用户名: 密码: 验证码:
Fe-Cr-C-X堆焊合金显微组织演变及其耐磨性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆焊技术具有高效、廉价等优点,是绿色再制造的核心技术之一。采用堆焊技术对尺寸大、附加值高以及具有耐磨、耐热或耐腐蚀等特殊性能需求的零部件进行修复与再制造,可以有效的延长这些零部件的使用寿命,具有重要的应用价值。Fe-Cr-C合金含有大量的M (M=Cr, Fe)7C3型碳化物,具有较好的耐磨性。然而,传统Fe-Cr-C合金中碳化物较为粗大,在服役过程中碳化物易剥落,从而限制了该合金在堆焊领域的广泛应用。
     本文自行制备了自保护Fe-Cr-C堆焊药芯焊丝,在系统分析了该堆焊合金组织和性能演变规律的基础上,进行合金成分设计和焊丝配方改进,通过加入强碳化物形成元素Ti、Nb和V以及稀土氧化物La2O3和CeO2,研究了Fe-Cr-C堆焊合金中M_7C_3型碳化物的形状、尺寸和分布,制备出耐磨性优异的Fe-Cr-C堆焊层。同时,通过Bramfitt二维点阵错配度理论和第一性原理计算,对M_7C_3异质核心的非均质形核问题进行了理论分析,探讨了掺杂相诱发M_7C_3碳化物异质形核的可能性,解释了M_7C_3碳化物的细化机理。
     Fe-Cr-C堆焊合金主要由M_7C_3碳化物、马氏体(α-Fe)和奥氏体(γ-Fe)组成。随着C含量的升高,堆焊合金显微组织由亚共晶组织向近共晶组织,进而向过共晶组织过渡。Fe-27Cr-[1.5-5.5]C (wt.%)合金的共晶反应发生在3.1wt.%C处。当合金中C含量大于3.1wt.%时,凝固初期发生过共晶反应,从液相中首先析出M_7C_3碳化物。随着合金中C含量增加,M_7C_3碳化物数量增加,尺寸变大,且堆焊层的硬度、抗粘着磨损能力均有所提高,同时,犁皱区材料塑性变形能力下降,易造成M_7C_3碳化物的剥落。
     在堆焊过程中,M_7C_3碳化物体现出择优取向的特征,沿堆焊热流密度方向生长。初生M_7C_3碳化物为多边形棒状结构,共晶M_7C_3碳化物为条状或针状形貌。M_7C_3碳化物在择优生长面的硬度为21.2±0.3GPa,杨氏模量为291±3GPa;在非择优生长面的硬度为20.1±0.3GPa,杨氏模量为267±3GPa。
     Fe-Cr-C堆焊合金中加入M(M=Ti, Nb, V)元素,可以生成初生TiC、NbC以及二次VC碳化物。MC碳化物的形成细化了Fe-Cr-C合金的组织。根据Bramfitt二维点阵错配度理论,(110)TiC与(010)Cr_7C_3的错配度δ=9.3%,TiC作为Cr_7C_3的非均质形核核心的有效性是中等的,可以作为Cr_7C_3的非均质形核核心,对其起到了细化作用。此外,MC的生成在一定程度上消耗了熔池中C原子的浓度,抑制了初生碳化物的长大,从另一方面促进了Cr_7C_3的细化。但是,当M元素过量加入时,堆焊合金由过共晶组织向亚共晶组织转移,合金的耐磨性下降。Fe-16Cr-3.8C堆焊合金中合适的加入量为0.63wt.%Ti。
     稀土氧化物La2O_3或CeO_2加入Fe-Cr-C堆焊合金后参与冶金反应,生成的稀土化合物部分留存于M_7C_3碳化物中或M_7C_3碳化物与奥氏体的边界,对熔池起到了脱氧和脱硫的作用。稀土氧化物可以细化堆焊合金组织中初生M_7C_3碳化物,增强合金的耐磨性;但稀土氧化物过量加入时,其对堆焊合金组织的细化程度明显减弱,甚至粗化。Fe-25Cr-5C堆焊合金中合适的加入量为4.0wt.%La2O3和2.0wt.%CeO_2。
     在相同外界条件下,Cr的掺杂使Fe_(7-x)Cr_xC_3多组元碳化物趋向稳定。与六方结构碳化物相比,正交结构的Cr_7C_3碳化物形成能更低,在合金凝固初期优先形成。随着Cr含量的升高,Fe_(7-x)Cr_xC_3碳化物的硬度升高,Fe_4Cr_3C_3的硬度值达到最大。TiC/Cr_7C_3两种构型界面处均存在Cr-C-Ti共价金属链。TiC(100)型界面构型可以促进Cr_7C_3在其表面异质形核。Fe_3Cr_4C_3/LaAlO_3的界面存在LaO和AlO_2两种终止面。LaO终止型界面理想结合功较大,界面间距较小且界面能较小,有利于初生碳化物在LaAlO3粒子表面上异质形核。
With high efficiency and low price, hardfacing technology is one of the coretechnology of Green Remanufacturing. By hardfacing technology, the work-pieces withlarge size, high additional value and special performance requirements, such as wearresistance, heat resistance and corrosion resistance, can be restored and remanufactured,which in turn effectively prolong the service life of the work-pieces. Therefore, it issignificant for the wide application of hardfacing technology. Fe-Cr-C alloy, with excellentwear resistance, contains a large number of M (M=Cr, Fe)7C3carbides. However, fortraditional Fe-Cr-C alloy, it is the large and block M_7C_3carbide, which causes the carbidesdesquamated. Therefore, the application of the alloy has been limited widely in hardfacingfield.
