用户名: 密码: 验证码:
离子液体吸收分离乙炔乙烯的分子模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙炔和乙烯作为基础化工原料,其分离方法的研究具有重要意义。现有吸收分离法存在有机溶剂挥发、物耗能耗高等不足。本文利用离子液体蒸汽压极低、结构和性质可调等特点,采用实验和分子模拟相结合的手段,研究离子液体与乙炔/乙烯的相互作用及分离性能,设计合成兼具高选择性和高容量的离子液体吸收介质,为开发基于离子液体的绿色分离方法提供必要的基础数据和理论依据。
     采用量化计算和分子动力学模拟研究了离子液体—乙炔/乙烯的微观结构、相互作用和扩散动力学,在分子水平上揭示了乙炔、乙烯与离子液体相互作用的差异。研究表明,乙炔与离子液体的阴离子之间存在强氢键相互作用,是影响乙炔在离子液体中溶解度的关键;而乙烯在离子液体中的溶解主要受范德华、p-π和π-π等弱相互作用的影响。此外,分子模拟研究表明乙炔的溶解有利于削弱阴阳离子间的相互作用,提高离子液体阴阳离子的扩散系数。
     建立了快速预测乙炔、乙烯在离子液体中溶解度的优化COSMO-RS方法,计算了乙炔、乙烯在420种优选离子液体中的亨利系数,研究了离子液体结构与分离选择性及吸收容量的关系。结果表明乙炔/乙烯分离选择性主要受阴离子种类影响,其选择性随阴离子氢键碱性的增强而增大;乙炔的吸收容量同时受阴阳离子结构的影响,具有柔性结构且分子尺寸相对较大的阴阳离子的设计可显著增大离子液体自由体积,进而提高乙炔吸收容量。
     在此基础上,设计合成了一类具有适宜自由体积和强碱性的四丁基膦长链脂肪酸盐离子液体,测定了298.1K~313.1K,平衡压力为20kPa~180kPa下,乙烯、乙炔在包含四丁基膦正已酸盐([P4444][C5COO])在内的7种离子液体中的溶解度和亨利系数。研究了离子液体吸收分离乙炔/乙烯的构效关系,考察了温度和压力对吸收容量及选择性的影响,初步研究了离子液体的吸收热力学、吸收动力学和循环使用性能。实验结果表明,该四丁基膦长链脂肪酸盐离子液体表现出了很高的乙炔吸收容量和乙炔/乙烯分离选择性。298.1K时,乙炔和乙烯在[P4444][C5COO]中的亨利系数分别为2.1bar和44.9bar,乙炔/乙烯选择性达21.4,优于其它离子液体;乙炔在[P4444][C5COO]中的摩尔和质量吸收容量分别为0.476bar-1和2.425mol·kg-1·bar-1,分别是目前工业应用的有机吸收剂N-甲基吡咯烷酮(NMP)的4倍和2倍。该类离子液体还具有相对较快的吸收速率,10min时乙炔的吸收量达到平衡吸收量的99%。经多次吸收一解吸循环使用,乙炔吸收容量基本不变,具有较好的循环利用性能。
     研究了工业裂解气常见杂质组分甲烷、乙烷、丙烷、丙烯、二氧化碳、氢气和氮气等在[P4444][C5COO]中的溶解特性和分离性能。[P4444][C5COO]不仅具有独特的乙炔选择性溶解能力,298.1K下乙炔对丙烯、乙烷、氢气的选择性分别为5.7、18.6、574.8,该离子液体还表现出良好的C2和C3轻烃回收及不同碳数烃类分离的性能,298.1K下,乙烷/氢气、丙烷/氢气的选择性高达31.0和92.9,乙烷/甲烷、丙烷/甲烷的选择性达5.6和16.8。因此,四丁基膦长链脂肪酸盐离子液体不仅可用于从裂解气中选择性分离乙炔,还可用于从天然气、干气或工业尾气中回收轻烃。
Acetylene (C2H2) and ethylene (C2H4) are important basic chemical feedstocks, so the research of their separation method is very significant. The traditional volatile absorbents in absorption lead solvent loss and environmental pollution. Ionic liquids (ILs) have unique properties, such as nearly non-volatility, tunable structures and properties, so IL absorbents can avoid solvent loss, environmental pollution and enhance C2H2/C2H4selectivity through tuning structures. We studied the interaction mechanism and separation performance between ILs and C2H2/C2H4, and developed a new kind of ionic liquid absorbents with high selectivity and capacity in separating C2H2and C2H4.
     This work used quantum chemistry calculation (QC) and molecular dynamics simulation (MD) to study the microstructure and interaction mechanism between ILs and C2H2/C2H4and to offer a deep insight into the difference of C2H2and C2H4solubilization mechanism in ILs. The calculated results indicate that the hydrogen bonding interaction between C2H2and anion is the dominant factor in determining the solubility of C2H2in ILs. The weak interactions, such as van der Waals forces, p-π interaction and π-π interaction, affect the solubility of C2H4in ILs. The diffusion coefficients calculation in MD shows that the diffusion coefficients of cations and anions have a significant increase after dissolving C2H2, indicating the viscosity of IL will decrease along with absorbing C2H2.
