用户名: 密码: 验证码:
AZ80镁合金挤压铸造工艺仿真与复合材料制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界工业的飞速发展,镁合金铸件的生产在不断扩大,人们对镁铸件的质量和生产效率、环保提出了更高的要求,挤压铸造技术是适应这一新的要求的有效手段。目前,国际上广泛地将挤压铸造应用于镁合金的铸造生产,其中也包括镁基复合材料,并取得了巨大的经济效益,而我国的铸造业中挤压铸造技术还只停留在试验阶段,距离发达国家的技术水平还有相当的距离,因此进行镁合金挤压铸造工艺及复合材料研究,具有非常重要的意义。
     挤压铸造可获得优质高性能零件,并且十分适合于镁合金的成形。镁合金的综合性能与其它金属相比具有明显优势。为了寻找镁合金挤压铸造工艺参数的适用性特点及制备高强韧镁基复合材料,本文以AZ80镁合金为研究对象,通过软件模拟挤压铸造力学性能,用形态学矩阵优化了挤压铸造工艺参数,对镁合金挤压铸造工艺及性能进行了系统的研究,并采用Y+SiC+SC制备了具有优良力学性能的挤压铸件,为镁合金挤压铸造工艺优化设计及制备高强韧镁基复合材料提供理论基础和实验依据。主要研究成果如下:
     (1)在软件平台上,确定了AZ80镁合金试样合理的挤压铸造工艺方案。通过对镁合金试样的挤压铸造凝固过程及力学性能模拟结果的分析,验证了镁合金挤压铸造的工艺特点,预测了缺陷的位置,同时寻找到了最佳的参数组合,从而进一步优化了工艺方案。
     (2)通过正交试验表以及模拟的分析,得出了一组最佳的工艺参数。影响因素由高到低依次为挤压压力、浇注温度和保压时间。当浇注温度700℃,挤压压力100MPa,保压时间15s时,实验的挤压铸造AZ80镁合金力学性能可稳定地达到最佳性能。此时,抗拉强度为271.4Mpa、伸长率为7.4%、洛氏硬度为98.2HRC,这与模拟的结果基本一致。挤压压力提高了镁合金过冷度、热传导率、形核率,使晶粒细化,进而提高力学性能。
     (3)运用形态学矩阵对AZ80镁合金挤压铸造工艺参数进行优化,采用Lg(33)正交方法中的正交列对不同挤压压力,模具预热温度和压力持续时间进行组合。一个三水平正交阵列用来确定S/N率,用方差分析确定了影响力学性能最重要的工艺参数,并利用多变量线性回归分析对拉伸强度、延伸率和硬度进行了确定。结果获得最佳的挤压铸造工艺参数,因此,此方法可以用来寻找最优条件,得到较好的力学性能。
     (4)Y的加入使挤压铸造AZ80镁合金固/液界面前沿的成分过冷增大,使铸态组织得到细化,β-Mg17Al12相由网状分布变为断网分布,从而提高了铸件的力学性能;加Y提高AZ80镁合金力学性能的主要原因是Y的固溶强化作用以及A1-Y相的弥散强化作用,而且Y与A1的结合减少了形成热稳定性较低的Mg17Al12目的数量。这些主要弥散分布的A12Y颗粒比AZ80合金晶界上Mg17Al12的热稳定性高得多,在高温条件下能对相邻晶粒的移动起到钉扎作用,有效阻碍了高温下晶界和位错的移动。
     (5)挤压铸造对镁基复合材料的内部组织晶粒有细化的效果,并且发现经过挤压铸造后很多SiC颗粒被基体合金晶粒包裹在里面,从而提高了SiCp/AZ80镁基复合材料的综合性能,使得SiCp/AZ80镁基复合材料的力学性能有很大的提高。把稀土Y和SiC同时加入AZ80镁合金挤压铸造可以显著提高性能,组织更加致密。这种方法可用来制备高强韧镁基复合材料,组织中观察到Al2Y+SiCp混合物。稀土的最佳加入量为3%,SiC的最佳加入量为1%,加入多了也和Y一样会形成SiC团聚物,降低了SiC颗粒相在组织中的弥散分布程度,削弱了其在高温下的弥散强化作用,并造成合金显微组织和成分的不均匀,容易引起应力集中,引起合金高温性能的下降。
     本研究通过对AAZ80镁合金挤压铸造工艺参数进行优化,提出了用形态学矩阵优化参数的方法和思路;通过对镁合金挤压铸造进行模拟及实验验证,节约了生产成本、提高了效率,并制备了高强韧AZ80镁基复合材料,为进一步研究镁合金挤压铸造奠定了基础。
With the rapid development of world industry, the production of magnesium alloy casting is increased rapidly, people put forward the higher request for the quality of magnesium casting pieces, production efficiency and environmental protection. The squeeze casting have been applied broadly in international and received great economy benefits, including magnesium matrix composites; the squeeze casting's application in domestic now is only in the experiment stage and has a long distance to the developed countries yet. It is significant to study processing and composite of magnesium alloy squeeze casting.