     Flux-cored wires of Fe-Cr-C alloy with the self-shield ability were prepared in thiswork. On the basis of analyzing the microstructure-properties of the Fe-Cr-C hardfacingalloy, the composition of the alloy was designed and the recipe of the flux-cored wires wasoptimized. By adding strong carbide forming elements Ti, Nb and V as well as rare earth(RE) oxides La2O3and CeO2, the shape, size and distribution of M_7C_3carbide in Fe-Cr-Calloy were investigated. Meanwhile, by the aid of Bramfitt two-dimensional lattice misfitand first-principles calculation, the heterogeneous nucleation of M_7C_3carbide wastheoretical analyzed, the doped phase inducing heterogeneous nucleation of M_7C_3carbidewas discussed and the refinement mechanism of M_7C_3carbide was explained.
     The microstructure of Fe-Cr-C hardfacing alloy consists of M_7C_3carbide, martensite(α-Fe) and austenite (γ-Fe). With increased C content, the microstructure can be changedfrom hypoeutecitc to eutectic, and even hypereutectic ones. The eutectic reaction ofFe-27Cr-[1.5-5.5]C (wt.%) occurs at3.1wt.%C. When C content in the alloy is larger than3.1wt.%, the hypereutectic reaction occurrs at the initial stage of solidification. Withincreased C content, the amount and dimension of M_7C_3carbide are increased, meanwhile,the hardness and adhesive wear resistance of the hardfacing alloy can be improved.However, the plastic deformation of the hardfacing alloy in plough area of the wear scratch becomes weaker, which causes that the M_7C_3carbides easily desquamate from thematrix.
     During hardfacing process, M_7C_3carbides show the preferred orientationcharacteristic, and grow along the direction of welding heat flux density. The shape ofprimary M_7C_3carbide is polygonal rod, while that of eutectic M_7C_3carbide is strip orneedle. The hardness and Young modulus of M_7C_3carbide in preferred orientation sectionare21.2±0.3GPa and291±3GPa, and those in non-preferred orientation section are20.1±0.3GPa and267±3GPa.
     When alloy elements M(M=Ti, Nb, V) were added into Fe-Cr-C hardfacing alloy, theprimary TiC, NbC and secondary VC carbides can be formed, which in turn refine themicrostructure of Fe-Cr-C hardfacing alloy. According to Bramfitt’s two-dimensionallattice misfit theory, the misfit of (110)TiCand (010)Cr_7C_3is δ=9.3%, so the effectiveness ismiddle. Therefore, the TiC carbide can be as heterogeneous nuclei of the Cr_7C_3, and refinethe primary Cr_7C_3carbide. Moreover, the concentration of C atom in the molten pool isconsumed by the formed MC carbide, which accelerates the refinement of Cr_7C_3carbidein turn. However, when the excessive alloy elements M were added, the microstructure ofthe hardfacing alloy changes from hypereutectic one to hypoeutectic one, and the wearresistance of the alloy can be decreased. The optimum amount of Ti in Fe-16Cr-3.8Chardfacing alloy is0.63wt.%.
     When RE oxides La2O3and CeO2were added, they participate in the metallurgicalreaction of Fe-Cr-C hardfacing alloy. The formed RE compounds remain in M_7C_3carbideor at the boundary of M_7C_3carbide and austenite, which in turn play a role in deoxidationand desulfurization to the molten pool. Moreover, the primary M_7C_3carbide can be refinedand the wear resistance of the hardfacing alloy can be improved by the added RE oxides.However, when the excessive RE oxides were added, the refinement of M_7C_3carbide issignificantly weakened, and even coarsened. The optimum amounts of RE oxides inFe-25Cr-5C hardfacing alloy are4.0wt.%La2O3, and2.0wt.%CeO2.
     With the same condition, the doped Cr atoms contribute to the stability of Fe7-xCrxC3multiple carbides. The orthorhombic Cr_7C_3carbide can be preferentially formed at theinitial stage of solidification, for its formation energy is lower than that of hexagonal one. With increased Cr content, the hardness of Fe_(7-x)Cr_xC_3multiple carbides increases, and thatof Fe_4Cr_3C_3is the maximum. Cr-C-Ti covalent chains can be observed at the two kind ofTiC/Cr_7C_3interface. TiC(100) interface promotes the heterogeneous nucleation of Cr_7C_3carbide, which shows a stronger grain refinement ability than that of TiC(110) interface.The interface of Fe_3Cr_4C_3/LaAlO_3can be divided into LaO and AlO_2terminations.LaO-terminated interface, with larger work of adhesion, smaller interfacial separation andinterfacial energy, is favorable for primary carbide to carry out heterogeneous nucleationon LaAlO3particle surface.
引文
[1]徐滨士.再制造工程的现状与前沿[J].材料热处理学报,2010,(01):10-14.
    [2]徐滨士.发展再制造工程促进循环经济建设[J].中国设备工程,2005,(02):4-5.
    [3]徐滨士.中国再制造工程及其进展[J].中国表面工程,2010,(02):1-6.
    [4]任艳艳,张国赏,魏世忠,等.我国堆焊技术的发展及展望[J].焊接技术,2012,(06):1-5.
    [5]胡邦喜,莽克伦,王静洁,等.堆焊技术在国内石化、冶金行业机械设备维修中的应用[J].中国表面工程,2006,(03):4-8.
    [6] Buytoz S. Microstructural Properties of M7C3Eutectic Carbides in a Fe–Cr–C Alloy[J]. MaterialsLetters2006,60(5):605-608.
    [7] Zikin A, Hussainova I, Katsich C, et al. Advanced Chromium Carbide-Based Hardfacings[J].Surface and Coatings Technology2012,206(19-20):4270-4278.
    [8] Zhou Y F, Yang Y L, Li D, et al. Effect of Titanium Content on Microstructure and WearResistance of Fe-Cr-C Hardfacing Layers[J]. Welding Journal,2012,91(8):229-235.
