用户名: 密码: 验证码:
煤化工行业水系统集成优化及循环水软化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于系统工程理论,开展煤化工行业水系统集成优化理论与技术研究。首先着眼于全厂水系统的宏观层面,开发了适用于水网络优化的“遗传算法”,并对全厂水网络进行了优化改造;其次针对循环水系统,开展了循环水用水网络优化及软化基础理论与技术研究。
     针对水网络优化过程的数学问题实质,开发了“小生境退火遗传算法”。首先针对水网络优化求解空间庞杂的问题,开展了求解空间的简化工作,利用浓度约束、流量约束、质量约束等条件,以及夹点技术,对用水网络超结构模型及循环水网络超结构模型进行了精简工作,从而提高了算法的收敛性、准确性、稳定性。其次针对水网络优化约束条件复杂的问题,构建了全新的、具有自适应性的适应度函数,该适应度函数可以很好地平衡约束函数和目标函数,确保算法在求解前后过程中均做出准确的“遗传行为”。通过实例验证,表明该算法适用于单杂质、多杂质、管路约束、循环水网络优化等多种情况。
     以自主算法为核心,开发了一套用水网络优化软件。该软件具备独立的视窗界面,降低了用户优化操作的难度;设置了约束条件自动生成模块,解决了用户无法独立生成约束条件的困难,提升了算法的易用性;构建了流程图输出模块,便于用户对优化结果的理解。将软件应用于某煤化工企业,优化后一次水节约率为21%;除盐水节约率为29%;废水减排率为66%。
     针对软化工艺出水浊度高、沉淀产物细小的问题,开展了成核机理、软化速率、粒径分布的研究。在碳酸钙“聚集成核”模型的基础上,假设破碎过程为“二元随机”过程,建立了“聚集-破碎成核”模型,在上述模型的基础上,采用多重Monte carlo算法考察了不同过饱和度的情况下,体系的成核诱导时间及颗粒粒径分布情况,结果表明“聚集-破碎成核”模型的模拟误差(9.8%)小于“聚集成核”模型的模拟误差(24.3%),更接近于实际成核过程,模拟结果显示过饱和度对于细小颗粒的产生具有重要的影响。
     通过改造万通907型电位滴定仪,建立了定组成实验装置,考察了不同条件(温度、过饱和度、离子强度、pH)下软化速率及产物粒径分布的变化情况,结果表明,随着上述参数的升高,软化速率均有不同程度的提升,但软化产物中细小颗粒所占的比例也逐步增大,因此在软化过程中,当温度等参数升高时,应添加晶种等措施,以抑制成核现象的发生。
     针对循环水外排水、地下水软化效率不高的问题,开展了水质分析、混凝剂筛选、添加晶种的研究。水质分析结果表明,由于水样中存在着天然有机物或阻垢剂,导致水样中方解石、白云石、文石等均存在着不同程度的过饱和现象,难以结晶析出。研究表明通过添加混凝剂,可以部分去除水体中有机物(40%)或者阻垢剂(>90%),通过添加混凝剂和晶种可以提升软化程度20%至30%。通过软化处理,外排水Ca2+浓度可以降到50mg/L至20mg/L之间;地下水Ca2+浓度可以降到30mg/L左右,单从硬度指标评价,均可以满足循环冷却水的要求。
     基于上述研究,提出了“强化软化”策略,即在传统的软化过程中添加混凝药剂和晶种,在加药点附近控制过饱和度,从而可以有效提升软化效果,改善产物沉淀效果,该策略不但可以应用于软化过程,也可以应用于其他难溶盐的沉淀处理。将上述策略应用于该企业循环水补水软化方案设计中,预计改造后每日可减少采水900吨,减少排水900吨,约20个月可以收回项目投资。
In this dissertation, the integrated optimization of the water system in coal chemical industries were performed based on the theory of system engineering. For the whole plant water network, the "genetic algorithm" available for the water network optimization was developed, while for the circulating water system, the optimization of the water network and the basic theory and technology on softening were studied in detail.
