用户名: 密码: 验证码:
具有室温磷光响应的功能性分子梭的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子机器是超分子化学领域最具挑战的研究热点之一。迄今为止,科学家们报道了大量结构独特、功能新颖的分子机器体系,并且在诸多领域显示出广阔的应用价值。人造分子机器在外界刺激下,也可以像宏观机器一样发生运动,并且这种运动可以被检测到。传统上,分子机器的位置状态可以通过紫外-可见吸收光谱法、荧光光谱法、核磁共振波谱法、循环伏安法以及圆二色波谱法等手段进行检测和识别。同荧光一样,磷光也是光致发光的一种,并且具有发射波长和寿命更长、信噪比更高、更易于检测等优点。因此磷光特别是室温磷光也可以用于检测和识别分子机器的位置状态。本论文一方面利用金属卟啉的室温磷光性能,合成了具有室温磷光响应的酸碱可控的双稳态分子梭,另一方面利用环糊精诱导室温磷光,构建了具有室温磷光输出的INHIBIT逻辑门。从而使得室温磷光成为检测和识别分子机器的一种新手段,为构建多模式的分子机器提供了些新的思路和方法。具体内容概括如下:
     第一章内容中,我们简单阐述了分子机器的研究进展。首先介绍了分子机器的定义和分子机器的三种主要的类型,即轮烷、类轮烷和索烃;其次举例介绍了分子机器的几种主要的能量驱动方式:化学能、电化学能、光化学能等;再次举例介绍了分子机器运动状态的表征方法,包括紫外-可见吸收光谱法、荧光光谱法、核磁共振波谱法、循环伏安法以及圆二色波谱法等,并对室温磷光光谱法这种新的表征方法进行了简要阐述;最后对分子机器在分子逻辑门、纳米级分子阀门、超分子聚合物以及超分子凝胶等领域的潜在应用作了举例说明。
     第二章内容中,我们设计和合成了一类由非金属或金属锌卟啉修饰的冠醚化合物和不同客体分子自组装形成的类轮烷体系,并通过核磁共振波谱、质谱、紫外-可见吸收光谱和荧光光谱等方法对其进行了结构表征和性能研究,确认了主客体之间的结合比例和结合常数。
     第三章内容中,我们在上一个工作的基础上,设计合成了一类酸碱调控的双稳态分子梭R1、R2和R3,其中轮烷分子R3的运动位置状态可以通过室温磷光光谱法来检测和识别。通过核磁共振波谱、质谱、紫外-可见吸收光谱、荧光光谱,特别是室温磷光光谱等对这些轮烷分子进行了结构表征和性能研究。
     第四章内容中,我们分别构建了基于光控分子梭的二元和三元体系,通过一维和二维核磁共振氢谱、圆二色光谱、紫外-可见吸收光谱以及室温磷光光谱等对其进行了结构表征和光照前后的性能研究。基于二元体系在光照前后的圆二色信号和室温磷光信号的变化,构建了多个INHIBIT逻辑门。
     第五章内容中,我们合成了具有萘和溴萘基团的卟啉化合物并与葫芦脲形成超分子聚合物,对这种聚合物进行了结构表征和性能测试。在已制备的螺吡喃单分子层覆盖的金纳米棒及金纳米颗粒基础上,通过紫外-可见吸收光谱、红外光谱、透射电镜以及拉曼光谱等进行了形貌表征和性能研究。
     第六章内容中,对本论文进行了总结。
Molecular machines, as one of the most challenging topic in the field of supramolecular chemistry, have attracted continuing interest and attention. A variety of appealing examples in this field have been fabricated over the recent years, with applications in many areas. Component of the artificial molecular machines could also have relative movement under external specific stimuli as the macro machines, and the movement can be detected. The output signals of most molecular machines were observed by NMR, cyclic voltammetry, circular dichroism, and UV-vis absorption or fluorescence emission. Phosphorescence, especially the room temperature phosphorescence (RTP), is another excellent method expected to be used in this field. RTP can not merely respond quickly and be detected with low cost, but has more advantages, such as longer emission wavelengths and lifetimes, larger Stokes'shifts, higher signal-to-noise ratios, easily measurable lifetimes, etc.