     Squeeze casting can get high quality parts, which can be applied on manufacturing magnesium alloys parts. Magnesium alloys possess more multipurpose properties than other materials. In order to explore the applicability of the characteristics and laws of magnesium alloy squeeze casting process parameters and prepare high toughness magnesium matrix composites, magnesium alloy squeezing casting process and properties were studied through simulation of squeeze casting mechanical properties, optimization of squeeze casting technological parameters with morphological matrix based on the AZ80magnesium alloy as the research object, and squeezing casting pieces of excellent mechanical properties were prepared using Y+SiC+SC.A theoretical basis and experimental evidence were provided for process optimization and preparation of high toughness magnesium matrix composites of magnesium alloy squeezing casting. The main results can be summarized as follows:
     (1) Using the software, AZ80was studied to determine the magnesium alloy wheels and sample reasonable squeeze casting process. Squeeze casting of magnesium alloy process features were verified by analyzing the simulation results of the filling and solidifying process of squeeze casting for magnesium alloy wheels and sample, and also predicted the position of defects. As the same time the best combination of parameters was found so as to the processing plan was optimized.
     (2) A set of optimal process parameters were obtained through analysising the orthogonal test and simulation of AZ80magnesium alloy, which are extrusion pressure of100Mpa, mould preheating temperature of200℃and pouring temperature of700℃. The influences of squeeze casting process parameters on mechanical properties of AZ80magnesium alloy cast extrusion pressure, pouring temperature and holding time in the simulation from strong to weak. It was found the squeeze casting can be achieved very good mechanical properties:σ b=271.4Mpa,δ=7.4%,HRC=98.2in the pouring temperature is700℃, holding time for the15S, the extrusion pressure is100MPa.This is basically consistent with minimum defects of simulation results. Extrusion pressure makes magnesium alloy solidification cooling rate improved and the heat transfer coefficient improved, so an increase of nucleation rate was obtained, which makes grains refined to improve the mechanical properties.
     (3) Squeeze cast process parameters of AZ80magnesium alloy by morphological matrix were studied. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a three level orthogonal array has been used to determine the S/N ratio. Analysis of variance is used to determine the most significant process parameters affecting the mechanical properties. The mechanical properties such as ultimate tensile strength, elongation and hardness of the components have been ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained. Thus, this method is used to search for optimal squeeze cast process parameters to obtain better mechanical properties of the components.
     (4) The AZ80squeeze casting magnesium alloy solid/liquid interface front composition undercooling was increased, thus as-cast group was refined, β-Mg17Al12phase network distribution was broken, so as to the mechanical properties of the casting were improved because of the addition of Y; The main reason of AZ80magnesium alloy mechanical properties improvement is that the solid solution strengthening effect of Y and Al-Y phase dispersion strengthening effect, and the combination of Y and Al reduces the formation of the amount of thermal stability lower Mg17Al12phase. Thermal stability of these main diffuse distribution Al2Y particles much higher of Mg17Al12of AZ80alloy on the grain boundary, neighboring grain movement pinning was effectd at high temperatures, the grain boundary and dislocation movement under high temperature were effectively prevented.
     (5) The internal organization grains of squeeze casting magnesium matrix composites were refined, and a lot of SiC particles were parceled inside alloy grain after squeeze casting, the comprehensive performance of SiCp/AZ80magnesium matrix composite materials were greatly improved. The performance of AZ80magnesium alloy squeeze casting was significantly improved because of addittione of rare earth Y and SiC, organization was more compacted, Al2Y+SiCp mixture were observed in the organizations. This method can be used for the preparation of high-toughness magnesium matrix composites. The best addition amount of rare earth is3%, the best addition amount of SiC is1%, SiC reunion was formed when the more amount of SiC was added, this also like Y, the degree of SiC particle phase dispersion in tissue distribution was reduced, the dispersion strengthening effect at high temperature was weaked, and the uneven of alloy microstructure and composition was caused, easy to stress concentration was caused, high temperature alloy performance degradation was caused.
     Magnesium alloy squeeze casting process parameters were optimized on the research. The method and train of thought was proposed by using the morphological matrix parameter optimization. Through simulation and experimental verification of magnesium alloy squeeze casting, production costs were saved, efficiency was improved, and AZ80magnesium matrix composites were prepared,so as to the foundation was laided for the magnesium alloy squeeze casting technology further study.
引文
[1]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004:19-21.
    [2]闫蕴琪,张延杰,邓炬等.耐热镁合金的研究现状与发展方向.稀有金属材料与工程.2004,33(6):561-565.
    [3]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.北京:化学工业出版社,2007:1.
    [4] M.R.Ghomashchi, A.Vikhrov.Squeeze casting: an overview.Journal of MaterialsProcessing Technology,2000,101:1-9.
    [5] H.Hu.Squeeze casting of magnesium alloys and their composites.Journal of materialsscience.1998(33):1579-1589.
    [6]齐丕骧.挤压铸造技术的最新发展.特种铸造及有色合金.2007,27(9):688-394.
    [7]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002:208.
    [8]齐丕骧.我国挤压铸造机的现状与发展.特种铸造及有色合金.2010,30(4):305-308.
    [9]罗继相.我国挤压铸造技术的回顾及展望.铸造.2003,52(1):1-6.
    [10]邓建新,邵明,游东东.挤压铸造设备现状及发展分析.铸造.2008,57(7):643-646.
    [11]魏静.2A50铝合金负重轮挤压铸造数值模拟优化及试验研究.硕士学位论文,哈尔滨工业大学,2011.
    [12]齐丕骧.国内外挤压铸造技术发展概况.特种铸造及有色合金.2002,2:20-23.
    [13] Yong M.S., Clegg A.J.Evaluation of squeeze cast magnesium alloy and composite.Foundryman,1999,92(3):71-75.