     According to the essence of the math problem during the water network optimization process, a "niche annealing genetic algorithm" was developed. The simplification of the solution space was firstly carried out in the optimization of the water network. The super-structure models of the water-consuming network and the circulating cooling water network were simplified using the constraints of concentration, flow and quality, as well as pinch technology, thus improving the convergence, accuracy and stability of the algorithm. Then a new self-adaptive fitness function was constructed for the complex constraints during the optimization of the water network. This fitness function could well balance the constraint functions and the objective function, thus ensured that the solving process of the algorithm kept accurate "genetic behavior". It has been validated by examples, that this algorithm was applicable in many situations, such as single impurity, multiple impurities, pipeline constraints, recycled water network optimization and so on.
     Based on the independent algorithm, a new software for water network optimization was developed. This software had a separate window interface, which reduced the difficulty of optimization operation for users. It had also been set up automatic constraint generation modules, thus solved the problems that the users could not generate constraints independently and improved the usability of the algorithm. Furthermore, a flow chart output module was constructed in this software for users to understand the optimization results easily. The application of the software in some coal chemical enterprise showed that the water was saved about21%, the demineralized water was saved about29%and the waste water was reduced66%.
     For the high turbidity and fines in softened water, nucleation mechanism, softening rate and the particle size distribution were studied in this dissertation. According to the model of calcium carbonate "aggregation model", and assuming that the breakup process was "binary random" process, the model of "aggregation-breakup model" was established. Based on the above model, the induction time for nucleation and the distribution of particle sizes under different saturations were studied using multiple Monte Carlo algorithm. The results showed that the simulation error of the "aggregation-breakup model"(9.8%) was much lower than that of the "aggregation model"(24.3%). Thus the simulated results might be closer to the actual nucleation process. The simulation results showed that the degree of supersaturation had significant effect on the generation of fine particles.
     The softening rates and the size distributions of product particles under different conditions (temperature, supersaturation, ionic strength, and pH) were investigated using the fixed component experimental apparatus, which was established by transforming the titrator Metrohm907. The results showed that, with the increase of these operation parameters, the softening rates increased at some degree, while the proportion of fine particles in the softening products gradually increased as well. Because the high proportion of fine particles would have a negative effect on the subsequent precipitation and separation, some measures such as adding seeds to suppress the occurrence of nucleation should be taken, when the parameters such as temperature in the softening process increased.
     Considering the poor softening efficiencies of discharge from circulating water system and the groundwater, studies were carried out on water quality analysis, coagulant screening and the addition of seeds. The existence of natural organics or scale inhibitors in the water samples, which were proved from the results of water quality analysis, resulted in different supersaturation degrees of calcite, dolomite, aragonite, etc. Thus they were difficult to be crystallized. The experimental results showed that organics of40%or scale inhibitors of more than90%could be removed by adding a coagulant, and the extent of softening could be enhanced by20%to30%by adding coagulants and seeds.
     A strategy of "enhanced softening" was proposed through the combination of the above research results, that is, adding coagulation agents and seeds in the traditional processes, and controlling the supersaturation at near the dosing points, which could effectively enhance the softening efficiency and improve the sedimentation. When the above strategy was applied to the design of the softening plan for make-up water of the circulating water in this enterprise, it is estimated that the water supply and the water drainage would be expected to be reduced for900and900tons, respectively, thus the investment would be recovered after20months.
引文
[1]Bagajewicz M. A review of recent design procedures for water networks in refineries and process plants[J]. Computers & Chemical Engineering,2000,24(9-10):2093 2113.
    [2]冯霄著.水系统集成优化:节水减排的系统综合方法(第2版)[M].北京:化学工业出版社,2012.
    [3]冯霄,王会民.考虑再生循环的水系统集成概述[J].华北电力大学学报,2004,31(6):17-19.
    [4]冯霄,沈人杰,余新江.具有中间水道的废水再生循环水网络的优化[J].化工学报,2008,59(8):2046-2051.
    [5]杨友麒.节水减排优化水网络系统的集成[J].计算机与应用化学,2004,21(1):73-78.
    [6]Linnhoff B, Flower J R. Synthesis of heat exchanger networks:I. Systematic generation of energy optimal networks[J]. AIChE Journal,1978,24(4):633-642.
    [7]杨友麒.从管理节水走向系统节水[J].现代化工,2005,25(12):6-10.
    [8]Putra Z A, Amminudin K A. Two-step optimization approach for design of a total water system[J]. Industrial & Engineering Chemistry Research,2008,47(16):6045-6057.
    [9]Hallale N. A new graphical targeting method for water minimisation[J]. Advances in Environmental Research,2002,6(3):377-390.