    [9] Lin C M, Chang C M, Chen J H, et al. Microstructure and Wear Characteristics of High-CarbonCr-Based Alloy Claddings Formed by Gas Tungsten Arc Welding (Gtaw)[J]. Surface and CoatingsTechnology2010,205(7):2590-2596.
    [10] Liu D S, Liu R P, Wei Y H, et al. Gao. Comparative Behaviour of Cobalt and Iron BaseHardfacing Alloys[J]. Surface Engineering2012,28(5):338-344.
    [11] Yilbas B S, Akhtar S S, Karatas C. Laser Gas Assisted Melting of Preprepared Alumina SurfaceIncluding Tic Particles at Surface[J]. Surface Engineering2011,27(6):470-476.
    [12] Zhou Y F, Yang Y L, Qi X W, et al. Influence of La2O3Addition on Microstructure and WearResistance of Fe-Cr-C Cladding Formed by Arc Surface Welding[J]. Journal of Rare Earths,2012,30(10):1069-1074.
    [13] Kim J H, Ko K H, Noh S D, et al. The Effect of Boron on the Abrasive Wear Behavior ofAustenitic Fe-Based Hardfacing Alloys[J]. Wear,2009,267(9-10):1415-1419.
    [14] Amushahi M H, Ashrafizadeh F, Shamanian M. Characterization of Boride-Rich Hardfacing onCarbon Steel by Arc Spray and Gmaw Processes[J]. Surface and Coatings Technology2010,204(16-17):2723-2728.
    [15] Azimi G, Shamanian M. Effects of Silicon Content on the Microstructure and Corrosion Behaviorof Fe Cr C Hardfacing Alloys[J]. Journal of Alloys and Compounds2010,505(2):598-603.
    [16] Deng H X, Shi H J, Tsuruoka S, et al. Influence of Welding Technique and Temperature onFatigue Properties of Steel Deposited with Co-Based Alloy Hardfacing Coating[J]. InternationalJournal of Fatigue2012,35(1):63-70.
    [17]单际国,董祖珏,徐滨士.我国堆焊技术的发展及其在基础工业中的应用现状[J].中国表面工程,2002,(04):19-22.
    [18]陈登丰.压力容器耐蚀层堆焊技术的发展[J].化工炼油机械通讯,1979,(06):21-35+10.
    [19]傅成.辊子长寿化的新技术——Weldclad堆焊技术[J].中国钢铁业,2006,(11):36-37.
    [20]张相权,牛道川.汽車排气閥的堆焊修复[J].焊接,1960,(04):28.
    [21]殷森明.埋弧堆焊修复曲轴[J].焊接,1975,(05):43-46.
    [22]张宝江.两吨锤锻模的堆焊修复[J].焊接,1980,(03):39-40.
    [23]周洪博,李志圣,杨佩珍.2吨蒸汽锤砧座的埋弧堆焊修复[J].焊接,1990,(03):22-23.
    [24]守业.曲轴的药芯焊丝埋弧堆焊修复[J].焊接,1981,(06):39-40.
    [25]辛智辉.大型轴件断裂的堆焊修复[J].焊接,1982,(03):22-23.
    [26]安振之.关于堆焊修复冷轧辊试验研究中某些问题的探讨[J].焊接技术,1987,(02):29-32.
    [27]崔东升,于敬文,戚福国,等.冷轧带钢用轧辊的堆焊修复[J].钢铁,1987,(04):53-55.
    [28]杨大学.1150初轧机主轴联杆堆焊修复[J].焊接,1990,(08):22-23.
    [29]黄小鸥,江瑞军.大型发电机转子轴径磨损区域的电火花堆焊修复[J].焊接,2000,(12):26-29.
    [30]刘和平,宋占煌,周世玲.1400kw电机转子轴的堆焊修复[J].焊接技术,2000,(02):10-11.
    [31]苗海良.连铸辊的堆焊修复工艺[J].焊接技术,1995,(04):21-22.
    [32]刘朝俭,吴际元,刘健.用陶质焊剂埋弧堆焊修复冷轧支撑辊[J].焊接,1997,(03):19-21.
    [33]苏彩莲,沈风刚,符定梅,等.热连轧输送辊道辊的堆焊修复[J].焊接技术,2005,(01):33.
    [34]毕群英,郑民会.电弧冷焊修复高铬铸铁合金堆焊缺陷[J].焊接,1994,(02):20-21.
    [35]杨敏.5CrMnMo热锻模的tig堆焊修复[J].焊接,1993,(07):27.
    [36]王世可.磨损模具的堆焊修复法[J].模具技术,1995,(06):90.
    [37]张太超,梁文杰.大型齿轮磨损后的堆焊修复工艺[J].焊接技术,2005,(04):35-36.
    [38]李健.等离子弧模具堆焊修复新技术[J].锻压技术,1997,(04):60-61.
    [39]李强,胡仲翔,韩文政,等.微区脉冲电阻堆焊修复冷作模具研究[J].装甲兵工程学院学报,1998,(03):22-24.
    [40]徐滨士,马世宁,刘世参,等.21世纪的再制造工程[J].中国机械工程,2000,(Z1):45-48+43.
    [41]姚建华,刘新文,张群莉,等.基于绿色再制造的多层激光送丝堆焊[J].应用激光,2005,(02):84-86+100.
    [42]孟晓霞.表面工程应用实例[例11]药芯焊丝埋弧堆焊用于冶金连铸辊制造与再制造[J].中国表面工程,2009,(04):2.
    [43]向永华,徐滨士,吕耀辉,等.自动化等离子堆焊技术在发动机缸体再制造中的应用[J].中国表面工程,2009,(06):72-76.
    [44]张亮.浅析大型支承辊及其堆焊修复再制造技术[J].连铸,2012,(05):27-28+42.