     On the basis of theoretical research above, we designed420ILs which are potential in separating C2H2and C2H4. An optimized COSMO-RS method to predict Henry's law constants of C2H2, C2H4and their separation selectivity in ILs was developed for the first time. The prediction results indicate that the anion mainly determines C2H2selectivity and capacity. The cation with flexible structure and large molecular size can improve C2H2capacity.
     According the COSMO-RS prediction results, a kind of tetrabutylphosphonium-based long-chain carboxylate IL with proper free volume, strong basicity and availablity for separating C2H2and C2H4, were selected to determine the solubility of C2H2and C2H4in298.1K~313.1K and20kPa~180kPa. The experimental results show that [P4444][C5COO] has the highest C2H2capacity and high selectivity, Henry's law constants of C2H2, C2H4and their separation selectivity are2.1bar,44.9bar and21.4at298.1K respectively, which is better than any other IL. Compared with traditional absorbents N-methylpyrrolidone (NMP) which has been applied in industry, C2H2mole and mass capacity in [P4444][C5COO] is0.476bar-1and2.425mol·kg-1·bar-1respectively, which are four times and two times as large as those in NMP. In the research of absorption rate, the capacity of C2H2in [P4444][C5COO] was99%of equilibrium capacity when absorption went on for10minutes. Moreover, the recycle experiment demonstrates that the C2H2-IL binding is reversible and [P4444][C5COO] can be regenerated without loss of IL and C2H2capacity.
     Besides, the solubility experiments of CH4, C2H6, C3H6, C3H8, CO2, H2and N2in [P4444][C5COO] indicate that [P4444][C5COO] has remarkable C2H2selectivity.298.1K, the selectivities of C2H2to C3H6, C2H6and H2are5.7,18.6and574.8respectively. Moreover,[P4444][C5COO] also displays its potential in recycling C2, C3hydrocarbon and separating different hydrocarbon.298.1K, the selectivity of C2H6/H2, C3H8/H2, C2H6/CH4and C3H8/CH4can reach31.0,92.9,5.6and16.8respectively. Thus, the tetrabutylphosphonium-based long-chain carboxylate IL can be used not only in separating C2H2from pyrolysis gas, but also in light hydrocarbon recovery from natural gas, dry gas and industrial exhaust gas.
引文
[1]Huang W, McCormick J R, Lobo R F, et al. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts [J]. Journal of Catalysis,2007,246(1):40-51.
    [2]Kushner L M. Plasma technology in acetylene production in the U.S.[C]. Radio frequency/radiation and plasma processing:industrial applications & advances. Lancaster:Technomic Pub. Co.,1985,193-207.
    [3]谢春雷,方义东.催化干气中乙烯的回收利用[J].石化技术,2006,12(3):63-67.
    [4]李建英.催化干气中乙烯的回收技术进展[J].化工时刊,2003,17(9):21-22.
    [5]Mehra Y. Using extraction to treat hydrocarbon gases[J]. Chemical Engineering,1986,93(20):53-55.
    [6]Savage P, Brooks K. Refinery gases:a quick source of ethylene[M]. Chem Week,1988.
    [7]Keller G E, Marcinkowsky A E, Verma S K, et al. Olefin recovery and purification via silver complexation[M]. Marcel Dekker:New York,1992.
    [8]Miller S A. Ethylene and its industrial derivatives[M]. London:Ernest Benn, Limited,1969.
    [9]Keyworth D A, Sudduth J R. Process for the purification of gas streams:US,3960910[P].1976-06-01.
    [10]Weissermel K, Arpe H J. Aromatics-production and conversion[M]. Industrial Organic Chemistry (forth edition). Weinheim:Wiley-VCH,2003:313-336.
    [11]金成浩.吉化307万吨乙烯装置乙炔回收系统及运行情况[J].吉化科技,1997,5(3):41-44.
    [12]杨朝富,卢玉中.天然气制乙炔工艺[J].聚氯乙烯,2005,12:7-11.
    [13]Ye P, Fang Z, Su B, et al. Adsorption of propylene and ethylene on 15 activated carbons[J]. Journal of Chemical & Engineering Data,2010,55(12):5669-5672.
    [14]叶鹏程.乙烯和丙烯在活性炭上的吸附平衡[D].浙江大学,2011.
    [15]Schoellner R, Mueller U. Influence of mono-and bivalent cations in 4A-zeolites on the adsorptive separation of ethene and propene from crack-gases [J]. Adsorption Science & Technology,1986,3(3): 167-171.
    [16]Berg C. Hypersorption design-modern advancements[J]. Chemical Engineering Progress,1951,47(11): 585-590.
    [17]李德伏,曾海.活性炭的改性及对乙烯的吸附性[J].石油化工,2001,30(9):677-680.
    [18]Uchida S, Kawamoto R, Tagami H, et al. Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion[J]. Journal of the American Chemical Society,2008, 130(37):12370-12376.
    [19]Xiang S, Zhou W, Zhang Z, et al. Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature [J]. Angewandte Chemie International Edition,2010,49(27):4615-4618.
    [20]Xiang S, Zhang Z, Zhao C, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene[J]. Nature Communications,2011,2: 204.
    [21]Bao Z, Alnemrat S, Yu L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir,2011,27(22):13554-13562.