     In this dissertation, we designed and constructed some pH-controlled bisable molecular shuttles with room temperature phosphorescence on the base of the metalloporphyrin. On the other hand, we constructed a INHIBIT logic gate with room temperature phosphorescence output making use of the Cyclodextrin induced room temperature phosphorescence (CD-RTP). Thus it provides a new means for detecting and identifying molecular machines and for the construction of complicated multi-mode molecular machines. A brief summary is given as follows:
     Chapter I:We mainly expound the research progress of molecular machine in recent years. The definition and three species of molecular machine, namely rotaxane, pseudorotaxane, and catenane were elaborated. Driving forces of switchable molecular machine, like chemical energy, electrochemical energy, light energy, and others, were exemplified. The identifications of movement of molecular machine, like NMR spectra, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry, circular dichroism spectra were introduced, and room temperature phosphorescence spectroscopy as a new method was specially stated. In addition, the potential application of molecular machine in such areas as molecular logic gate, molecular nanovalve, supramolecular polymer and organic gel were also illustrated.
     Chapter Ⅱ:We designed and synthesized a series of novel24-crown-8ether connected with free-base or metal complexed porphyrin moiety covalently by template method, and characterized by standard spectroscopic methods. The association constant between the host and the guest was determined by fluorescence titration experiment.
     Chapter Ⅲ:We designed and synthesized a series of novel pH-controlled distable molecular shuttles R1-R3, comprised of metalloporphyrin-based dibenzo[24]crown-8macroring and anthracene unit as one stopper by click chemistry, and the motion of R3could be read out by RTP signals.
     Chapter Ⅳ:We prepared a light-driven [1]Pseudorotaxane based on the self-inclusion complexation of an azobenzene-modified β-CD, and its photoisomerization and their complexation behaviors with a-bromonaphthalene were adressesed by ICD and room temperature phosphorescence. The INHIBIT logic gates were fabricated conveniently in aqueous solution, utilizing RTP or ICD as outuput.
     Chapter Ⅴ:We synthesized two compounds which contains tetrapyridylporphyrin core connected with naphthalene or bromonaphthalene and obtained their supramolecular polymer based on the host-guest interaction between CB[7]/CB[8]. We characterized spiropyran coated gold nano rods (GNR) and gold nano particles (GNP) by ultraviolet absorption spectra, fluorescence emission spectrum, IR spetra and Raman spectra. The photochromic properties of spiropyran can affect the plasmon peaks of GNRs but not GNPs.
     Chapter Ⅵ:A summary of the contents of the entire dissertation
引文
[1]Balzani V., Credi A., and Venturi M. Molecular devices and machines. Wiley-Vch Weinheim, Germany,2004
    [2]Balzani V., Credi A., and Venturi M. Molecular devices and machines:Concepts and perspectives for the nanoworld. John Wiley & Sons,2008
    [3]Feynman R.P., There's plenty of room at the bottom. Engineering and Science,1960, 23(5):22-36.
    [4]Lehn J.M., Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angewandte Chemie International Edition in English,1988,27(1):89-112.
    [5]Lehn J.-M., From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev.,2007,36(2):151-160.
    [6]Lehn J.M. From molecular to supramolecular chemistry. Wiley Online Library,1995
    [7]Lehn J.-M., and Sanders J., Supramolecular chemistry. Concepts and perspectives. Angewandte Chemie-English Edition,1995,34(22):2563.
    [8]Balzani V., Credi A., and Venturi M., Controlled disassembling of self-assembling systems:Toward artificial molecular-level devices and machines. Proc Natl Acad Sci USA,2002,99(8):4814-4817.
    [9]Balzani V., Credi A., and Venturi M., Molecular devices and machines. PhyW,2004, 17(11):39-42.
    [10]Balzani V., Molecular devices and machines. Chemphyschem,2009,10(1):21-21.
    [11]Balzani V, Credi A., Raymo F.M., and Stoddart J.F., Artificial molecular machines. Angew Chem Int Edit,2000,39(19):3349-3391.
    [12]Ballardini R., Balzani V., Credi A., Gandolfi M.T., and Venturi M., Artificial molecular-level machines:Which energy to make them work? Accounts Chem Res, 2001,34(6):445-455.
