]. Materials Science and Engineering: A.2013(559):474-479.
    [117] Jing R., Liu C.Y., Ma M.M., et. Microstructural evolution and formation mechanism of FCCtitanium during heat treatment processing[J]. Journal of Alloys and Compounds,2013(552):202-207.
    [118] Zhang D.L., Ying D.Y., Processing of Cu–Al2O3metal matrix nanocomposite materials by usinghigh energy ball milling[J]. Materials Letters.2002,52:329-333.
    [119] Beyers R, Sinclair R. Metastable phase formation in titanium‐silicon thin films[J]. Journal ofapplied physics.1985,57:5240-5245.
    [120] Zeng L., Bieler T.R., Effects of working, heat treatment, and aging on microstructural evolutionand crystallographic texture of α, α′, α″and β phases in Ti–6Al–4V wire[J]. Materials Science andEngineering: A.2005,392(1-2):403-414.
    [121] Koul M.K., Breedis J.F., Phase transformations in beta isomorphous titanium alloys[J]. ActaMetall.,1970,(18):579.
    [122] Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys[J]. Progress inmaterials science,2005,50:511-678.
    [123] Lin C., Yin G., Zhao Y., et. Analysis of the effect of alloy elements on martensitic transformationin titanium alloy with the use of valence electron structure parameters[J]. Mater. Chem. Phys.,2011(125):411-417.
    [124] Ferrandini P.L., Cardoso F.F., Souza S.A., et. Aging response of the Ti-35Nb-7Zr-5Ta andTi-35Nb-7Ta alloys[J]. Journal of Alloys And Compounds.2007,433(1-2):207-210.
    [125]张廷杰.钛合金相变的电子显微镜研究(Ⅲ)—钛合金中的马氏体相变[J].稀有金属材料与工程1989,4:71-78.
    [126] Iqbal M., Sun W.S., Zhang H.F., et. Effect of additional elements on mechanical properties of aspecially constituted Zr-based alloy[J]. Materials Science and Engineering: A.2007,447(1-2):167-173.
    [127] Eckert J., Khn U., Mattern N., et. Bulk nanostructured Zr-based multiphase alloys with highstrength and good ductility[J]. Scripta Materialia.2001,44(8-9):1587-1590.
    [128] Yu Z., Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical[beta] type titanium alloy TLM[J]. Materials Science and Engineering: A.2006,438-440:391-394.
    [129] Filip R., Kubiak K., Ziaja W., et. The effect of microstructure on the mechanical properties oftwo-phase titanium alloys[J]. Journal of Materials Processing Technology.2003,133(1-2):84-89.
    [130] Tian X.J., Zhang S.Q., Li A., et. Effect of annealing temperature on the notch impact toughness ofa laser melting deposited titanium alloy Ti-4Al-1.5Mn[J]. Materials Science and Engineering: A.2010,527(7-8):1821-1827.
    [131] Rack H.J., Qazi J.I. Titanium alloys for biomedical applications[J]. Materials Science andEngieering: C.2006,26(8):1269-1277.
    [132] Obasi G.C., Birosca S., J. Quinta da Fonseca, et. Effect of β grain growth on variant selection andtexture memory effect during α→β→α phase transformation in Ti–6Al–4V[J]. Acta Mater.,2012,60:1048-1058.
    [133] Furuhara T., Maki T., Variant selection in heterogeneous nucleation on defects in diffusionalphase transformation and precipitation[J]. Materials Science and Engineering: A.2001,312:145-154.
    [134] Terlinde G, Luetjering G. Influence of grain size and age hardening on dislocation pile-ups andtensile fracture for a Ti-Al alloy[J]. Metall. Trans.1982,13(7):1283-1292.
    [135] Tiley J., Searles T., Lee E., et., Quantification of microstructural features in α/β titanium alloys[J].Materials Science and Engineering: A.2004,372:191-198.