    [22]Bos A, Westerterp K R. Mechanism and kinetics of the selective hydrogenation of ethyne and ethene[J]. Chemical Engineering and Processing:Process Intensification,1993,32(1):1-7.
    [23]Kovnir K, Armbruster M, Teschner D, et al. In situ surface characterization of the intermetallic compound PdGa-A highly selective hydrogenation catalyst[J]. Surface Science,2009,603(10):1784-1792.
    [24]Zhou G, Wang P, Jiang Z, et al. Selective hydrogenation of acetylene over a MoP catalyst[J]. Chinese Journal of Catalysis,2011,32(1):27-30.
    [25]Choudhary T V, Sivadinarayana C, Datye A K, et al. Acetylene hydrogenation on Au-based catalysts[J]. Catalysis Letters,2003,86(1-3):1-8.
    [26]Gluhoi A C, Bakker J W, Nieuwenhuys B E. Gold, still a surprising catalyst:selective hydrogenation of acetylene to ethylene over Au nanoparticles[J]. Catalysis Today,2010,154(1):13-20.
    [27]高敦仁.炼厂干气中烯烃回收的最新方法—ARS的初步评价[J].石油化工技术经济,1994,10(2):25-29.
    [28]李立新,邹余敏.分凝分馏器运行性能分析与设计改进[J].乙烯工业,2004,16(1):21-23.
    [29]王文英,张振亮.炼厂干气的回收利用[J].化工技术经济,2000,18(2):11-16.
    [30]易波,许峥.萃取精馏分离乙烷/乙烯的溶剂[J].化工学报,2001,52(6):549-552.
    [31]Xu L, Rungta M, Koros W J. Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation[J]. Journal of Membrane Science,2011,380(1):138-147.
    [32]LeBlanc Jr O H, Ward W J, Matson S L, et al. Facilitated transport in ion-exchange membranes [J]. Journal of Membrane Science,1980,6:339-343.
    [33]Boom J P, Bargeman D, Strathmann H. Zeolite filled membranes for gas separation and pervaporation[J]. Studies in Surface Science and Catalysis,1994,84:1167-1174.
    [34]Eriksen O I, Vik I B, Dahl I M. Separation of ethene from ethane with permeators based on silver ion-exchanged nafion hollow fibers[J]. Polymeric Materials Science and Engineering,1997,77:265-266.
    [35]薛杭燕,郑辉东,王良恩等.乙炔在高分子膜中渗透行为的研究[J].福建化工,2003,4:12-14.
    [36]郑辉东,赵素英,王良恩.乙炔,水蒸气在聚砜膜中渗透行为的研究[J].福州大学学报(自然科学版),2005,33(1):101-104.
    [37]樊栓狮,郭开华.从催化裂化干气中分离回收乙烯的方法及装置:CN,1301684[P].2001-07-04.
    [38]李文雍,贺端威,李文强等.高压下乙炔水合物的形成与分解实验研究[J].石油与天然气化工,2010,39(2):104-107.
    [39]Tumba K, Hashemi H, Naidoo P, et al. Phase equilibria of clathrate hydrates of ethyne+Propene[J]. Journal of Chemical & Engineering Data, Article ASAP.
    [40]Eldridge R B. Olefin/paraffin separation technology:a review[J]. Industrial & Engineering Chemistry Research,1993,32(10):2208-2212.
    [41]Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption:a review[J]. Industrial & Engineering Chemistry Research,1998,37(7):2571-2581.
    [42]Brennecke J F, Maginn E J. Ionic liquids:innovative fluids for chemical processing[J]. AIChE Journal, 2001,47(11):2384-2389.
    [43]Winkel A, Reddy P V G, Wilhelm R. Recent advances in the synthesis and application of chiral ionic liquids[J]. Synthesis,2008,7:999-1016.
    [44]Baudequin C, Baudoux J, Levillain J, et al. Ionic liquids and chirality:opportunities and challenges [J]. Tetrahedron:Asymmetry,2003,14(20):3081-3093.
    [45]Zhao D, Fei Z, Geldbach T J, et al. Nitrile-functionalized pyridinium ionic liquids:synthesis, characterization, and their application in carbon-carbon coupling reactions [J]. Journal of the American Chemical Society,2004,126(48):15876-15882.
    [46]Lee S. Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chemical Communications,2006(10):1049-1063.
    [47]Giernoth R. Task-specific Ionic Liquids[J]. Angewandte Chemie International Edition,2010,49(16): 2834-2839.
    [48]Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis:recent progress from knowledge to applications[J]. Applied Catalysis A:General,2010,373(1):1-56.
    [49]Holbrey J D, Seddon K R. Ionic liquids[J]. Clean Products and Processes,1999,1(4):223-236.
    [50]Seddon K R. Ionic liquids for clean technology[J]. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356.
    [51]Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures-a review[J]. Fluid Phase Equilibria,2004,219(1):93-98.
    [52]DeSimone J M. Practical approaches to green solvents[J]. Science,2002,297(5582):799-803.
    [53]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chemical Reviews, 1999,99(8):2071-2084.
    [54]Sheldon R. Catalytic reactions in ionic liquids[J]. Chemical Communications,2001(23):2399-2407.
    [55]Xing H, Wang T, Zhou Z, et al. The sulfonic acid-functionalized ionic liquids with pyridinium cations: acidities and their acidity-catalytic activity relationships[J]. Journal of Molecular Catalysis A:Chemical, 2007,264(1):53-59.