    [10]Takama N, Kuriyama T, Shiroko K, et al. Optimal water allocation in a petroleum refinery [J]. Computers & Chemical Engineering,1980,4(4):251-258.
    [11]El-Halwagi M M, Manousiouthakis V. Synthesis of mass exchange networks[J]. AIChE Journal,1989,35(8):1233-1244.
    [12]Wang Y P, Smith R. Wastewater minimisation[J]. Chemical Engineering Science,1994, 49(7):981-1006.
    [13]都健.考虑能量集成与柔性的用水网络设计方法研究[D].大连,大连理工大学,2004.
    [14]Bai J, Feng X, Deng C. Graphically based optimization of single-contaminant regener-ation reuse water systems[J]. Chemical Engineering Research and Design,2007,85(8): 1178-1187.
    [15]Tsai M-J, Chang C-T. Water usage and treatment network design using genetic algorithms[J]. Industrial & Engineering Chemistry Research,2001,40(22):4874-4888.
    [16]刘强,阎光绪,郭绍辉.多杂质用水网络最优化设计——水质分析及数学规划法[J].化工学报,2008,59(6):1441-1447.
    [17]Alva-Argaez A, Vallianatos A, Kokossis A. A multi-contaminant transhipment model for mass exchange networks and wastewater minimisation problems [J]. Computers & Chemical Engineering,1999,23(10):1439-1453.
    [18]Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering,1990,14(7): 769-782.
    [19]Tan R R, Foo D C Y, Manan Z A. Assessing the sensitivity of water networks to noisy mass loads using Monte Carlo simulation[J]. Computers & Chemical Engineering, 2007,31(10):1355-1363.
    [20]Chang C-T, Li B-H, Liou C-W. Development of a generalized mixed integer nonlinear programming model for assessing and improving the operational flexibility of water network designs[J]. Industrial & Engineering Chemistry Research,2009,48(7):3496-3504.
    [21]Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(11-12):1245-1287.
    [22]Back T, Schwefel H-P. An overview of evolutionary algorithms for parameter optimization[J]. Evolutionary Computation,1993,1(1):1-23.
    [23]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation,1996,4(1):1-32
    [24]王克峰,于福东,姚平经,等.遗传算法在过程综合混合整数非线性规划中的应用[J].高校化学工程学报,1997,11(4):400-406.
    [25]Ching-Tzong S, Chu-Sheng L. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution[J]. Power Delivery, IEEE Transactions on,2003,18(3):1022-1027.
    [26]Jez owski J. Review of water network design methods with literature annotations[J]. Industrial & Engineering Chemistry Research,2010,49(10):4475-4516.
    [27]Lavric V, Iancu P, Plesu V. Genetic algorithm optimisation of water consumption and wastewater network topology[J]. Journal of Cleaner Production,2005,13(15):1405-1415.
    [28]琚洁慧.改进适应度函数的遗传算法[J].电脑知识与技术,2005,5:80-83.
    [29]代才,王宇平.基于新的适应度函数的多目标进化算法[J].华中科技大学学报,2013,41(7):92-96.
    [30]张思才,张方晓.一种遗传算法适应度函数的改进方法[J].计算机应用与软件,2006,23(2):108-110.
    [31]刘英.遗传算法中适应度函数的研究[J].兰州工业高等专科学校学报.2006,13(3):1-4.
    [32]金菊良,杨晓华,丁晶.基于实数编码的加速遗传算法[J].四川大学学报,2000,32(4):20-24.
    [33]杨荣富,金菊良,丁晶.保持群体多样性的遗传算法[J].四川联合大学学报,1999,3(6):13-16.
    [34]Huang C-H, Chang C-T, Ling H-C, et al. A mathematical programming model for water usage and treatment network design[J]. Industrial & Engineering Chemistry Research,1999,38(7):2666-2679.
    [35]Prakotpol D, Srinophakun T. GAPinch:genetic algorithm toolbox for water pinch technology[J]. Chemical Engineering and Processing:Process Intensification,2004, 43(2):203-217.
    [36]Dakwala M, Mohanty B, Bhargava R. A process integration approach to industrial water conservation:a case study for an Indian starch industry[J]. Journal of Cleaner Production,2009,17(18):1654-1662.
    [37]李贺全,莫逆.火电厂循环冷却水节水技术初探[J].华北电力技术.2002,6:9-11.