    [136] Kong F.T., Chen Y., Yang F., Effect of heat treatment on microstructures and tensile properties ofas-forged Ti-45Al-5Nb-0.3Y alloy[J]. Intermetallics.2011,19(2):212-216.
    [137] Rack H.J., Qazi J.I., Titanium Alloys for Biomedical Applications[J]. Materials Science andEngineering: C.2006,26(8):1269-77.
    [138] Lütjering G., Albrecht J., Influence of cooling rate and β grain size on the tensile properties of (α+β) Ti alloys[C], in: Proceedings of the8th World Titanium Conference,1995.
    [139] Zhou Y.G., Zeng W.D., Yu H.Q. A new high-temperature deformation strenthening andtoughening process for titanium alloys[J]. Materials Science and Engineering: A.1996,221(1-2):58-62.
    [140] Hong D.H., Lee T.W., Lim S.H., et. Stress-induced hexagonal close-packed to face-centered cubicphase transformation in commercial-purity titanium under cryogenic plane-strain compression[J].Scripta Materialia.2013,69:405-408.
    [141] Hao Y.L., Niinomi M., Kuroda D., et. Young's modulus and mechanical properties ofTi-29Nb-13Ta-4.6Zr in relation to α″martensite[J]. Metall. Mater. Trans. A.2002,33A:31-37.
    [142] Ivasishin O.M., Marakovsky P.E., Matviychuk Yu.V., et. Precipitation and recrystallizationbehavior of beta titanium alloys during continuous heat treatment[J], Metallurgical and MaterialsTransactions A.2003,34:147-158.
    [143] Mcquillan M.K., Phase transformations in titanium and its alloys[J]. Metallurgical Reviews,1963,8:41.
    [144] Zhu Y.C., Zeng W.D., Liu J.L., et. Effect of processing parameters on the hot deformationbehavior of as-cast TC21titanium alloy[J]. Materials&Design.2012,33:264-272.
    [145] Hee Young Kim, Lesi Wei, Shuhei Kobayashi, et. Nanodomain structure and its effect onabnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy[J]. Acta Materialia.2013,61:4874-4886.
    [146] Wawner F.E., Lawless K.R., Epitaxial growth of titanium thin films[J]. Journal of VaccumScience and Technology.1969,6:588.
    [147] Marcus P.M., Jona F., J. Identification of metastable phases: face-centred cubic Ti[J]. Phys.Condens Matter.1997,9:6241.
    [148] Saleh A.A., Shutthanandan V., Smith R., Observation of ultrathin metastable fcc Ti films on Al(110) surfaces [J]. J. Phys. Rev. B.1994,49:4908.
    [149] Salch A.A., Shutthanandan V., Shivaparan N.R., et. Epitaxial growth of fcc Ti films on Al (001)surfaces[J]. Phys. Rev. B.1997,56:9841.
    [150] Kim S.K., Jona F., Marcus P.M., Growth of face-centred-cubic titanium on aluminium[J]. J. Phys.Condens Matter.1996,8:25.
    [151] Chakraborty J., Kumar K., Ranjan R., et. Thickness-dependent fcc–hcp phase transformation inpolycrystalline titanium thin films[J]. Acta Mater.59(2011)2615.
    [152] Sugawara Y., Shibata N., Hara S., et. Interface structure of face-centered-cubic-Ti thin film grownon6H-SiC substrate[J]. Journal of Materials Research.2000,15:2121.
    [153] Chatterjee P., Sengupta S.P., An X-ray diffraction study of strain localization and anisotropicdislocation contrast in nanocrystalline titanium[J]. Philosophical Magazine A.2001,81:49.
    [154] Manna I., Chattopadhyay P.P., Nandi P., et. Formation of face-centered-cubic titanium bymechanical attrition[J]. J. Appl. Phys.2003,93:1520.
    [155] Jovanovi M.T., Tadi S., Zec S., The effect of annealing temperatures and cooling rates onmicrostructure and mechanical properties of investment cast Ti–6Al–4V alloy[J]. Materials andDesign.2006,27:192-199.