    [14]刘娉婷.双分型面挤压铸造模具的结构研究.硕士学位论文,武汉理工大学,2008.
    [15]蒋凯雁.真空液态挤压铸造工艺.特种铸造及有色合金,2001,(S1):108-109.
    [16] Vijian P.,Arunachalam V.P..Optimization of squeeze cast parameters of LM6aluminiumalloy for surface roughness using Taguchi method.Journal of Material ProcessingTechnology,2006,180(1-3):161-166.
    [17] Lewis R.W.,Han Z.Q.,Gethin D.T.Three-dimensional finite element model for metaldisplacementand heat transfer in squeeze casting processes.Comptes RendusMecanique,2007,335(5-6):287-294.
    [18]李海开,张励忠,胡远猛,等.半固态挤压铸B级钢轴箱体的成形研究.北京交通大学学报,2005,29(2):102-106.
    [19]肖黎明,张励忠,张密兰,等.半固态挤压铸造工艺参数对制件性能的影响.热加工工艺,2006,35(1):40-43.
    [20]杨艳玲.挤压铸造Mg-Nd(-Zr)合金工艺及凝固行为研究.博士学位论文,上海交通大学,2010.
    [21]赵恒义,周天西,袁燕.液态模锻工艺及发展应用现状.热加工工艺.2000(2):45-47.
    [22]谢少庆.挤压铸造模具结构的系列化研究.硕士学位论文,武汉理工大学,2006.
    [23] J.H. Hans. Casting nonferrous alloys in metal molds an dies. Foundry ManagementTechnology,1996(7):22-28.
    [24]罗继相,潘欣,潘利波.间接立式挤压铸造液流充型特性研究.铸造,2003,(1):26-31.
    [25]利奥玻德.弗罗梅尔,古斯塔夫.利比.压力铸造技术.北京:国防工业出版社,1982:31.
    [26]王尔德,任学平,霍文灿.液态模锻过程的谐调方程.机械工程学报.1987,23(1):35-42.
    [27]刑书明,姚书芳,孙世宝等.挤压凝固过程的谐调方程.中国铸造装备与技术.1997(1):46-49.
    [28]刑书明,马静,陈维视.挤压铸造的无缩孔判据.中国有色金属学报.1998(9):205-209.
    [29]齐丕骧.挤压铸造.北京.国防工业出版社.1984.
    [30] J.H.Lee,H.S.Kim,S.I.Hong,C.W.Won,S.S.Cho,B.S.Chun.Effect of die geometry on themicrostructure of indirect squeeze cast and gravity die cast5083wrought Al alloy andnumerical analysis of the cooling behavior.Journal of Materials ProcessingTechnology.1999(96):188-197.
    [31] C.P.Hong,H.F.Shen,S.M.Lee.Prevention of Macrodefects in squeeze casting of anAl-7Wt Pct Si alloy.Metallurgical and Materials Transactions.2000(31):297-305.
    [32] C.P.Hong,H.F.Shen,I.S.Cho.Prevention of Macrosegregation in squeeze casting of anAl-4.5Wt Pct Cu alloy.Metallurgical and Materials Transactions.1998(29):339-349.
    [33]肖泽辉,罗吉荣等.镁合金熔体输送装置的设计及应用.特种铸造及有色合金,2006,26(2):113-114.
    [34] Y.L.Yang,L.M.Peng,P.H.Fu,B.Hu,W.J.Ding.Identification of NfH(2) particles insolution-treated Mg-2.5%Nd(wt.%) alloy.Journal of Alloys and Compounds.2009,485(1-2):245-248.
    [35]曹春平.挤压铸造高强韧镁合金材料的研究.硕士学位论文.重庆大学.2004.
    [36]欧阳明.挤压压铸技术在汽车、摩托车精密铸件上的应用.铸造技术,2004,(5):363-364.
    [37] Masashi UCHIDA.Feature of UBE squeeze process and UNRC process(semi solidcasting).第三届中国国际压铸会议论文集.沈阳:东北大学出版社,2002:206-219.
    [38]李晨希,李革,李淑梅.挤压铸造大高径比杯形铸件组织.铸造技术,2007,28(4):500-503.
    [39]李晨希,王宏,李革,等.挤压铸造大高径比铸件的凝固特性和组织.特种铸造及有色合金,2006,26(11):713-715.
    [40]李荣德,于惠舒,李晨希.比压对大高径比挤压铸造ZA27合金杯形铸件的组织与性能的影响.铸造,2006,55(3):245-248.
    [41]罗守靖,姜巨福,孙锐.液态模段与分层制造技术.中国机械工程,2005,16(7):634-635.
    [42]罗江勇.挤压铸造A1-Zn-Mg-Cu合金组织与性能的研究.硕士学位论文.华南理工大学.2011.
    [43]白彦华.大高径(厚)比锌铝合金铸件挤压铸造工艺技术研究.博士学位论文.沈阳工业大学.2008.
    [44]印飞,王亦新,洪慎章等.挤压铸造的应用与模具材料.机械工程材料.2000(24),2:28-29.
    [45] Watanabe H, Mukai T,Mabuvhi M, et.al Superlastic deformation mechanism in powdermetallurgy magnesium alloys and composites. Acta Mater2002(49),11:2027-2037.
    [46]肖泽辉,罗吉荣,吴树森,李东南,毛有武,宋象军.镁合金挤压铸造成形的研究.铸造.2003(52),9:672-674.