    [13]Balzani V., Credi A., and Venturi M., The bottom-up approach to molecular-level devices and machines. Chem-eur J,2002,8(24):5524-5532.
    [14]Amabilino D.B., and Stoddart J.F., Interlocked and intertwined structures and superstructures. Chem. Rev.,1995,95(8):2725-2828.
    [15]Schill G., Catenanes, rotaxanes, and knots.1971
    [16]Safarowsky O., Windisch B., Mohry A., and Vogtle F., Nomenclature for catenanes, rotaxanes, molecular knots, and assemblies derived from these structural elements. J Prakt Chem,2000,342(5):437-444.
    [17]Sauvage J.-P., and Dietrich-Buchecker C. Molecular catenanes, rotaxanes and knots:A journey through the world of molecular topology. John Wiley & Sons,2008
    [18]Schalley C.A., Beizai K., and Vogtle F., On the way to rotaxane-based molecular motors:Studies in molecular mobility and topological chirality. Accounts Chem Res, 2001,34(6):465-476.
    [19]Brouwer A.M., Frochot C., Gatti F.G., Leigh D.A., Mottier L., Paolucci F., Roffia S., and Wurpel G.W.H., Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science,2001,291(5511):2124-2128.
    [20]Altieri A., Bottari G, Dehez F., Leigh D.A., Wong J.K.Y., and Zerbetto E, Remarkable positional discrimination in bistable light-and heat-switchable hydrogen-bonded molecular shuttles. Angew Chem Int Edit,2003,42(20):2296-2300.
    [21]Balzani V., Credi A., Mattersteig G, Matthews O.A., Raymo F.M., Stoddart J.F., Venturi M., White A.J.P., and Williams D.J., Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. J Org Chem,2000,65(7):1924-1936.
    [22]Wisner J.A., Beer P.D., and Drew M.G.B., A demonstration of anion templation and selectivity in pseudorotaxane formation. Angew Chem Int Edit,2001,40(19):3606-+.
    [23]Zhu X.Z., and Chen C.F., A highly efficient approach to 4 pseudocatenanes by threefold metathesis reactions of a triptycene-based tris 2 pseudorotaxane. J Am Chem Soc,2005,127(38):13158-13159.
    [24]Zhang H.Y., Wang Q.C., Liu M.H., Ma X., and Tian H., Switchable v-type [2]pseudorotaxanes. Org. Lett.,2009,11(15):3234-3237.
    [25]Fujita M., Self-assembly of 2 catenanes containing metals in their backbones. Accounts Chem Res,1999,32(1):53-61.
    [26]Coronado E., Gavina P., and Tatay S., Catenanes and threaded systems:From solution to surfaces. Chem. Soc. Rev.,2009,38(6):1674-1689.
    [27]Safarowsky O., Windisch B., Mohry A., and Vogtle F., Nomenclature for catenanes, rotaxanes, molecular knots, and assemblies derived from these structural elements. J. Prakt. Chem.,2000,342(5):437-444.
    [28]Elizarov A.M., Chiu S.H., and Stoddart J.F., An acid-base switchable 2 rotaxane. J Org Chem,2002,67(26):9175-9181.
    [29]Garaudee S., Silvi S., Venturi M., Credi A., Flood A.H., and Stoddart J.F., Shuttling dynamics in an acid-base-switchable 2 rotaxane. Chemphyschem,2005,6(10): 2145-2152.
    [30]Sindelar V., Silvi S., and Kaifer A.E., Switching a molecular shuttle on and off:Simple, ph-controlled pseudorotaxanes based on cucurbit [7] uril. Chem. Commun. (Camb.), 2006(20):2185-2187.
    [31]Sooksawat D., Pike S.J., Slawin A.M.Z., and Lusby P.J., Acid-base responsive switching between "3+1" and "2+2" platinum complexes. Chem. Commun. (Camb.), 2013,49(94):11077-11079.
    [32]Guidry E.N., Li J., Stoddart J.F., and Grubbs R.H., Bifunctional [c2] daisy-chains and their incorporation into mechanically interlocked polymers. J Am Chem Soc,2007, 129(29):8944-8945.