    [156] Matsumoto H., Yoneda H., Sato K., et. Room-temperature ductility of Ti-6Al-4V alloy with α'martensite microstructure[J]. Materials Science and Engineering: A.2011,528(3):1512-1520.
    [157] Kuroda D., Niinomi M., Morinaga M., et. Design and mechanical properties of new β typetitanium alloys for implant materials Materials Science and Engineering: A.1998;243(1-2):244-249.
    [158] Laheurte P., Prima F., Eberhardt A., et. Mechanical properties of low modulus β titanium alloysdesigned from the electronic approach[J]. Journal of the mechanical behavior of biomedicalmaterials.2010,3:565-573.
    [159] Hsueh-Chuan Hsu, Shih-Ching Wu, Wen-Fu Ho, et. The structure and mechanical properties ofas-cast Zr–Ti alloys[J]. Journal of Alloys and Compounds.2009(488):279-283.
    [160] Wen-Fu Ho, Chung-Hsiao Cheng, Hsueh-Chuan Hsu, et. Evaluation of low-fusing porcelainbonded to dental cast Ti–Zr alloys[J]. Journal of Alloys and Compounds.2009,471:185-189.
    [161] Chung-Hsiao Cheng, Hsueh-Chuan Hsu, Wen-Fu Ho, et. Effects of chromium addition onstructure and mechanical properties of Ti–10Zr alloy[J]. Journal of Alloys and Compounds.2009,484:524-528.
    [162] Wen-Fu Ho, Chung-Hsiao Cheng, Hsueh-Chuan Hsu, et. Structure, mechanical properties andgrindability of dental Ti–10Zr–X alloys[J]. Materials Science and Engineering: C.2009,29:36-43.
    [163] Wen-Fu Ho, Shih-Ching Wu, Hsueh-Chuan Hsu, et. Effects of molybdenum content on thestructure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications[J].Materials Science and Engineering: C.2012,32:517-522.
    [164] Wen-Fu Ho, Shih-Ching Wu, Hsueh-Chuan Hsu, et. Effects of heat treatments on the structure andmechanical properties of Zr–30Ti alloys[J]. Materials Characterization.2011,62:157-163.
    [165] Suresh Neelakantan, P.E.J. Rivera-D′az-del-Castillo, Sybrand van der Zwaag. Prediction of themartensite start temperature for β titanium alloys as a function of composition[J]. ScriptaMaterialia.2009,60:611-614.
    [166] Talling RJ, Dashwood RJ, Jackson M, et. On the mechanism of superelasticity in gum metal [J].Acta Materialia,2009,57:1188.
    [167] Hee Young Kim, Lesi Wei, Shuhei Kobayashi, et. Nanodomain structure and its effect onabnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy[J]. Acta Materialia.2013,61:4874-4886.
    [168] Aguayo A., Murrieta G., de Coss R., Elastic stability and electronic structure of fcc Ti, Zr, and Hf:A first-principles study[J]. Phys. Rev. B2002,65:1-4.
    [169] Zhang Suhong, Zhu Yan, Liu Riping et., First-principles study on the structural stabilities,electronic and elastic properties for zirconium under pressure[J]. Computational Materials Science2010,50:179-183.
    [170] Liu Y., Yang H., Tan G., et. Journal of Alloys and Compounds.2004,368:157.
    [171] Hesemann H.Th., Mu¨llner P., Arzt E., Stress and texture development during martensitictransformation in cobalt thin films[J]. Scripta Mater.2001,44:25.
    [172] Dehghan-Manshadi A., Dippenaar R.J. Development of α-phase morphologies during lowtemperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy[J]. Mater. Sci. Eng., A.2011,528(3):1833-1839.
    [173]鲍里索娃E.A.,钛合金金相学[M].陈石卿,译.北京:国防工业出版社,1986:173-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700