    [47]程先军.挤压铸造A1-Si活塞缺陷分析.特种铸造及有色合金.2004,4:47.
    [48]任晨星.镁合金负载纳米TiO2复合镀层及性能研究.硕士学位论文.郑州大学.2006.
    [49]廖慧敏,龙思远,李凤娥,徐绍勇,王亮,王建宏.挤压铸造镁合金轮毂浇注系统的数值模拟.特种铸造及有色合金.2008(28),4:271-273.
    [50]王荣,王进华,邢志媛,赵国田,徐永东,朱秀荣.挤压铸造镁合金性能研究.特种铸造及有色合金.2005,Z1:193-194.
    [51]李东南.挤压铸造镁台金壳体缺陷分析及对策.特种铸造及有色合金,2003,5:77-79.
    [52]周惦武.挤压铸造锻模件热裂纹的初步研究.铸造设备研究.2002,1:81-84.
    [53]马静.挤压铸造无缩孔判据在有色金属中的验证.河北科技大学学报.2002,3:56-60.
    [54]任晨星.镁合金负载纳米TiO2复合镀层及性能研究.硕士学位论文.郑州大学.2006.
    [55]房敏.Al-Si合金液态模锻工艺研究.硕士学位论文.辽宁工程技术大学.2007.
    [56]洪慎章,曾振鹏.铝合金车轮挤压铸造工艺.特种铸造及有色合金.1999(6):22-24.
    [57] C.G.Kang,J.S.Choi,D.W.Kang.A filling analysis of the forging process of semi-solidaluminum materials considering solidification phenomena.Journal of Materials ProcessingTechnology,1998(73):289–302.
    [58]齐丕骧.面向21世纪的挤压铸造技术.特种铸造及有色合金.1998(4):32-36.
    [59] Robert M.Aikin,Jr.Gautham Ramachandran.Properties of A356Squeeze and A357Semi-solid Castings.Die Casting Engineer.1999,(6):44-45.
    [60] Benedyk J C.Squeeze Casting.Sixth SDCE International Die Casting Congress.1970:86.
    [61] J.H.Lee,C.W.Won,S.S.Cho.Effects of melt flow and temperature on the macro andmicrostructure of scroll compressor in direct squeeze casting.Materials Science andEngineering.2000(8):8-16.
    [62] D.Y.Maeng,J.H.Lee,C.W.Won.The effects of processing parameters on the microstructureand mechanical properties of modified B390alloy in direct squeeze casting.Journal ofMaterials Processing Technology.2000(105):196-203.
    [63] S.Murali,M.S.Yong.Liquid forging of thin Al–Si structures.Journal of MaterialsProcessing Technology.2010(210):1276–1281.
    [64] L.J.Yang.The effect of solidification time in squeeze casting of aluminium and zincaloys.Journal of Materials Processing Technology.2007(192):114–120.
    [65] Xin Zhang.Squeeze casting of magnesium matrix composites reinforced with aluminashort fibers.Montreal,Canada:McGill University,2004.
    [66] Fang Yu.Matheatical modeling and experimental studt of squeeze casting of magnesiuealloy AM50A and aluminum alloy A356.Windsor,Ontario,Canada:University ofWindsor.2006.
    [67] Prasad Krishna.A study of interfacial heat transfer and process parameters in squeezecasting and low pressure permanent mold casting.Michigan:University of Michigan.2001.
    [68]何绍元,罗守靖,霍文灿.液态模锻的三种热力学模型.金属科学与工艺.1990(1):94-97.
    [69]罗守靖,姜巨福,王迎.分层浇注-累积液锻成形大高径比制件界面结合研究.热加工工艺.2003(2):1-6.
    [70]汤红强.镁合金汽车轮毂的研究与开发.硕士学位论文.浙江工业大学,2009.
    [71]罗江勇.挤压铸造Al-Zn-Mg-Cu合金组织与性能的研究.硕士学位论文.浙江工业大学,2009.
    [72]齐丕骧,康嘉华,赵淑兰.铝合金挤压铸造镶圈内冷活塞的研究.兵器材料科学与工程.1993(4):21-26.
    [73]齐丕骧,齐霖.双重挤压铸造研究.挤压铸造.2008(5):307-311.
    [74]费良军,齐丕骧.纤维增强铝基复合材料及其应用.特种铸造及有色合金.2001(5):150-152.
    [75]唐计龙.铝合金轮毂低压铸造工艺的数值模拟.硕士学位论文.吉林大学,2009.
    [76]和双双.低压铸造铝合金车轮铸造工艺优化以组织性能研究.硕士学位论文.河南理工大学,2009.
    [77]洪慎章.轿车铝合金拉杆液态模锻工艺.汽车工艺与材料.1997(3):14-16.
    [78] Shang-Nan Chou,Jow-Lay Huang.The mechanical properties and microstructure ofAl2O3/aluminum alloy composites fabricated by squeeze casting.Journal of Aloys andCompounds.2007(436):124–130.
    [79]李超.钛合金铸件应力的测量与数值模拟.硕士学位论文.哈尔滨工业大学,2006.
    [80]汤红强.镁合金汽车轮毂的研究与开发.硕士学位论文.浙江工业大学,2009.
    [81]龚惠玲.镁合金电动车轮毂的研究与开发.硕士学位论文.浙江工业大学,2008.