    [56]Endres F. Ionic liquids:solvents for the electrodeposition of metals and semiconductors[J]. A European Journal of Chemical Physics and Physical Chemistry,2002,3(2):144-154.
    [57]Zhao F, Wu X, Wang M, et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials[J]. Analytical Chemistry,2004,76(17): 4960-4967.
    [58]Armstrong D W, He L, Liu Y. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography[J]. Analytical Chemistry,1999,71(17):3873-3876.
    [59]Yang Q, Xing H, Cao Y, et al. Selective separation of tocopherol homologues by liquid-liquid extraction using ionic liquids[J]. Industrial & Engineering Chemistry Research,2009,48(13):6417-6422.
    [60]Han X, Armstrong D W. Ionic liquids in separations [J]. Accounts of Chemical Research,2007,40(11): 1079-1086.
    [61]赵旭,邢华斌,李如龙等.离子液体在气体分离中的应用[J].化学进展,2011,23(11):2258-2268.
    [62]Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature,2004,430(7003):1012-1016.
    [63]Zhou Y, Schattka J H, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J]. Nano Letters,2004,4(3): 477-481.
    [64]van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids[J]. Chemical Reviews,2007,107(6): 2757-2785.
    [65]Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids[J]. Green Chemistry,2002, 4(2):147-151.
    [66]Camper D, Becker C, Koval C, et al. Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory[J]. Industrial & Engineering Chemistry Research,2005,44(6):1928-1933.
    [67]Ferguson L, Scovazzo P. Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids:data and correlations[J]. Industrial & Engineering Chemistry Research, 2007,46(4):1369-1374.
    [68]Condemarin R, Scovazzo P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data[J]. Chemical Engineering Journal,2009,147(1):51-57.
    [69]Lee B, Outcalt S L. Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide[J]. Journal of Chemical & Engineering Data,2006,51(3):892-897.
    [70]Zhang J, Zhang Q, Qiao B, et al. Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography[J]. Journal of Chemical & Engineering Data,2007,52(6):2277-2283.
    [71]Palgunadi J, Kim H S, Lee J M, et al. Ionic liquids for acetylene and ethylene separation:material selection and solubility investigation [J]. Chemical Engineering and Processing:Process Intensification, 2010,49(2):192-198.
    [72]Lee J M, Palgunadi J, Kim J H, et al. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes[J]. Physical Chemistry Chemical Physics,2010,12(8):1812-1816.
    [73]Palgunadi J, Hong S Y, Lee J K, et al. Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids [J]. The Journal of Physical Chemistry B,2011,115(5): 1067-1074.
    [74]Xu H, Han Z, Zhang D, et al. Interface behaviors of acetylene and ethylene molecules with l-butyl-3-methylimidazolium acetate ionic liquid:a combined quantum chemistry calculation and molecular dynamics simulation study[J]. ACS Applied Materials & Interfaces,2012,4(12):6646-6653.
    [75]Anthony J L, Anderson J L, Maginn E J, et al. Anion effects on gas solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2005,109(13):6366-6374.
    [76]Muldoon M J, Aki S N, Anderson J L, et al. Improving carbon dioxide solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2007,111(30):9001-9009.
    [77]Aki S N, Mellein B R, Saurer E M, et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B,2004,108(52):20355-20365.
    [78]Almantariotis D, Gefflaut T, Padua A A H, et al. Effect of fluorination and size of the alkyl sidechain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide ionic liquids[J]. The Journal of Physical Chemistry B,2010,114(10):3608-3617.
    [79]Hu Y F, Liu Z C, Xu C M, et al. The molecular characteristics dominating the solubility of gases in ionic liquids[J]. Chemical Society Reviews,2011,40(7):3802-3823.
    [80]Cadena C, Anthony J L, Shah J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society,2004,126(16):5300-5308.
    [81]Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society,2005,127(8):2398-2399.
    [82]Kagimoto J, Fukumoto K, Ohno H. Effect of tetrabutylphosphonium cation on the physicochemical properties of amino-acid ionic liquids[J]. Chemical Communications,2006(21):2254-2256.
    [83]Zhao H, Jackson L, Song Z, et al. Enhancing protease enantioselectivity by ionic liquids based on chiral-or ω-amino acids[J]. Tetrahedron:Asymmetry,2006,17(10):1549-1553.
    [84]Tao G, He L, Sun N, et al. New generation ionic liquids:cations derived from amino acids[J]. Chemical Communications,2005(28):3562-3564.
    [85]Fukumoto K, Ohno H. Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids[J]. Chemical Communications,2006(29):3081-3083.
    [86]Tao G, He L, Liu W, et al. Preparation, characterization and application of amino acid-based green ionic liquids[J]. Green Chemistry,2006,8(7):639-646.
    [87]Jiang Y, Wang G, Zhou Z, et al. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity[J]. Chemical Communications,2008(4):505-507.
    [88]Yu H, Wu Y, Jiang Y, et al. Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2[J]. New Journal of Chemistry,2009,33(12): 2385-2390.
    [89]Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society,2002,124(6):926-927.
    [90]Zhang J, Zhang S, Dong K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chemistry-A European Journal,2006,12(15):4021-4026.