    [38]刘雪鹏,杨友麒,吴盛文,等.炼化企业循环冷却水系统节水技术探讨[J].工业水处理,2013,33(10):11-15.
    [39]Boffardi B P, Smith A L. Chemical treatment makes cooling water reusable[J]. Chemical Engineering,1995,102(7):106-108.
    [40]高华生.工业循环冷却水旁流软化——净化处理技术进展[J].工业水处理,2007,27(6):1-5.
    [41]Davis M L, Cornwell D A. Introduction to Environmental Engineering[M]. McGraw-Hill,2006.
    [42]van Schagen K M, Rietveld L C, Babuska R, et al. Model-based operational constraints for fluidised bed crystallisation[J].Water Research,2008,42(1-2):327-337.
    [43]van Schagen K, Rietveld L, Babuska R, et al. Control of the fluidised bed in the pellet softening process[J]. Chemical Engineering Science,2008,63(5):1390-1400.
    [44]冯俊生,朱宏,李玲.饮用水除盐技术的研究与进展[J].环境科学与技术,2007,30(增刊):209-211.
    [45]Jennifer N A, Treavor H B. Combined ion exchange treatment for removal of dissolved organic matter and hardness[J]. Water Research,2010,44(8):2419-2430.
    [46]张小霓,吴文龙.旁流弱酸处理应用于循环冷却水的试验研究[J].工业水处理,2010,30(2):37-39.
    [47]马强.工业循环冷却水节水技术发展趋势[J].工业用水与废水,2010,41(2):1518.
    [48]张莉娜,黄婕,熊丹柳,等.纳滤膜脱盐及其在海水软化中的应用[J].膜科学与技术,2012,32(1):97-101.
    [49]袁俊生,焦亮,刘杰.利用纳滤膜软化浓海水研究[J].水处理技术,2012,38(11):81-83,89.
    [50]闫光明,李桂枝.纳滤膜制取中、低压锅炉软化水[J].中国给水排水,2002,18(9):45-46.
    [51]张显球,侯小刚,张林生,等.面向软化水处理的纳滤膜分离技术[J].膜科学与技术,2006,26(2):64-67,74.
    [52]苏军伟,顾兆林,Yun X X.离散相系统群体平衡模型的求解算法[J].中国科学,2010,40(2):144-160.
    [53]French M N, Bras R L, Krajewski W F. A Monte Carlo study of rainfall forecasting with a stochastic model[J]. Stochastic Hydrology and Hydraulics.1992,6(1):27-45.
    [54]Fournie E, Lasry J-M, Lebuchoux J, et al. Applications of Malliavin calculus to Monte Carlo methods in finance[J]. Finance and Stochastics,1999,3(4):391-412.
    [55]赵海波,郑楚光.水滴清除气溶胶过程的随机算法和数值模拟[J].应用数学和力学,2006,27(10):1159-1168.
    [56]Lewis A E. Fines Formation (and Prevention) in Seeded Precipitation Processes[J]. Kona.2006,24:119-125.
    [57]Somasundaran P. Encyclopedia of Surface and Colloid Science, Second Edition[M]. London:Taylor & Francis,2006.
    [58]Lu H L, Shen Z H, Ding J M, et al. Numerical simulation of bubble and particles motions in a bubbling fluidized bed using direct simulation Monte-Carlo method[J]. Powder Technology,2006,169(3):159-171.
    [59]Santana D, Macias-Machin A. Local bubble-size distribution in fluidized beds[J]. AICHE Journal,2000,46(7):1340-1347.
    [60]Nopens I, Koegst T, Mahieu K, et al. PBM and activated sludge flocculation:From experimental data to calibrated model[J]. AIChE Journal,2005,51(5):1548-1557.
    [61]Ding A, Hounslow M J, Biggs C A. Population balance modelling of activated sludge flocculation:Investigating the size dependence of aggregation, breakage and collision efficiency [J]. Chemical Engineering Science,2006,61(1):63-74.
    [62]Zhao H, Zheng C. A stochastic simulation for the collection process of fly ashes in single-stage electrostatic precipitators[J]. Fuel,2008,87(10-11):2082-2089.
    [63]Zhao H B, Zheng C G, Xu M H. Multi-Monte Carlo method for particle coagulation: description and validation[J]. Applied Mathematics and Computation,2005,167(2): 1383-1399.