    [33]Rogez G, Ferrer Ribera B., Credi A., Ballardini R., Gandolfi M.T., Balzani V., Liu Y., Northrop B.H., and Stoddart J.F., A molecular plug-socket connector. J Am Chem Soc, 2007,129(15):4633-4642.
    [34]Badjic J.D., Ronconi C.M., Stoddart J.F., Balzani V, Silvi S., and Credi A., Operating molecular elevators. J Am Chem Soc,2006,128(5):1489-1499.
    [35]Busseron E., Romuald C., and Coutrot F., Bistable or oscillating state depending on station and temperature in three-station glycorotaxane molecular machines. Chem-eur J,2010,16(33):10062-10073.
    [36]Jiang Y., Guo J.-B., and Chen C.-F., A new [3] rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station. Org. Lett.,2010,12(19): 4248-4251.
    [37]Ashton P.R., Ballardini R., Balzani V, Baxter I., Credi A., Fyfe M.C., Gandolfi M.T., Gomez-Lopez M., Martinez-Diaz M.-V., and Piersanti A., Acid-base controllable molecular shuttles. J Am Chem Soc,1998,120(46):11932-11942.
    [38]Badjic J.D., Balzani V., Credi A., Silvi S., and Stoddart J.F., A molecular elevator. Science,2004,303(5665):1845-1849.
    [39]Zhang Z.J., Han M., Zhang H.Y., and Liu Y., A double-leg donor-acceptor molecular elevator:New insight into controlling the distance of two platforms. Org. Lett.,2013, 15(7):1698-1701.
    [40]Liu Y., Flood A.H., Bonvallett P.A., Vignon S.A., Northrop B.H., Tseng H.R., Jeppesen J.O., Huang T.J., Brough B., Baller M., Magonov S., Solares S.D., Goddard W.A., Ho C.M., and Stoddart J.F., Linear artificial molecular muscles. J Am Chem Soc, 2005,127(27):9745-9759.
    [41]Armaroli N., Balzani V., Collin J.P., Gavina P., Sauvage J.P., and Ventura B., Rotaxanes incorporating two different coordinating units in their thread:Synthesis and electrochemically and photochemically induced molecular motions. J Am Chem Soc, 1999,121(18):4397-4408.
    [42]Raehm L., Kern J.M., and Sauvage J.P., A transition metal containing rotaxane in motion:Electrochemically induced pirouetting of the ring on the threaded dumbbell. Chem-eur J,1999,5(11):3310-3317.
    [43]Altieri A., Gatti F.G., Kay E.R., Leigh D.A., Martel D., Paolucci F., Slawin A.M.Z., and Wong J.K.Y., Electrochemically switchable hydrogen-bonded molecular shuttles. J Am Chem Soc,2003,125(28):8644-8654.
    [44]Weber N., Hamann C., Kern J.M., and Sauvage J.P., Synthesis of a copper 3 rotaxane able to function as an electrochemically driven oscillatory machine in solution, and to form sams on a metal surface. Inorg. Chem.,2003,42(21):6780-6792.
    [45]Tseng H.R., Wu D.M., Fang N.X.L., Zhang X., and Stoddart J.F., The metastability of an electrochemically controlled nanoscale machine on gold surfaces. Chemphyschem, 2004,5(1):111-116.
    [46]Durola F., and Sauvage J.P., Fast electrochemically induced translation of the ring in a copper-complexed 2 rotaxane:The biisoquinoline effect. Angew Chem Int Edit,2007, 46(19):3537-3540.
    [47]Juluri B.K., Kumar A.S., Liu Y, Ye T., Yang Y.W., Flood A.H., Fang L., Stoddart J.F., Weiss P.S., and Huang T.J., A mechanical actuator driven electrochemically by artificial molecular muscles. Acs Nano,2009,3(2):291-300.
    [48]Joosten A., Trolez Y., Collin J.P., Heitz V., and Sauvage J.P., Copper(i)-assembled 3 rotaxane whose two rings act as flapping wings. J Am Chem Soc,2012,134(3): 1802-1809.
    [49]Zhu Z.X., Fahrenbach A.C., Li H., Barnes J.C., Liu Z.C., Dyar S.M., Zhang H.C., Lei J.Y., Carmieli R., Sarjeant A.A., Stern C.L., Wasielewski M.R., and Stoddart J.F., Controlling switching in bistable 2 catenanes by combining donor-acceptor and radical-radical interactions. J Am Chem Soc,2012,134(28):11709-11720.