    [91]Zhang Y, Zhang S, Lu X, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chemistry-A European Journal,2009,15(12):3003-3011.
    [92]Wu W, Han B, Gao H, et al. Desulfurization of flue gas:SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition,2004,43(18):2415-2417.
    [93]Yuan X L, Zhang S J, Lu X M. Hydroxyl ammonium ionic liquids:synthesis, properties, and solubility of SO2[J]. Journal of Chemical & Engineering Data,2007,52(2):596-599.
    [94]Huang J, Riisager A, Wasserscheid P, et al. Reversible physical absorption of SO2 by ionic liquids [J]. Chemical Communications,2006(38):4027-4029.
    [95]Huang J, Riisager A, Berg R W, et al. Tuning ionic liquids for high gas solubility and reversible gas sorption[J]. Journal of Molecular Catalysis A:Chemical,2008,279(2):170-176.
    [96]Anderson J L, Dixon J K, Maginn E J, et al. Measurement of SO2 solubility in ionic liquids [J]. The Journal of Physical Chemistry B,2006,110(31):15059-15062.
    [97]Jacquemin J, Gomes M F C, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric [J]. The Journal of Chemical Thermodynamics,2006,38(4):490-502.
    [98]Jacquemin J, Husson P, Majer V, et al. Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Fluid Phase Equilibria,2006,240(1): 87-95.
    [99]Kumelan J, Kamps A P S, Tuma D, et al. Solubility of H2 in the ionic liquid [hmim][Tf2N][J]. Journal of Chemical & Engineering Data,2006,51(4):1364-1367.
    [100]Kumelan J, Kamps A P S, Tuma D, et al. Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4][J]. Fluid Phase Equilibria,2007,260(1):3-8.
    [101]Kumelan J, Tuma D, Kamps A P S, et al. Solubility of the single gases carbon dioxide and hydrogen in the ionic liquid [bmpy][Tf2N][J]. Journal of Chemical & Engineering Data,2009,55(1):165-172.
    [102]Finotello A, Bara J E, Camper D, et al. Room-temperature ionic liquids:temperature dependence of gas solubility selectivity [J]. Industrial & Engineering Chemistry Research,2008,47(10):3453-3459.
    [103]Kumelan J, Kamps A P S, Urukova I, et al. Solubility of oxygen in the ionic liquid [bmim][PF6]: experimental and molecular simulation results[J]. The Journal of Chemical Thermodynamics,2005,37(6): 595-602.
    [104]Kumelan J, Kamps A P S, Tuma D, et al. Solubility of the single gases methane and xenon in the ionic liquid [hmim][Tf2N][J]. Industrial & Engineering Chemistry Research,2007,46(24):8236-8240.
    [105]Kumelan J, Kamps A P S, Tuma D, et al. Solubility of the single gases methane and xenon in the ionic liquid [bmim][CH3SO4][J]. Journal of Chemical & Engineering Data,2007,52(6):2319-2324.
    [106]Camper D, Scovazzo P, Koval C, et al. Gas solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research,2004,43(12):3049-3054.
    [107]Scovazzo P, Camper D, Kieft J, et al. Regular solution theory and CO2 gas solubility in room--temperature ionic liquids[J]. Industrial & Engineering Chemistry Research,2004,43(21):6855-6860.
    [108]Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals[J]. Journal of the Chemical Society, Dalton Transactions,1999(13): 2133-2140.
    [109]Kilaru P K, Condemarin R A, Scovazzo P. Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part 1. Using surface tension[J]. Industrial & Engineering Chemistry Research,2008,47(3): 900-909.
    [110]Kilaru P K, Scovazzo P. Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part 2. Using activation energy of viscosity [J]. Industrial & Engineering Chemistry Research,2008,47(3):910-919.
    [111]Husson-Borg P, Majer V, Gomes M F C. Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure[J]. Journal of Chemical & Engineering Data,2003,48(3):480-485.
    [112]Hong G, Jacquemin J, Deetlefs M, et al. Solubility of carbon dioxide and ethane in three ionic liquids based on thebis{(trifluoromethyl)sulfonyl}imide anion[J]. Fluid Phase Equilibria,2007,257(1):27-34.
    [113]Soriano A N, Doma Jr B T, Li M. Solubility of carbon dioxide in 1-ethyl-3methylimidazolium 2-(2-methoxyethoxy) ethylsulfate[J]. The Journal of Chemical Thermodynamics,2008,40(12):1654-1660.
    [114]Soriano A N, Doma Jr B T, Li M. Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate[J]. The Journal of Chemical Thermodynamics,2009,41(4):525-529.
    [115]Jalili A H, Mehdizadeh A, Shokouhi M, et al. Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions[J]. The Journal of Chemical Thermodynamics,2010, 42(6):787-791.
    [116]Slater J C. Directed valence in polyatomic molecules[J]. Physical Review,1931,37(5):481-489.
    [117]Moller C, Plesset M S. Note on an approximation treatment for many-electron systems [J]. Physical Review,1934,46(7):618-624.
    [118]Sham L J, Schluter M. Density-functional theory of the energy gap[J]. Physical Review Letters,1983, 51(20):1888-1891.
    [119]Sham L J, Schluter M. Density-functional theory of the band gap[J]. Physical Review B,1985,32(6): 3883-3889.