    [64]Hounslow M J, Ni X. Population balance modelling of droplet coalescence and break-up in an oscillatory baffled reactor[J]. Chemical Engineering Science,2004, 59(4):819-828.
    [65]Rigopoulos S. Population balance modelling of polydispersed particles in reactive flows[J]. Progress in Energy and Combustion Science,2010,36(4):412-443.
    [66]McGraw R. Description of Aerosol Dynamics by the Quadrature Method of Moments [J]. Aerosol Science and Technology,1997,27(2):255-265.
    [67]Upadhyay R R. Simulation of population balance equations using quadrature based moment methods[J]. The University of Texas at Austin,2006
    [68]van Peborgh Gooch J R, Hounslow M J. Monte Carlo simulation of size-enlargement mechanisms in crystallization[J]. AIChE Journal.1996,42(7):1864-1874.
    [69]Frenklach M, Harris S J. Aerosol dynamics modeling using the method of moments[J]. Journal of Colloid and Interface Science.1987,118(1):252-261.
    [70]Marchisio D L, Fox R O. Solution of population balance equations using the direct quadrature method of moments[J]. Journal of Aerosol Science,2005,36(1):43-73.
    [71]赵海波,郑楚光著.离散系统动力学演变过程的颗粒群平衡模拟[M].北京:科学 出版社,2008.
    [72]Zhao H, Zheng C. A new event-driven constant-volume method for solution of the time evolution of particle size distribution[J]. Journal of Computational Physics,2009, 228(5):1412-1428.
    [73]Graveland A, van Dijk J C, de Moel P J, et al. Developments in water softening by means of pellet reactors[J]. Journal american water works association,1983,75(12): 619-625
    [74]Li C-W, Liao J-C,Lin Y-C. Integrating a membrane and a fluidized pellet reactor for removing hardness:effects of NOM and phosphate[J]. Desalination,2005,175(3):279-288.
    [75]Lin Y P, Singer P C,Aiken G R. Inhibition of calcite precipitation by natural organic material:Kinetics, mechanism, and thermodynamics [J]. Environmental Science & Technology,2005,39(17):6420-6428.
    [76]Zuddas P, Pachana K, Faivre D. The influence of dissolved humic acids on the kinetics of calcite precipitation from seawater solutions[J]. Chemical Geology,2003,201(1-2): 91-101.
    [77]Leeuw N H d, Cooper T G. A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth[J]. Crystal Growth & Design,2004,4(1): 123-133.
    [78]Ordonez R, Hermosilla D, Pio I S, et al. Evaluation of MF and UF as pretreatments prior to RO applied to reclaim municipal wastewater for freshwater substitution in a paper mill:Apractical experience [J]. Chemical Engineering Journal,2011,166(1):88-98.
    [79]Roalson S R, Kweon J, Lawler D F, et al. Enhanced softening:Effects of lime dose and chemical additions[J]. Journal American Water Works Association,2003,95(11):97 -109
    [80]周玲玲,张永吉,叶河秀,等.强化混凝对腐殖酸和富里酸去除对比研究[J].环境科学,2012,33(8):2680-2684.
    [81]Edzwald J K,Tobiason J E. Enhanced coagulation:US requirements and a broader view [J]. Water Science and Technology,1999,40(9):63-70.
    [82]陈宏景,肖友淦,黄功洛,等.臭氧/生物活性炭工艺处理微污染源水的效能[J].中国给水排水,2011,27(17):18-21.
    [83]Feng X, Seider W D. New structure and design methodology for water networks[J], Industrial & Engineering Chemistry Research,2001,40(26):6140-6146.
    [84]高中文,闫庆贺,杨友麒.炼化企业水平衡测试及系统节水优化技术的研究与应用[J].计算机与应用化学,2011,28(8):1003-1006.
    [85]Hu N, Feng X, Deng C. Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition [J]. Chemical Engineering Journal,2011, 173(1):80-91.
    [86]Deep K, Dipti. A Self-organizing migrating genetic algorithm for constrained optimization[J]..Applied Mathematics and Computation,2008,198(1):237-250.
    [87]Reese A. Random number generators in genetic algorithms for unconstrained and constrained optimization[J]. Nonlinear Analysis:Theory, Methods & Applications[J]. 2009,71(12):e679-e692.
    [88]葛继科,邱玉辉,吴春明.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916.
    [89]申元霞,张翠芳.一种新型保持种群多样性的遗传算法[J].系统仿真学报,2005,17(5):1052-1053,1071.