    [82]齐永丰.压铸镁合金的显微组织及力学性能.硕士学位论文.沈阳工业大学,2009.
    [83]蔡月华.AZ80镁合金基体与钢圈连接关键技术研究.硕士学位论文.中北大学,2009.
    [84]网络(http://news.nuguo.com/school/jinshujiagong/2010-04-04/7657.html)铝合金车轮挤压铸造工艺-新闻频道-努果模具网,2010,6.
    [85]王新,廖炽奇,司徒宝昌.铝合金挤压铸造方法.中国.发明专利.01109078.2.2001.
    [86]蒋凯雁.一种间接液态挤压铸造工艺及其模具.中国.发明专利.98110716.8.1998.
    [87]俞利民,陈国东,张水勇等.轻合金车轮挤压铸造设备.中国.实用新型专利.ZL200520013790.3.2005.
    [88]张国华,孙晓,高晓波等.以液态挤压铸造工艺铸造的带有内冷通道的活塞毛坯.中国.ZL200520087671.2.
    [89]郑主安,赵玉格.热挤压铸造型材.中国.实用新型专利.ZL200420109790.2005.
    [90]刘六法,丁怀新,彭立明等.铝合金汽车发动机支架的挤压铸造制备方法.中国.发明专利.200610118386.1.2006.
    [91]霍守铭,牛建平.纯铜导电颚板挤压铸造工艺.中国.发明专利.00132288.5.2000.
    [92]赵恒涛,米国发,王狂飞.铸造充型及凝固过程模拟研究概况.航天制造技术,2007,2.
    [93]齐丕骧,戴钢,吴岳壹等.铝合金车轮的挤压铸造方法及设备.中国.发明专利.92109088.9.1992.
    [94]彭立明,曾小勤,杨艳玲等.镁合金汽车发动支架的挤压铸造制备方法.中国.发明专利.200610029407.2.2006.
    [95]徐宝鑫.铸造铝合金技术的发展与展望.铸造.1992(10):25-30.
    [96]邢书明.半固态挤压铸造.2001年中国压铸,挤压铸造,半固态加工学术年会,烟台,2001.
    [97]阎峰云,张玉海.浇注和铸型温度对AM60B合金性能的影响.热加工工艺,2007,11.
    [98]蒙新明.铝合金挤压铸造用电磁泵定量浇注技术研究.硕士学位论文.中北大学.2005.
    [99]郭国文.高强韧铸造铝合金材料及其挤压铸造技术的研究.博士学位论文.华南理工大学.2002.
    [100] E.S.Kim,K.H.Lee,Y.H.Moon.A feasibility study of the partial squeeze and vacuumdie casting process.Journal of Materials Processing Technology.2000(105):42-48.
    [101]毛厚军.4Cr5MoSi钢液态模锻锻模质量分析与应用研究.硕士学位论文.浙江大学工学.2005.
    [102]罗守靖.复合材料液态挤压.冶金工业出版社,2002.
    [103] Robert Brown.International Magnesium Association54th Annnual WorldConference.Light Metal Age.1997,55(7,8):72-75.
    [104] Robert E Brown.Magnesium at NADCA Congress and Exposition.Light MetalAge.1998,56(34):36-37.
    [105] E.Hajjari,M.Divandari.An investigation on the microstructure and tensile properties ofdirect squeeze cast and gravity die cast2024wrought Al alloy.Materials and Design.2008(29):1685-1689.
    [106] M.T.Abou EI-khair.Microstructure characterization and tensile properties ofsqueeze-cast AlSiMg alloys.Materials Letters.2005(59):894-900.
    [107] H.R.Hashemi,H.Ashoori,Davami.Microstructure and tensile properties of squuze castAl-Zn-Mg-Cu alloy.Materials Science and technology.2001,6(17):639-644.
    [108] A.Maleki, B.Niroumand, A.Shafyei. Effects of squeeze casting parameters on density,macrostructure and hardness of LM13alloy.Materials Science and Engineering A.2006(428):135-140.
    [109] A.Boschetto,G.Costanza,F.Quadrini,M.E.Tata.Cooling rate inference in aluminum alloysqueeze casting.Materials Letters.2007(61):2969-2972.
    [110]常锋.铝活塞挤压铸造工艺的试验研究.甘肃工业大学学报.1998,3:27-30.
    [111] Stefanos M.Skolianos,Grigoris Kiourtsidis,Thomas Xatzifotiou.Effect of appliedpressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061alloy.Materials Science and Engineering A.1997(231):17-24.
    [112] T.M.Yue.Squeeze casting of high-Strength aluminium wrought alloy AA7010. Journalof Materials Processing Technology.1997(66):179-185.
    [113] T.N.Lipchin,P.A.Bykov.Alloy strengthening by solidification under pressure. RussianCastings Production.1973,109-111.
    [114] Z.J.Wei,Z.L.Wang,H.W.Wang,L.Cao.Evolution of microstructures and phases of Al-Mgalloy under4GPa high pressure.J.M1ater.Sci.2007(42):7123-7128.
    [115] Y.C.Kim,D.H.Kim,W.T.Kim et al.Effect of silver addition on formation of secondaryphases in squeeze cast Al-Cu-Mg alloys.Mater.Sci.Tech.2001(17):215-222.
    [116] J.H.Lee,H.S.Kim,C.W.Won,B.Cantor.Effect of the gap distance on the coolingbehaviour and the microstructure of indirect squeeze cast and gravity die cast5083wroughtAl alloy.Materials Science and Engineering A.2002(338):182-190.