    [45]刘俊英,蒋伯平,张国胜.平地机车轮轴的耐磨合金堆焊再制造[J].工程机械,2012,(11):55-58+53.
    [46]刘俊英,张宏梅,蒋伯平,等.摊铺机后轴轮的耐磨合金堆焊再制造[J].工程机械,2013,(03):45-48-95.
    [47]张国胜,刘俊英,蒋伯平.平地机导板再制造的耐磨合金堆焊技术[J].工程机械,2009,(12):54-59.
    [48]王龙.等离子弧堆焊在制造导带上的应用[J].焊接,1997,(07):25-26.
    [49]洪慎章.冷冲模堆焊制造工艺[J].模具制造,2007,(06):67-69.
    [50] Ramachandran C S, Balasubramanian V, Varahamoorthy R. Erosive Abrasive Wear Behaviour ofStainless Steel Surface Produced by Plasma Transferred Arc Hardfacing[J]. International HeatTreatment&Surface Engineering,2010,4(3):124-134.
    [51] Ramachandran C S, Balasubramanian V, Varahamoorthy R, et al. Dry Sliding Wear Behaviour ofPlasma Transferred Arc Hardfaced Colmonoy Surface[J]. Surface Engineering2009,25(6):440-448.
    [52] Ramachandran C S, Balasubramanian V, Varahamoorthy R, et al. Effect of Slurry Concentration,Abrasive Particle Size and Velocity on Wear Behaviour of Nickel Based (Colmonoy) Plasma[J].Surface Engineering2009,25(6):449-457.
    [53] Liu Y H, Li J, Xuan F Z. Fabrication of Tic Reinforced Ni Based Coating by Laser Cladding[J].Surface Engineering2012,28(8):560-563.
    [54] Karbasi M, Ghavidel M R Z, Saidi A, et al. Comparison between Tribological Behaviour of HvofCoatings Produced from Conventional Ni+TiC Powder Mixture and Ni-TiC[J]. SurfaceEngineering2012,28(2):155-163.
    [55] Ramachandran C S, Balasubramanian V, Varahamoorthy R, et al. Effect of ExperimentalParameters on Erosive Abrasive Wear Behaviour of Cobalt Based (Stellite) Plasma TransferredArc[J]. Surface Engineering2009,25(6):458-469.
    [56]刘政军,季杰,董晓强,等. Cr-B-W-V系铁基高温耐磨堆焊合金及耐磨机理的研究[J].硬质合金,1997,(04):234-239.
    [57]刘政军,李永奎,陈宏,等. Cr-B-W-V系铁基高温耐磨堆焊合金的优化设计[J].沈阳工业大学学报,2004,(02):133-148.
    [58]刘政军,季杰,张树生.铬镍钨铌系铁基高温耐磨合金等离子弧堆焊[J].焊接学报,1997,(04):26-31.
    [59]刘政军,宗琳,孙景刚,等. Fe-Mn-Cr-Mo-V系抗冲击磨料磨损堆焊材料的研制[J].焊接技术,2009,(01):42-49.
    [60]于昆.一种Cr-W-Mo-Mn-V铁基堆焊层的力学与耐磨性能[J].热加工工艺,2011,(03):8-9.
    [61]王亚楠,肖心萍. Cr-Mo-W-Mn-Ni铁基堆焊层的耐热疲劳裂纹形成及扩展[J].热加工工艺,2008,(07):13-14+19.
    [62]朱嘉琦,何实,赵占良,等. CrMoWVNbTi系耐磨铁基堆焊合金的量化设计和结构研究[J].焊接,2001,(04):11-14.
    [63]杨莉,党向盈,季男,等.挖掘机斗齿高锰钢堆焊材料的研究[J].热加工工艺,2012,(23):138-140.
    [64]曹士锐,郝曜.新型铁基堆焊合金d9158热处理工艺研究[J].华北工学院学报,1999,(04):348-351.
    [65]吴振东,刘建华,张向前,等.回火温度对Cr-W-Mo铁基堆焊层组织及耐磨性的影响[J].物理测试,2003,(04):9-10+42.
    [66]刘承杰,邱亚玲,宋振华,等.磨鞋铸造碳化钨铁基复合材料堆焊层强化技术[J].西南石油大学学报,2007,(06):145-217.
    [67]刘柯,赵东宁.陶瓷相增强铁基耐磨堆焊层组织与性能的研究[J].表面技术,2009,(05):55-57+89.
    [68]刘均海,黄继华,刘均波,等.合金粉粒埋弧堆焊TiC颗粒增强铁基复合涂层[J].焊接学报,2010,(12):101-118.
    [69]戴乐,潘罗坤,张永洋.药芯焊丝形成WC增强铁基耐磨堆焊层研究[J].热加工工艺,2011,(11):35-38.
    [70] Jackson R. Austenite Liquidus Surface and Constitutional Diagram for theIron-Chromium-Carbon Metastable System[J]. Journal of the Iron and Steel Institute,1970,208(2):163-167.
    [71] Tabrett C, Sare I, Ghomashchi M. Microstructure-Property Relationships in High ChromiumWhite Iron Alloys[J]. International Materials Reviews1996,41(2):59-82.
    [72] Pearce J T, Chairuangsri T, Wiengmoon A, et al. Use of Electron Microscopy on MicrostructureCharacterization of High Chromium Cast Irons[J]. China Foundry,2007,4(1):38-43.
    [73] Powell G, Laird G. Structure, Nucleation, Growth and Morphology of Secondary Carbides inHigh Chromium and Cr-Ni White Cast Irons[J]. Journal of materials science,1992,27(1):29-35.
    [74] Durman R. Application of Alloyed White Cast Irons in Crushing, Grinding and Material HandlingProcesses[J]. Br. Foundryman,1976,69(6):141-149.