    [120]Kohn W, Becke A D, Parr R G. Density functional theory of electronic structure[J]. The Journal of Physical Chemistry,1996,100(31):12974-12980.
    [121]Boys S F, Bernardi F D. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics,1970,19(4):553-566.
    [122]Todd A, Keith T A. AIMA11 (Version 11.06.19); Software, Overland Park KS, USA,2011.
    [123]Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews,1988,88(6):899-926.
    [124]Bondi A. van der Waals volumes and radii[J]. The Journal of Physical Chemistry,1964,68(3): 441-451.
    [125]Prasad B R, Senapati S. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations[J]. The Journal of Physical Chemistry B,2009,113(14):4739-4743.
    [126]Bader R, Molecules A I. A Quantum Theory[M]. Clarendon:Oxford, UK,1990.
    [127]Bader R F. A quantum theory of molecular structure and its applications[J]. Chemical Reviews,1991, 91(5):893-928.
    [128]Wang Y, Li H, Han S. The chemical nature of the C-H…X- (X= Cl or Br) interaction in imidazolium halide ionic liquids[J]. The Journal of Chemical Physics,2006,124(4):44504.
    [129]Lu R, Wang S, Lu Y. Density functional study on ionic liquid of 1-propyl-4,5-dibromo-3-methylimidazolium bromide[J]. Chemical Physics Letters,2011,505(4):87-91.
    [130]Yurenko Y P, Zhurakivsky R O, Samijlenko S P, et al. Intramolecular CH…O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their watson-crick pairs. Quantum chemical and AIM analysis[J]. Journal of Biomolecular Structure and Dynamics,2011,29(1):51-65.
    [131]Koch U, Popelier P. Characterization of C-H-O hydrogen bonds on the basis of the charge density[J]. The Journal of Physical Chemistry,1995,99(24):9747-9754.
    [132]Popelier P. Characterization of a dihydrogen bond on the basis of the electron density[J]. The Journal of Physical Chemistry A,1998,102(10):1873-1878.
    [133]Lipkowski P, Grabowski S J, Robinson T L, et al. Properties of the C-H…H dihydrogen bond:an ab Initio and topological analysis[J]. The Journal of Physical Chemistry A,2004,108(49):10865-10872.
    [134]Gibb C L, Stevens E D, Gibb B C. C-H…X-R (X= Cl, Br, and I) hydrogen bonds drive the complexation properties of a nanoscale molecular basket[J]. Journal of the American Chemical Society, 2001,123(24):5849-5850.
    [135]Scheiner S, Grabowski S J, Kar T. Influence of hybridization and substitution on the properties of the C-H…O hydrogen bond[J]. The Journal of Physical Chemistry A,2001,105(46):10607-10612.
    [136]Udagawa T, Ishimoto T, Tokiwa H, et al. Geometric isotope effect of various intermolecular and intramolecular C-H…O hydrogen bonds, using the multicomponent molecular orbital method[J]. The Journal of Physical Chemistry A,2006,110(22):7279-7285.
    [137]Wetmore S D, Schofield R, Smith D M, et al. A Theoretical investigation of the effects of electronegative substitution on the strength of C-H…N hydrogen bonds[J]. The Journal of Physical Chemistry A,2001,105(38):8718-8726.
    [138]Hartmann M, Wetmore S D, Radom L. C-H…X hydrogen bonds of acetylene, ethylene, and ethane with first-and second-row hydrides[J]. The Journal of Physical Chemistry A,2001,105(18):4470-4479.
    [139]Foster J P, Weinhold F. Natural hybrid orbitals[J]. Journal of the American Chemical Society,1980, 102(24):7211-7218.
    [140]Reed A E, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer[J]. The Journal of Chemical Physics,1983,78(6):4066-4073.
    [141]Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J]. The Journal of Chemical Physics,1985,83:735.
    [142]Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure[J]. Journal of Molecular Structure:Theochem, 1988,169:41-62.
    [143]Lowdin P. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction[J]. Physical Review,1955,97(6):1474.
    [144]Kosar B, Albayrak C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,78(1):160-167.
    [145]Kolandaivel P, Nirmala V. Study of proper and improper hydrogen bonding using Bader's atoms in molecules (AIM) theory and NBO analysis[J]. Journal of Molecular Structure,2004,694(1):33-38.
    [146]Crowhurst L, Mawdsley P R, Perez-Arlandis J M, et al. Solvent-solute interactions in ionic liquids[J]. Physical Chemistry Chemical Physics,2003,5(13):2790-2794.
    [147]Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology[J]. Chemistry Letters,2009, 38(1):2-7.
    [148]Blanchard L A, Gu Z, Brennecke J F. High-pressure phase behavior of ionic liquid/CO2 systems[J]. The Journal of Physical Chemistry B,2001,105(12):2437-2444.
    [149]Hess B, Kutzner C, Van Der Spoel D, et al. GROMACS 4:Algorithms for highly efficient, load--balanced, and scalable molecular simulation[J].Journal of Chemical Theory and Computation,2008,4(3): 435-447.
    [150]Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society,1995,117(19): 5179-5197.
    [151]Cieplak P, Cornell W D, Bayly C, et al. Application of the multimolecule and multiconformational RESP methodology to biopolymers:charge derivation for DNA, RNA, and proteins[J]. Journal of Computational Chemistry,1995,16(11):1357-1377.