    [117] S.W.Kim,G.Durrant,J.H.Lee,B.Cantor.The microstructure of direct squeeze cast andgravity die cast7050(Al-6.2Zn-2.3Cu-2.3Mg)wrought Al alloy.Journal of Materials Synthesisand Processing.1998,6(2):75-87.
    [118] P.Vijian,V.P.Arunachalam.Optimization of squeeze cast parameters of LM6aluminiumalloy for surface roughness using Taguchi method.Journal of Materials ProcessingTechnology.2006(180):161-166.
    [119] R.Ashiri,B.Niroumand,F.Karimzadeh,M.Hamani,M.Pouranvari.Effect of castingprocess on microstructure and tribological behavior of LM13alloy.Journal of Alloys andcompounds.2009,475(1-2):321-327.
    [120]齐乐华.挤压铸造对ZA27合金摩擦磨损特性的影响研究.特种铸造及有色合金.2002.204-205.
    [121] S.W.Kim,D.Y.Kim,W.G.Kim,K.D.Woo.The study on characteristics of heat treatment ofthe direct squeeze cast7050wrought Al alloy.Materials Science and EngineeringA.2001(304):721-726.
    [122] B.Smola,B.L.mordike.Microstructure and phase changes due to heat treatment ofsqueeze cast Mg-Sc-(Ce)-Mn alloys.Phy.Stat.Sol.(a)2002(191):305-316.
    [123] K.Prakasan,S.Seshan.Electrical conductivity of squeeze cast copper.Journal of MaterialsScience Letters.1997(16):1588-1589.
    [124]梁国宪,王尔德,霍文灿.金属凝固过冷度与热物性参数的关系.材料科学进展.1991,5(4)277-283.
    [125]邓建新.挤压铸造成形系统的研究.博士学位论文.华南理工大学.2010.
    [126] Kleiner S.,Beffort O.,Wahlen A.,et al.Microstructure and mechanical properties ofsqueeze cast and semi-solid cast Mg-Al alloys.Journal of Light Metals,2002,2(4):277–280.
    [127]张大华,王瑞权,刘二勇,李向威.镁合金的强韧化研究.上海有色金属,2009,12.
    [128]李庆丰,王利波,于宝义等.工艺参数对间接挤压铸造铝铜合金力学性能及热裂倾向的影响.铸造,2006,55(2):1271-1274.
    [129] Onat A.,Akbulut H.,Yilmaz F..Production and characterisation of silicon carbideparticulate reinforced aluminium–copper alloy matrix composites by direct squeeze castingmethod.Journal of Alloys and Compounds,2007,436(1-2):375–382.
    [130] Sukumaran K.,Ravikumar K.K.,Pillai S.G.K.,et al.Studies on squeeze casting of Al2124alloy and2124-10%SiCp metal matrix composite.Materials Science and EngineeringA,2008,490(1-2):235–241.
    [131] Qu Shoujiang,Geng Lin,Han Jiecai.SiCp/Al composites fabricated by modified squeezecasting technique.Journal of Materials Science and Technology,2007,23(5):641-644.
    [132]赵敏,姜龙涛,武高辉,等.挤压铸造TiB2P/Al复合材料的组织与性能.稀有金属材料与工程,2007,36(3):541-545.
    [133] Reihani,S.M.Seyed.Processing of squeeze cast A16061-30vol percent SiC compositesand their characterization.Materials and Design,2006,27(3):216-222.
    [134] Ryou M.,Kim C.H.,Kim M.H..Microstructure and mechanical properties ofhyper-eutectic Al-Si alloys fabricated by spray casting.Journal of Materials Science andTechnology,2008,24(1):48-50.
    [135] Zhang Ming,Zhang Weiwen,Zhao Haidong,et al.Effect of pressure on microstructuresand mechanical properties of Al-Cu-based alloy prepared by squeeze casting.Transactions ofNonferrous Metals Society of China,2007,17(3):496-501.
    [136]李彦霞,倪东惠,赵海东,等.不同压力下挤压铸造铝铜合金的组织与性能.铸造,2005,54(8):764-766.
    [137]谢爱明,倪东惠,赵海东.不同压力对挤压铸造Al-Cu-Mg合金性能的影响.铸造,2007,56(8):825-827.
    [138] Chen Z.W.,Thorpe W.R..The effect of squeeze casting pressure and iron content on theimpact energy of Al-7Si-0.7Mg alloy.Materials Science and EngineeringA,1996,A221(1-2):143-153.
    [139] Yang L.J..The effect of solidication time in squeeze casting of aluminium and zincalloys.Journal of Materials Processing Technology,2007,(192-193):114–120.
    [140] Yang L.J..The effect of casting temperature on the properties of squeeze cast aluminiumand zinc alloys.Journal of Materials Processing Technology,2003,140:391–396.
    [141] HU H..Squeeze casting of magnesium alloys and their composites.Journal of MaterialsScience,1998,33(6):15579-1589.
    [142] Maleki A.,Niroumand B.,Shafyei A..Effects of squeeze casting parameters on density,macrostructure and hardness of LM13alloy.Materials Science and Engineering A,2006,428(1-2):135–140.
    [143] Brodarac Z.,Zovko,Mrvar P.,Medved J.,et al.Local squeezing casting influence on thecompactness of AlSi10Mg alloy castings.Metalurgija,2007,46(1):29-35.