    [75] Biner S B. The Role of Eutectic Carbide Morphology on the Fracture Behaviour ofHigh-Chromium Cast Irons and Austenitic Alloys[J]. Canadian Metallurgical Quarterly1985,24(2):155-162.
    [76] Avery H S. The Measurement of Wear Resistance[J]. Wear,1961,4(6):427-449.
    [77] Axén N, Jacobson S, Hogmark S. Influence of Hardness of the Counterbody in Three-BodyAbrasive Wear-an Overlooked Hardness Effect[J]. Tribology International,1994,27(4):233-241.
    [78] Torrance A A. Modelling Abrasive Wear[J]. Wear,2005,258(1-4):281-293.
    [79] Gundlach R B, Parks J L. Influence of Abrasive Hardness on the Wear Resistance of HighChromium Irons[J]. Wear,1978,46(1):97-108.
    [80] Xing C H, Chuan C Z, Cai L J, et al. Effect of Niobium on Wear Resistance of15%Cr WhiteCast Iron[J]. Wear,1993,166(2):197-201.
    [81] Fulcher J K, Kosel T H, Fiore N F. The Effect of Carbide Volume Fraction on the Low StressAbrasion Resistance of High Cr-Mo White Cast Irons[J]. Wear,1983,84(3):313-325.
    [82] Prasad S V, Kosel T H. A Study of Carbide Removal Mechanisms During Quartz Abrasion I: InSitu Scratch Test Studies[J]. Wear,1983,92(2):253-268.
    [83] Zum K H, Eldis G T. Abrasive Wear of White Cast Irons[J]. Wear,1980,64(1):175-194.
    [84] Borik F, Scholz W. Gouging Abrasion Test for Material Used in Ore and Rock Crushing. Pt.2.Effect of Metallurgical Variables on Gouging Wear[M]. Journal of Materials,1971,6(3):590-605.
    [85] Tsypin I, Kantorovich V, Zuev A, et al. Influence of M7C3carbides orientation on the wearresistance of300Kh20DNF white iron[J]. Metal Science and Heat Treatment,1992,33(10):759-761.
    [86] Dogan O N, Hawk J A. Effect of Carbide Orientation on Abrasion of High Cr White Cast Iron[J].Wear,1995,189(1):136-142.
    [87] Mishina H. Chemisorption of Diatomic Gas Molecules and Atmospheric Characteristics inAdhesive Wear and Friction of Metals[J]. Wear,1995,180(1):1-7.
    [88] Xu L, Vose C, StJohn D. Abrasive Wear Study of Selected White Cast Irons as Liner Materials forthe Mining Industry[J]. Wear,1993,162820-832.
    [89] Turenne S, Lavallée F, Masounave J. Matrix Microstructure Effect on the Abrasion WearResistance of High-Chromium White Cast Iron[J]. Journal of materials science,1989,24(8):3021-3028.
    [90] Sare I, Arnold B. The Influence of Heat Treatment on the High-Stress Abrasion Resistance andFracture Toughness of Alloy White Cast Irons[J]. Metallurgical and Materials Transactions A1995,26(7):1785-1793.
    [91] Are I S, Arnold B. The Effect of Heat Treatment on the Gouging Abrasion Resistance of AlloyWhite Cast Irons[J]. Metallurgical and Materials Transactions A1995,26(2):357-370.
    [92] Sare I, Arnold B. Gouging Abrasion of Wear-Resistant Alloy White Cast Irons[J]. Wear,1989,131(1):15-37.
    [93] Do an, Hawk J, Laird G. Solidification Structure and Abrasion Resistance of High ChromiumWhite Irons[J]. Metallurgical and Materials Transactions A1997,28(6):1315-1328.
    [94] Ohide T, Ohira G. Solidification of High Chromium Alloyed Cast Iron[J]. Br. Foundryman,1983,76(1):7-14.
    [95]陈璟琚.合金高铬铸铁及其应用[M].冶金工业出版社.1999.
    [96] Radulovic M, Fiset M, Peev K, et al. The Influence of Vanadium on Fracture Toughness andAbrasion Resistance in High Chromium White Cast Irons[J]. Journal of Materials Science,1994,29(19):5085-5094.
    [97] Sheng H F, Chang W C. Modifying High CrMn Cast Iron with Boron and Rare Earth Si Alloy[J].Materials Science and Technology1989,5(9):918-924.
    [98] Shen J, Zhou Q. Solidification Behaviour of Boron-Bearing High-Chromium Cast Iron and theModification Mechanism of Silicon[J]. Cast Metal,1988,1(2):79-85.
    [99] Kung C, Rayment J. An Examination of the Validity of Existing Empirical Formulae for theCalculation of M S Temperature[J]. Metallurgical and Materials Transactions A1982,13(2):328-331.
    [100] Laird G, Powell G L. Solidification and Solid-State Transformation Mechanisms in Si AlloyedHigh-Chromium White Cast Irons[J]. Metallurgical Transactions A1993,24(4):981-988.
    [101]子澍.含钒高铬白口铸铁的结晶特点及钒对合金显微组织的影响[J].铸造,2006,55(2):185-187.
    [102] Frisk K. An Experimental and Theoretical Analysis of the Phase Equilibria in the Fe-Cr-VcSystem[J]. Metallurgical and Materials Transactions A,2004,35(12):3649-3663.
    [103] Zhi X, Xing J, Fu H, et al. Effect of Niobium on the as-Cast Microstructure of HypereutecticHigh Chromium Cast Iron[J]. Materials Letters2008,62(6-7):857-860.
    [104] Zhi X, Xing J, Gao Y, et al. Effect of Heat Treatment on Microstructure and MechanicalProperties of a Ti-Bearing Hypereutectic High Chromium White Cast Iron[J]. Materials Scienceand Engineering: A,2008,487(1-2):171-179.