    [152]Dupradeau F, Pigache A, Zaffran T, et al. The RED tools:advances in RESP and ESP charge derivation and force field library building[J]. Physical Chemistry Chemical Physics,2010,12(28): 7821-7839.
    [153]Darden T, York D, Pedersen L. Particle mesh Ewald:an N-log (N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics,1993,98:10089-10092.
    [154]Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. Journal of Chemical Physics,1995,103(19):8577-8593.
    [155]Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics,2007,126(1):14101.
    [156]Parrinello M, Rahman A. Polymorphic transitions in single crystals:a new molecular dynamics method[J]. Journal of Applied physics,1981,52:7182-7190.
    [157]Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society,1995,117(19): 5179-5197.
    [158]Liu Z, Huang S, Wang W. A refined force field for molecular simulation of imidazoliumbased ionic liquids[J]. The Journal of Physical Chemistry B,2004,108(34):12978-12989.
    [159]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society,1996,118(45):11225-11236.
    [160]Canongia Lopes J N, Padua A A. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J]. The Journal of Physical Chemistry B,2004,108(43):16893-16898.
    [161]Gutowski K E, Maginn E J. Amine-functionalized task-specific ionic liquids:a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation[J]. Journal of the American Chemical Society,2008,130(44):14690-14704.
    [162]Bhargava B L, Krishna A C, Balasubramanian S. Molecular dynamics simulation studies of CO2-[bmim][PF6] solutions:effect of CO2 concentration[J]. AIChE Journal,2008,54(11):2971-2978.
    [163]Shi W, Sorescu D C, Luebke D R, et al. Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N])[J]. The Journal of Physical Chemistry B,2010,114(19):6531-6541.
    [164]Frenkel D, Smit B. Understanding molecular simulation[M]. New York:Academic Press,1996.
    [165]Lungwitz R, Friedrich M, Linert W, et al. New aspects on the hydrogen bond donor (HBD) strength of 1-butyl-3-methylimidazolium room temperature ionic liquids[J]. New Journal of Chemistry,2008,32(9): 1493-1499.
    [166]Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical properties and structures of room temperature ionic liquids.1. Variation of anionic species[J]. The Journal of Physical Chemistry B,2004, 108(42):16593-16600.
    [167]Tariq M, Forte P A, Gomes M F C, et al. Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids:effect of temperature, alkyl chain length, and anion[J]. The Journal of Chemical Thermodynamics,2009,41(6):790-798.
    [168]Tokuda H, Ishii K, Susan M A B H, et al. Physicochemical properties and structures of room-temperature ionic liquids.3. Variation of cationic structures [J]. The Journal of Physical Chemistry B, 2006,110(6):2833-2839.
    [169]Kelkar M S, Maginn E J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations[J]. The Journal of Physical Chemistry B,2007,111(18):4867-4876.
    [170]Cadena C, Zhao Q, Snurr R Q, et al. Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids[J]. The Journal of Physical Chemistry B,2006,110(6):2821-2832.
    [171]Maginn E J. Atomistic simulation of the thermodynamic and transport properties of ionic liquids[J]. Accounts of Chemical Research,2007,40(11):1200-1207.
    [172]Gutowski K E, Maginn E J. Amine-functionalized task-specific ionic liquids:a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation [J]. Journal of the American Chemical Society,2008,130(44):14690-14704.
    [173]Zawodzinski T A, Kurland R, Osteryoung R A. Relaxation time measurements in N-(1-butyl) pyridinium-aluminum chloride ambient temperature ionic liquids[J]. The Journal of Physical Chemistry, 1987,91 (4):962-966.
    [174]Cadena C, Maginn E J. Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids[J]. The Journal of Physical Chemistry B,2006,110(36):18026-18039.
    [175]van Gunsteren W F, Berendsen H J. Computer simulation of molecular dynamics:methodology, applications, and perspectives in chemistry [J]. Angewandte Chemie International Edition in English,1990, 29(9):992-1023.
    [176]Xing H, Yan Y, Yang Q, et al. Effect of tethering strategies on the surface structure of amine-functionalized ionic liquids:inspiration on the CO2 capture[J]. The Journal of Physical Chemistry C, 2013,117(31):16012-16021.
    [177]Shah J K, Maginn E J. A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate:liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2[J]. Fluid Phase Equilibria,2004,222:195-203.
    [178]Morrow T I, Maginn E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J]. The Journal of Physical Chemistry B,2002,106(49): 12807-12813.
    [179]Liu Z, Huang S, Wang W. A refined force field for molecular simulation of imidazoliumbased ionic liquids[J]. The Journal of Physical Chemistry B,2004,108(34):12978-12989.
    [180]de Andrade J, Boes E S, Stassen H. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations force-field proposal and validation[J]. The Journal of Physical Chemistry B,2002,106(51):13344-13351.
    [181]Youngs T G, Del Popolo M G, Kohanoff J. Development of complex classical force fields through force matching to ab initio data:application to a room-temperature ionic liquid[J]. The Journal of Physical Chemistry B,2006,110(11):5697-5707.
    [182]Klamt A, Schuiirmann G. COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. Journal of the Chemical Society, Perkin transactions.2,1993(5):799-805.