    [144]张妍,王宁,李峰.工艺参数和热处理对挤压铸造AZ91D力学性能的影响.轻合金加工技术,2006,34(12):25.
    [145]于海朋,张重远,李荣德,等.冲头式挤压铸造工艺参数对ZA27合金力学性能的影响.特种铸造及有色合金,2002,(压铸专刊):217-218.
    [146] Li Yuanyuan,Zhang Ming,Zhao Haidong,et al.Study on fabrication of a large Al-Cu-Mnwheel with indirect squeeze casting process.Advances in Materials Manufacturing Scienceand Technology.Switzerland:Trans Tech Publications Ltd,2006:353-356.
    [147] Vijian P.,Arunachalam V.P..Optimization of squeeze casting process parameters usingTaguchi analysis.International Journal of Advanced Manufacturing Technology,2007,33(11-12):1122–1127.
    [148] Anastasiov K.S.Optimization of the aluminium diecasting,process based on the Taguchimethod.Proc Ins Mech Eng,2002,(216):969–977.
    [149]刘红梅.Mg-5wt%Sn合金固溶时效机理和价电子结构的研究.博士学位论文.四川大学,2007.
    [150] Shu Fuhua.Aluminum-zinc alloy squeeze casting technological parameters optimizationbased on PSO and ANN.China foundry,2007,4(3):202-205.
    [151] Vijian P.,Arunachalam V.P..Modelling and multi objective optimization of LM24aluminium alloy squeeze cast process parameters using genetic algorithm.Journal of MaterialsProcessing Technology,2007,186(1-3):82–86.
    [152] Zhang Milan,Xing Shuming,Xiao Liming,et al.Design of process parameters for directsqueeze casting.Journal of University of Science and Technology Beijing,2008,15(3):339-343.
    [153] Vijian P.,Arunachalam V.P..Experimental study of squeeze casting of gunmetal. Journalof Materials Processing Technology,2005,170(1-2):32–36.
    [154]张金旺.铝镁系合金强韧性能及焊接性能研究.硕士学位论文.太原理工大学,2008.
    [155] J.F.Nie,Muddle B.C.Characterisation of strengthening precipitation phases inaMg-Y-Nd alloy.Aeta Materialia,2000,48:1691-1703.
    [156] Shigeham K Yo K.Aging charactedstica and tensile properties of Mg-Nd-Y-Zralloys.In Mordike B.
    [157]王志虎.AZ80镁合金固溶与时效热处理中β-Mg17Al12相的转化行为研究硕士学位论文.西安理工大学.2007.
    [158]柳百成.铸件充型凝固过程数值模拟国内外研究进展.铸造.1999(8):40-45.
    [159]孙逊,安阁英.铸件充型凝固过程数值模拟发展现状.铸造.2000(2):84-88.
    [160]王金龙.ECAP变形SiCp/AZ91镁基复合材料的显微组织与性能.硕士学位论文.哈尔滨工业大学.2008.
    [161]侯华,毛红奎,张国伟.铸造过程的计算机模拟.北京:国防工业出版社,2008.12.5-18.
    [162]张永忠,张奎,崔代金,吴绪平,樊建中,崔波,郑宇新,雷健. AZ91D镁合金的压铸工艺及性能.铸造,2000,2.
    [163]石金柱,郭耀文.镁合金的研制进展.机械管理开发,2004,10.
    [164]谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2001:1-7.
    [165]毛卫民,赵新兵.金属再结晶与晶粒长大.北京:冶金工业出版社,1994:197-213.
    [166]王建青.高压处理对AZ91D镁合金组织及性能的影响.硕士学位论文.燕山大学,2009.
    [167] Chadwick G A, Yue T M. Principles and applications of squeeze castings.Met Mater.1989,5(1):6–12.
    [168] Kim S W, Kim D Y, Kim W G, Woo K D. The study on characteristics of heat treatmentof the direct squeeze cast7075wrought Al alloy. Mater Sci Eng A.2001,304–306:721–726.
    [169] R VanFleteren.Magnesium for automotive applications.Advanced Materials&Process.1996,(5):33-34.
    [170]刘志勇,许庆彦,柳百成.压铸工艺对镁合金组织性能影响的研究.铸造,2004,8.
    [171]张永忠,张奎,崔代金,吴绪平,樊建中,崔波,郑宇新,雷健. AZ91D镁合金的压铸工艺及性能.铸造,2000,2.
    [172] H Watanabe,T Mukai,M Kohzu,et al.Effect of temperature and grain size on thedominant diffusion process for superplastic flow in an AZ61magnesium alloy.Acta mater.1999,47(14):3753-3758.
    [173]王晓花.稀土元素La对AZ91镁合金组织及性能的影响.硕士学位论文.太原理工大学.2009.
    [174]刘放军.ZA84镁合金压铸工艺及组织性能的研究.硕士学位论文.湖南大学,2009.
    [175]蔡伟杰.载银树脂的制备及应用.硕士学位论文.大连交通大学,2004.
    [176]陈胜立.柑橘皮渣流化干燥机理的实验研究.硕士学位论文.重庆大学,2007.
    [177]骆美芝.薄壁塑件在注塑成型中质量控制的研究.硕士学位论文.浙江工业大学,2010.
    [178]王小军. C2H2F4混合气体保护下镁及镁合的熔炼研究.硕士学位论文.西安:西安工业大学,2005.