    [90]滕居特,顾幸生.小生境微粒群优化算法[J].华东理工大学学报,2007,33(1):133-136.
    [91]江建.精英自适应混合遗传算法及其实现[J].计算机工程与应用,2009,45(27):34-35,101.
    [92]Mann J G, Liu Y A 著. Industrial water reuse and wastewater minimization[M]. New York:McGraw-Hill,1999.
    [93]Chen C-L, Lin L-F, Ciou Y-J, et al. Superstructure-based MINLP formulation for synthesis of re-circulating cooling-water networks with intermediate Mains[J]. Journal of Chemical Engineering of Japan,2007,40(3):235-243.
    [94]Kim J-K, Smith R. Automated retrofit design of cooling-water systems [J]. AIChE Journal.2003,49(7):1712-1730.
    [95]Feng X, Shen R,Wang B. Recirculating cooling-water network with an intermediate cooling-water main[J]. Energy & Fuels,2005,19(4):1723-1728.
    [96]Kabdasli I, Parsons S A,Tunay O. Effect of major ions on induction time of struvite precipitation[J]. Croatica Chemica Acta,2006,79(2):243-251.
    [97]Isopescu R, Mateescu C, Mihai M, et al. The effects of organic additives on induction time and characteristics of precipitated calcium carbonate [J]. Chemical Engineering Research and Design,2010,88(11):1450-1454.
    [98]Qian R-Y, Botsaris G D. A new mechanism for nuclei formation in suspension crystallizers:the role of interparticle forces[J]. Chemical Engineering Science,1997, 52(20):3429-3440.
    [99]Han M,Lawler D F. The (Relative) Insignificance of G in Flocculation[J]. Journal AWWA.1992,84(10):79-91.
    [100]Kashchiev D,van Rosmalen G M. Review:Nucleation in solutions revisited[J]. Crystal Research and Technology,2003,38(7-8):555-574.
    [101]Kumar J, Warnecke G, Peglow M, et al. Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage [J]. Powder Technology,2009,189(2):218-229.
    [102]Zhao H, Zheng C. Correcting the multi-Monte Carlo method for particle coagulation[J]. Powder Technology,2009,193(1):120-123.
    [103]Tai C Y, Chien W C. Interpreting the effects of operating variables on the induction period of CaCl2-Na2CO3 system by a cluster coagulation model[J]. Chemical Engineering Science,2003,58(14):3233-3241.
    [104]Nason J A. Particle aspects of precipitative softening:experimental measurement and mathematical modeling of simultaneous precipitation and flocculation[M]. Austin:The University of Texas at Austin,2006.
    [105]Madras G, McCoy B J. Mixing Effects on Particle Precipitation[J]. Industrial & Engineering Chemistry Research,2005,44(14):5267-5274.
    [106]Mahajan A J, Kirwan D J. Micromixing effects in a two-impinging-jets precipitator[J]. AIChE Journal,1996,42(7):1801-1814.
    [107]Stubicar N, Markovic B, Tonejc A, et al. Crystal growth of lead fluoride phases using the constant composition method. III. Effect of pH and ionic strength[J]. Journal of Crystal Growth,1993,130(1-2):300-304.
    [108]Stubicar N, Scrbak M, Stubicar M. Crystal growth of lead fluoride using the constant composition method. II. The effect of Pb/F activity ratio on the kinetics of crystal growth[J]. Journal of Crystal Growth,1990,100(1-2):261-267.
    [109]Kazmierczak T F, Tomson M B, Nancollas G H. Crystal growth of calcium carbonate. A controlled composition kinetic study[J]. J. Phys. Chem,1982,86(1):103-107.
    [110]Xyla A G, Giannimaras E K, Koutsoukos P G. The precipitation of calcium carbonate in aqueous solutions[J]. Colloids and Surfaces,1991,53(2):241-255.
    [111]Reed M J. Thermodynamic calculations of calcium carbonate scaling in geothermal wells, dixie valley geothermal field[J]. U.S.A.Geothermics,1989,18(1-2):269-277.
    [112]华东建筑设计研究院有限公公司著.给水排水设计手册(第四册)[J].北京:中国建筑工业出版社,2002.
    [113]蔡世军,赵新义,王莹莹.循环冷却水节水技术研究进展[J].工业水处理.2009,29(3):4-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700