    [183]Diedenhofen M, Eckert F, Klamt A. Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS[J]. Journal of Chemical & Engineering Data,2003,48(3): 475-479.
    [184]Banerjee T, Khanna A. Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids:measurements and COSMO-RS prediction[J]. Journal of Chemical & Engineering Data,2006, 51(6):2170-2177.
    [185]Manan N A, Hardacre C, Jacquemin J, et al. Evaluation of gas solubility prediction in ionic liquids using COSMOthermX[J]. Journal of Chemical & Engineering Data,2009,54(7):2005-2022.
    [186]Maiti A. Theoretical screening of ionic liquid solvents for carbon caprure[J]. Chemistry& Sustainability, Energy & Materials,2009,2(7):628-631.
    [187]Zhang X, Liu Z, Wang W. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments[J]. AIChE Journal,2008,54(10):2717-2728.
    [188]Gonzalez-Miquel M, Palomar J, Omar S, et al. CO2/N2 selectivity prediction in supported ionic liquid membranes (SILMs) by COSMO-RS[J]. Industrial & Engineering Chemistry Research,2011,50(9): 5739-5748.
    [189]Banerjee T, Singh M K, Khanna A. Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS[J]. Industrial & Engineering Chemistry Research,2006,45(9):3207-3219.
    [190]Klamt A, Eckert F. COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilibria,2000,172(1):43-72.
    [191]Schafer A, Klamt A, Sattel D, et al. COSMO Implementation in TURBOMOLE:extension of an efficient quantum chemical code towards liquid systems[J]. Physical Chemistry Chemical Physics,2000, 2(10):2187-2193.
    [192]Eckert F, Klamt A. Fast solvent screening via quantum chemistry:COSMO-RS approach[J]. AIChE Journal,2002,48(2):369-385.
    [193]Eckert F, Klamt A. COSMOtherm, Version C3.0, Release 12.01; COSMOlogic GmbH &Co. KG: Leverkusen, Germany.
    [194]Ahlrichs R, Bar M, Haser M, et al. Electronic structure calculations on workstation computers:the program system turbomole[J]. Chemical Physics Letters,1989,162(3):165-169.
    [195]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A,1988,38(6):3098.
    [196]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986,33(12):8822.
    [197]Schafer A, Huber C, Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr[J]. The Journal of Chemical Physics,1994,100:5829.
    [198]Klamt A. COSMO-RS:from quantum chemistry to fluid phase thermodynamics and drug design[M]. Elsevier,2005.
    [199]Xing H, Zhao X, Li R, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering,2013,1(11): 1357-1363.
    [200]Dymond J H, Marsh K N, Wilhoit R C, et al. Virial coefficients of pure gases and mixture[M]. Berlin; Springer-Verlag,2002.
    [201]Xu D, Yang Q, Su B, et al. Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy[J]. The Journal of Physical Chemistry B,2014, 118(4),1071-1079.
    [202]Yagil G. The proton dissociation constant of pyrrole, indole and related compounds[J]. Tetrahedron, 1967,23(6):2855-2861.
    [203]徐丹.离子液体碱性调控机制及强碱亲脂性离子液体的合成、表征与分离性能研究[D].浙江大学,2014.
    [204]Palgunadi J, Kang J E, Nguyen D Q, et al. Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids[J]. Thermochimica Acta,2009,494(1):94-98.
    [205]Hong G, Jacquemin J, Husson P, et al. Effect of acetonitrile on the solubility of carbon dioxide in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide[J]. Industrial & Engineering Chemistry Research,2006,45(24):8180-8188.
    [206]Bonifacio R P, Gomes M F C, Filipe E J. Solubility of xenon in n-hexane between 257 and 333 K[J]. Fluid Phase Equilibria,2002,193(1):41-51.
    [207]Passler P, Hefner W, Buckl K, et al. Acetylene[M].Wiley-VCH Verlag GmbH & Co. KGaA,2000.
    [208]Moura L, Mishra M, Bernales V, et al. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B,2013,117(24): 7416-7425.
    [209]Reich R, Ziegler W T, Rogers K A. Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres[J]. Industrial & Engineering Chemistry Process Design and Development,1980,19(3): 336-344.
    [210]Costa E, Sotelo J L, Calleja G, et al. Adsorption of binary and ternary hydrocarbon gas mixtures on activated carbon:experimental determination and theoretical prediction of the ternary equilibrium data[J]. AIChE Journal,1981,27(1):5-12.
    [211]Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. The Journal of Physical Chemistry B, 2002,106(29):7315-7320.
    [212]Anderson J L, Dixon J K, Brennecke J F. Solubility of CO2, CH4, C2H6, C2H4,02, and N2 in 1-hexyl--3-methylpyridinium bis(trifluoromethylsulfonyl)imide:comparison to other ionic liquids[J]. Accounts of Chemical Research,2007,40(11):1208-1216.
    [213]Anderson J L, Dixon J K, Maginn E J, et al. Measurement of SO2 solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2006,110(31):15059-15062.
    [214]宫超.优化催化裂化装置吸收稳定系统回收干气中的丙烯[J].炼油技术与工程,2007,37(6):22-27.
    [215]韩建多,刘淑坤,郭永良.天然气分离工艺及其选择建议[J].天然气化工,1996,21(2):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700