    [105] Zhi X, Xing J, Fu H, et al. Effect of Titanium on the as-Cast Microstructure of HypereutecticHigh Chromium Cast Iron[J]. Materials Characterization2008,59(9):1221-1226.
    [106]康志新,盛听兴.磨煤机磨辊和衬板堆焊层耐磨性的研究[J].焊接,1996,(10):7-11.
    [107] Hao F F, Liao B, Li D, et al. Effects of Rare Earth Oxide on Hardfacing Metal Microstructure ofMedium Carbon Steel and Its Refinement Mechanism[J]. Journal of Rare Earths,2011,29(6):609-613.
    [108] Li D, Yang Y L, Liu L G, et al. Effects of Re Oxide on the Microstructure of Hardfacing Metalof the Large Gear[J]. Materials Science and Engineering: A,2009,509(1-2):94-97.
    [109]王建军,王飞,原鹏飞,等.石墨烯层间纳米摩擦性质的第一性原理研究[J].物理学报,2012,(10):337-343.
    [110]罗晓光,李金平,胡平,等.共价晶体硬度计算的经验电子理论模型[J].科学通报,2010,(19):1957-1962.
    [111]李德华,苏文晋,朱晓玲. BC5力学性质的第一性原理计算[J].物理学报,2012,(02):201-207.
    [112]王渊旭.超硬材料5d过渡金属氮化物、硼化物和碳化物的新进展[J].河南大学学报(自然科学版),2012,(05):500-504.
    [113]陈志谦,李春梅,王瑨,等.几种BC2n超硬材料力学性能与电子结构的理论研究[J].中国科学:物理学力学天文学,2013,(02):142-151.
    [114]刘东亮,金永中,邓建国.超高温陶瓷材料的抗氧化性[J].陶瓷学报,2010,(01):151-157.
    [115]董明慧,韩培德,张彩丽,等. Al-Mg合金中层错和孪晶形变能的第一性原理研究[J].金属学报,2011,(05):573-577.
    [116]王新洪,张敏,阮立群,等.多组元碳化物TiXV(1-X)C弹性性能与稳定性的第一性原理研究(英文)[J]. Transactions of Nonferrous Metals Society of China,2011,(06):1373-1377.
    [117]温玉锋,孙坚,黄健.合金元素对ni_3al(010)面反相畴界能影响的第一性原理研究[J].中国有色金属学报,2012,(02):515-519.
    [118]卢志文,仲志国,刘克涛,等.高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算[J].物理学报,2013,(01):342-350.
    [119]彭艳,周惦武,徐少华,等.钢/铝异种金属激光焊接Fe/Al界面微合金化的第一性原理研究[J].稀有金属材料与工程,2012,(S2):302-306.
    [120]赵冬伟,曹建春,周晓龙,等.微合金钢中钛钼复合析出的第一性原理研究[J].热加工工艺,2012,(08):35-37.
    [121] Lv Z Q, Fu W T, Sun S H, et al. First-Principles Study on the Electronic Structure, MagneticProperties and Phase Stability of Alloyed Cementite with Cr or Mn[J]. Journal of Magnetismand Magnetic Materials2011,323(7):915-919.
    [122] Lv Z Q, Zhang F C, Sun S H, et al. First-Principles Study on the Mechanical, Electronic andMagnetic Properties of Fe3C[J]. Computational Materials Science,2008,44(2):690-694.
    [123] Wang C X, Lv Z Q, Fu W T, et al. Electronic Properties, Magnetic Properties and Phase Stabilityof Alloyed Cementite (Fe,M)3C (M=Co,Ni) from Density-Functional Theory Calculations[J].Solid State Sciences,2011,13(8):1658-1663.
    [124] Chiou W. Structure and Stability of Fe3C-Cementite Surfaces from First Principles[J]. SurfaceScience,2003,530(1-2):88-100.
    [125] Gao Y, Lv Z, Sun S, et al. First Principles Study on Surface Structure and Stability of AlloyedCementite Doped with Cr[J]. Materials Letters2013,100(0):170-172.
    [126] Xiao B, Xing J D, Feng J, et al. Theoretical Study on the Stability and Mechanical Property ofCr7C3[J]. Physica B: Condensed Matter,2008,403(13-16):2273-2281.
    [127] Xiao B, Xing J D, Feng J, et al. A Comparative Study of Cr7C3, Fe3C and Fe2B in Cast Iron BothFromab Initiocalculations and Experiments[J]. Journal of Physics D: Applied Physics2009,42(11):115415.
    [128] Liu L M, Wang S Q, Ye H Q. Adhesion and Bonding of the Al/TiC Interface[J]. Surface Science2004,550(1-3):46-56.
    [129] Liu L M, Wang S Q, Ye H Q. First-Principles Study of Polar Al/TiN(111) Interfaces[J]. ActaMaterialia2004,52(12):3681-3688.
    [130] Siegel D J, Hector L G, Adams J B, et al. Adhesion, Stability, and Bonding atMetal/Metal-Carbide Interfaces: Al/WC[J]. Surface Science2002,498(3):321-336.
    [131] Siegel D J, Hector L G, Adams J B. Ab Initio Study of Al-Ceramic Interfacial Adhesion[J].Physical Review B,2003,67(9):092105.
    [132] Siegel D J, Hector L G, Adams J B. First-Principles Study of Metal-Carbide/Nitride Adhesion:Al/VC Vs. Al/VN[J]. Acta Materialia2002,50(3):619-631.
    [133] Kurz W, Fisher D J. Fundamentals of Solidification[M]. Switzerland: Trans Tech PublicationLtd,1998.
    [134] Lin C M, Lai H H, Kuo J C, et al. Effect of Carbon Content on Solidification Behaviors andMorphological Characteristics of the Constituent Phases in Cr-Fe-C Alloys[J]. MaterialsCharacterization2011,62(12):1124-1133.