    [179] F.Bach.Innovative Method for Covering Magnesium Melt.Aluminium,2003,179(11):964~965
    [180]赵伦,刘建睿,黄卫东.镁合金熔体气体保护防燃技术.材料导报,2008,22(12):71~73
    [181]王明星,周宏,王林,李伟,赵宇.Y和Ce对AZ91D镁合金显微组织和力学性能的影响.吉林大学学报(工学版).2007,1.
    [182]潘辉. La2O3对AZ31镁合金铸态组织与力学性能影响的研究.硕士学位论文.西华大学.2009.
    [183]范艳艳,李秋书,李亚斐.Al2O3颗粒增强AZ91D镁基复合材料的研究.中国铸造装备与技术,2011(1):15-20.
    [184]李建弘.稀土元素对Mg-6Al合金显微组织及高温拉伸力学性能的影响.硕士学位论文.河南科技大学.2008.
    [185]范艳艳,李秋书,柴跃生,陈孝先.Nd和Ce对AZ91D镁合金显微组织和力学性能的影响.铸造,2009,7
    [186]刘林艳.Al4C3和Ce、Ca、Sr对AZ91D合金组织与性能影响.硕士学位论文.武汉理工大学.2007.
    [187]陈君,李全安,张兴渊,李克杰.Ca对AZ61-1.2Y镁合金组织和力学性能的影响.铸造技术.2008,8.
    [188]李金锋,耿浩然,杨中喜,王英姿,崔峰,孙春静.钇对AZ91镁合金组织和力学性能的影响.铸造.2005,1.
    [189] Saravanan R A,Surappa M K.Fabrication and characterisation of pure magnesium-30vol.%SiCp particle composite.2000:45-60.
    [190]崔红卫,闵光辉,胡立杰,于化顺.含钇Mg-Al系镁合金的研究现状和进展.材料导报.2009,8.
    [191]潘保武.低合金高强度钢应力腐蚀研究.博士学位论文.中北大学.2008.
    [192]王小强,李全安,张兴渊.Y,Nd复合稀土对AZ81镁合金组织和力学性能的影响.稀有金属材料与工程.2008,1.
    [193]王小强,李全安,张兴渊.Y对AZ81镁合金组织和力学性能的影响.特种铸造及有色合金.2007,5
    [194]王小强.稀土元素Nd、Y和Gd对AZ系镁合金组织和高温力学性能的影响.硕士学位论文.河南科技大学.2007.
    [195]李全安,李克杰,井晓天,陈君,张兴渊.稀土钐对AZ61合金组织和性能的影响.材料热处理学报.2010,1.
    [196]李全安,李克杰,井晓天,陈君,张兴渊.稀土钐对AZ61合金组织和性能的影响.材料热处理学报.2010,1.
    [197]万里,罗吉荣,兰国栋,梁琼华.挤压铸造过共晶A390合金的组织与力学性能.华中科技大学学报(自然科学版).2008,8.
    [198]范艳艳.合金元素对AZ91D镁合金组织和性能的影响.硕士学位论文.太原科技大学.2009.
    [199]王玮,吴国华,王渠东,丁文江.镁合金非熔剂净化工艺研究进展.铸造设备研究.2007,8
    [200]吴国华,孙明,王玮,丁文江.镁合金纯净化研究新进展.中国有色金属学报.2010,6.
    [201]王玮.Mg10Gd3Y0.5Zr合金复合净化行为研究.博士学位论文.上海交通大学大学.2010.
    [202]吴玉锋,杜文博,聂祚仁,曹林锋,左铁镛.颗粒增强镁基复合材料研究进展.稀有金属材料与工程.2007,1.
    [203]吴玉锋,杜文博,聂祚仁,曹林锋,左铁镛.颗粒增强镁基复合材料研究进展.稀有金属材料与工程.2007,1.
    [204]吴玉锋,杜文博,聂祚仁,曹林锋,左铁镛.颗粒增强镁基复合材料研究进展.稀有金属材料与工程.2007,1.
    [205]梁立超,白彧,杨玉山,王越,陈立佳,刘正.SiC颗粒增强AZ91镁基复合材料的研究.沈阳工业大学学报.2007,4
    [206]梁立超.SiC颗粒增强镁基复合材料的显微组织及其力学行为.硕士学位论文.沈阳工业大学.2006.
    [207]翟秀丽.电流直加热法制备SiCp/Mg复合材料研究.硕士学位论文.东北大学.2009.
    [208]聂凯波.多向锻造对SiCp/AZ91镁基复合材料组织与力学性能的影响.硕士学位论文.哈尔滨工业大学.2009.
    [209]严振杰.原位合成制备Mg_2Si/AZ31镁合金复合材料组织与性能的研究.硕士学位论文.北京工业大学.2009.
    [210]杜文博,严振杰,吴玉锋,王朝辉,左铁镛.镁基复合材料的制备方法与新工艺.稀有金属材料与工程.2009,3.
    [211]王小宁.SiC颗粒增强AZ81镁合金基复合材料的制备及组织与力学性能.硕士学位论文.沈阳工业大学.2009.
    [212]洪成淼.颗粒增强镁基复合材料的制备及力学性能.硕士学位论文.沈阳工业大学.2005.
    [213] Chen F,Huang X,Wang Y,Zhang Y and Hu Z.Investigation on foam ceramic filter toremove inclusions in revert alloy.Material Letters,1998:372-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700