    [135] Chang C M, Hsieh C C, Lin C M, et al. Effect of Carbon Content on Microstructure andCorrosion Behavior of Hypereutectic Fe-Cr-C Claddings[J]. Materials Chemistry and Physics2010,123(1):241-246.
    [136] Chang C M, Lin C M, Hsieh C C, et al. Effect of Carbon Content on MicrostructuralCharacteristics of the Hypereutectic Fe-Cr-C Claddings[J]. Materials Chemistry and Physics2009,117(1):257-261.
    [137] Do an N, Hawk J A, Laird G. Solidification Structure and Abrasion Resistance of HighChromium White Irons[J]. Metallurgical and Materials Transactions A1997,28(6):1315-1328.
    [138] Lucey T, Wuhrer R, Moran K, et al. Interfacial Reactions in White Iron/Steel Composites[J].Journal of Materials Processing Technology2012,212(11):2349-2357.
    [139] Kontoyannis C G, Vagenas N V. Calcium Carbonate Phase Analysis Using Xrd and Ft-RamanSpectroscopy[J]. Analyst,2000,125(2):251-255.
    [140] Karlak R, Burnett D. Quantitative Phase Analysis by X-Ray Diffraction[J]. AnalyticalChemistry1966,38(12):1741-1745.
    [141] Qian M. In-Situ Observations of the Dissolution of Carbides in an Fe-Cr-C Alloy[J]. ScriptaMaterialia1999,41(12):3.
    [142] Fleischer R. Substitutional Solution Hardening[J]. Acta Metallurgica1963,11(3):203-209.
    [143] Jing R, Liang S X, Liu C Y, et al. Structure and Mechanical Properties of Ti-6Al–4V Alloy afterZirconium Addition[J]. Materials Science and Engineering: A,2012,552295-300.
    [144] Smallman R E, Bishop R J. Modern Physical Metallurgy and Materials Engineering[M].Butterworth-Heinemann,1999.
    [145] Richardson F D. Physical Chemistry of Melts in Metallurgy[M]. Academic Press (Elsevier),1974.
    [146] Zhou Y F, Yang Y L, Jiang Y W, et al. Fe-24wt.%Cr-4.1wt.%C Hardfacing Alloy: Microstructureand Carbide Refinement Mechanisms with Ceria Additive[J]. Materials Characterization2012,7277-86.
    [147] Turnbull D, Vonnegut B. Nucleation Catalysis[J]. Industrial&Engineering Chemistry,1952,44(6):1292-1298.
    [148] Bramfitt B. Planar Lattice Disregistry Theory and Its Application on Heterogistry Nuclei ofMetal[J]. Metall. Trans,1970,1(7):1987-1995.
    [149] Coronado J J. Effect of Load and Carbide Orientation on Abrasive Wear Resistance of WhiteCast Iron[J]. Wear,2011,270(11-12):823-827.
    [150] Zachariasen W. Crystal Chemical Studies of the5f-Series of Elements. I. New StructureTypes[J]. Acta Crystallographica,1948,1(5):265-268.
    [151] Westgren A. The Structure and Composition of the Chromium-and Manganese-Carbides[J].1961,2215.
    [152] La P, Xue Q, Liu W. Effects of Boron Doping on Tribological Properties of Ni3al–Cr7c3Coatings under Dry Sliding[J]. Wear,2001,249(1-2):93-99.
    [153] Zhang A F, Xing J D, Fang L, et al. Inter-Phase Corrosion of Chromium White Cast Irons inDynamic State[J]. Wear,2004,257(1-2):198-204.
    [154] Xie J Y, Chen N X, Shen J, et al. Atomistic Study on the Structure and ThermodynamicProperties of Cr7C3, Mn7C3, Fe7C3[J]. Acta Materialia,2005,532727-2732.
    [155] Herbstein F H, Snyman J A. Identification of Eckstrom-Adcock Iron Carbide as Fe7C3[J].Inorganic Chemistry,1964,3(6):894-896.
    [156] Liu A Y, Wentzcovitch R M. Stability of Carbon Nitride Solids[J]. Physical Review B,1994,50(14):10362-10365.
    [157] Karki B B, Ackland G J, Crain J. Elastic Instabilities in Crystals from Ab Initio Stress-StrainRelations[J]. Journal of Physics: Condensed Matter,1997,9(41):8579.
    [158] Aguayo A, Murrieta G, Coss R. Elastic Stability and Electronic Structure of Fcc Ti, Zr, and Hf: AFirst-Principles Study[J]. Physical Review B,2002,65(9):092106.
    [159] Li Y, Gao Y, Xiao B, et al. Theoretical Study on the Stability, Elasticity, Hardness and ElectronicStructures of WC Binary Compounds[J]. Journal of Alloys and Compounds,2010,502(1):28-37.
    [160] Meschel S V, Kleppa O J. Standard Enthalpies of Formation of Some3d Transition MetalCarbides by High Temperature Reaction Calorimetry[J]. Journal of Alloys and Compounds,1997,257(1-2):227-233.
    [161] Lin C M, Chang C M, Chen J H, et al. The Effects of Additive Elements on the MicrostructureCharacteristics and Mechanical Properties of Cr–Fe–C Hardfacing Alloys[J]. Journal of Alloysand Compounds2010,498(1):30-36.
    [162] Gao F, He J, Wu E, et al. Hardness of Covalent Crystals[J]. Physical Review Letters,2003,91(1):015502.
    [163] Tian Y, Xu B, Zhao Z. Microscopic Theory of Hardness and Design of Novel SuperhardCrystals[J]. International Journal of Refractory Metals and Hard Materials2012,3393-106.
    [164] Pugh S F. Relations between the Elastic Moduli and the Plastic Properties of PolycrystallinePure Metals[J]. Philosophical Magazine Series7,1954,45(367):823-843.
    [165] Fu C L, Yoo M H. Electronic Structure and Mechanical Behavior of Transition-MetalAluminides: A First-Principles Total-Energy Investigation[J]. Materials Chemistry and Physics,1992,32(1):25-36.
    [166] Niu H, Chen X Q, Liu P, et al. Extra-Electron Induced Covalent Strengthening andGeneralization of Intrinsic Ductile-to-Brittle Criterion[J]. Scientific Reports,2012,2718.
    [167] Cantor B. Heterogeneous Nucleation and Adsorption[J]. Philosophical Transactions of the RoyalSociety of London. Series A: Mathematical, Physical and Engineering Sciences,2003,361(1804):409-417.
    [168] Kim W, Cantor B. An Adsorption Model of the Heterogeneous Nucleation of Solidification[J].Acta Metallurgica et Materialia,1994,42(9):3115-3127.
    [169] Yang J, Hao F F, Li D, et al. Effect of Re Oxide on Growth Dynamics of Primary AusteniteGrain in Hardfacing Layer of Medium-High Carbon Steel[J]. Journal of Rare Earths,2012,30(8):814-819.
    [170] Srivastava G, Weaire D. The Theory of the Cohesive Energies of Solids[J]. Advances in Physics,1987,36(4):463-517.
    [171] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review,1964,136(3B):B864.
    [172] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J].Physical Review,1965,140(4A): A1133.
    [173] Dudiy S, Lundqvist B I. First-Principles Density-Functional Study of Metal-CarbonitrideInterface Adhesion: Co/TiC (001) and Co/TiN (001)[J]. Physical Review B,2001,64(4):045403.
    [174] Arya A, Carter E A. Structure, Bonding, and Adhesion at the TiC (100)/Fe (110) Interface fromFirst Principles[J]. The Journal of Chemical Physics,2003,118:8982.
    [175] Ahuja R, Eriksson O, Wills J, et al. Structural, Elastic, and High-Pressure Properties of CubicTic, Tin, and Tio[J]. Physical Review B,1996,53(6):3072.
    [176] Dunand A, Flack H, Yvon K. Bonding Study of TiC and TiN. I. High-PrecisionX-Ray-Diffraction Determination of the Valence-Electron Density Distribution, Debye-WallerTemperature Factors, and Atomic Static Displacements in TiC0.94and TiN0.99[J]. PhysicalReview B,1985,31(4):2299.
    [177] Toth L. Transition Metal Carbides and Nitrides[M]. Academic press,1971.
    [178] Boettger J. Nonconvergence of Surface Energies Obtained from Thin-Film Calculations[J].Physical Review B,1994,491472907-1416800.
    [179] Fiorentini V, Methfessel M. Extracting Convergent Surface Energies from Slab Calculations[J].Journal of Physics: Condensed Matter,1996,8(36):6525.
    [180] Liu L, Wang S, Ye H. Adhesion and Bonding of the Al/TiC Interface[J]. Surface Science,2004,550(1):46-56.
    [181] Arya A, Carter E A. Structure, Bonding, and Adhesion at the Tic(100)/Fe(110) Interface fromFirst Principles[J]. The Journal of Chemical Physics,2003,118(19):8982.
    [182] Han Y, Dai Y, Wang J, et al. First-Principles Calculations on Al/AlB2Interfaces[J]. AppliedSurface Science,2011,257(17):7831-7836.
    [183] Merwe J V D. Interfacial Energy: Bicrystals of Semi-Infinite Crystals[J]. Progress in SurfaceScience,2001,67(1):365-381.
    [184] Smith J, Zhang W. Stoichiometric Interfaces of Al and Ag with Al2O3[J]. Acta Materialia,2000,48(18):4395-4403.
    [185] Wu M M, Jiang Y, Wang J W, et al. Structural, Elastic and Electronic Properties of Mg (Cu1XZnX)2Alloys Calculated by First-Principles[J]. Journal of Alloys and Compounds,2011,509(6):2885-2890.
    [186] Wang X G, Chaka A, Scheffler M. Effect of the Environment on Α-Al2O3(0001) SurfaceStructures[J]. Physical Review Letters,2000,84(16):3650.
    [187] Pojani A, Finocchi F, Noguera C. Polarity on the SrTiO3(111) and (110) Surfaces[J]. SurfaceScience,1999,442(2):179-198.
    [188] Music D, Kreissig U, Mertens R, et al. Electronic Structure and Mechanical Properties ofCr7C3[J]. Physics Letters A,2004,326(5):473-476.
    [189] Wang C, Gao H, Dai Y, et al. Grain Refining of409l Ferritic Stainless Steel Using Fe-Ti-NMaster Alloy[J]. Metallurgical and Materials Transactions A,2010,41(7):1616-1620.
    [190] Zhang W, Smith J. Stoichiometry and Adhesion of Nb/Al2O3[J]. Physical Review B,2000,61(24):16883.
    [191] Torrelles X, Wendler F, Bikondoa O, et al. Structure of the Clean Nial (110) Surface and theAl2O3/NiAl (110) Interface by Measurements of Crystal Truncation Rods[J]. Surface Science,2001,487(1):97-106.
    [192] Zhang W, Smith J, Evans A. The Connection between Ab Initio Calculations and InterfaceAdhesion Measurements on Metal/Oxide Systems: Ni/Al2O3and Cu/Al2O3[J]. Acta Materialia,2002,50(15):3803-3816.
    [193] Eustathopoulos N, Coudurier L, Joud J, et al. Tension Interfaciale Solide-Liquide Des SystémesAl-Sn, Al-in Et Al-Sn-In[J]. Journal of Crystal Growth,1976,33(1):105-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700