    [50]Balzani V., Credi A., and Venturi M., Light powered molecular machines. Chem. Soc. Rev.,2009,38(6):1542-1550.
    [51]Ji F.-Y., Zhu L.-L., Ma X., Wang Q.-C., and Tian H., A new thermo- and photo-driven 2 rotaxane. Tetrahedron Lett.,2009,50(5):597-600.
    [52]Ma X., Wang Q.C., and Tian H., Photo-driven molecular shuttles. Prog Chem,2009, 21(1):106-115.
    [53]Zhu L.L., Li X., Ji F.Y., Ma X., Wang Q.C., and Tian H., Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft. Langmuir,2009,25(6):3482-3486.
    [54]Balzani V., Marchi E., and Semeraro M., From the periodic table to photochemical molecular devices and machines. Rend Lincei-Sci Fis,2010,21(2):91-109.
    [55]Tamesue S., Takashima Y., Yamaguchi H., Shinkai S., and Harada A., Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Edit,2010,49(41):7461-7464.
    [56]Sakamoto K., Takashima Y, Hamada N., Ichida H., Yamaguchi H., Yamamoto H., and Haradet A., Selective photoinduced energy transfer from a thiophene rotaxane to acceptor. Org. Lett.,2011,13(4):672-675.
    [57]Baroncini M., Silvi S., Venturi M., and Credi A., Photoactivated directionally controlled transit of a non-symmetric molecular axle through a macrocycle. Angew Chem Int Edit,2012,51(17):4223-4226.
    [58]Hancock L.M., Marchi E., Ceroni P., and Beer P.D., Anion sensing in aqueous media by photo-active transition-metal bipyridyl rotaxanes. Chem-eur J,2012,18(36): 11277-11283.
    [59]Sun T., Li Y.M., Xin F.F., Li S.Y., Hou Y.H., and Hao A.Y., A photo-switched supramolecular system based on cyclodextrins and azo compounds. Prog Chem,2012, 24(1):70-79.
    [60]Nunez I., Merino E., Lecea M., Pieraccini S., Spada G.P., Rosini C., Mazzeo G., Ribagorda M., and Carreno M.C., Control of the helical chirality of enantiopure sulfinyl (z)-azobenzene-based photoswitches. Chem-eur J,2013,19(10):3397-3406.
    [61]Yan H., Zhu L.L., Li X., Kwok A., Li X., Agren H., and Zhao Y.L., Photothermal-responsive 2 rotaxanes. Rsc Advances,2013,3(7):2341-2350.
    [62]Zhou W., Guo Y.J., and Qu D.H., Photodriven clamlike motion in a 3 rotaxane with two 2 rotaxane arms bridged by an overcrowded alkene switch. J Org Chem,2013, 78(2):590-596.
    [63]Balzani V., Clemente-Leon M., Credi A., Ferrer B., Venturi M., Flood A.H., and Stoddart J.F., Autonomous artificial nanomotor powered by sunlight. Proc Natl Acad SciUSA,2006,103(5):1178-1183.
    [64]Gao C., Ma X.A., Zhang Q.O., Wang Q.C., Qu D.H., and Tian H., A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org Biomol Chem,2011,9(4):1126-1132.
    [65]Qu D.-H., Wang Q.-C., Ren J., and Tian H., A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett.,2004,6(13):2085-2088.
    [66]Brouwer A.M., Frochot C., Gatti F.G., Leigh D.A., Mottier L., Paolucci F., Roffia S., and Wurpel G.W., Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science,2001,291(5511):2124-2128.
    [67]Ogoshi T., Kida K., and Yamagishi T., Photoreversible switching of the lower critical solution temperature in a photoresponsive host-guest system of pillar 6 arene with triethylene oxide substituents and an azobenzene derivative. J Am Chem Soc,2012, 134(49):20146-20150.
    [68]Ma X., Qu D., Ji F., Wang Q., Zhu L., Xu Y, and Tian H., A light-driven [1]rotaxane via self-complementary and suzuki-coupling capping. Chem Commun (Camb), 2007(14):1409-1411.
    [69]Wurpel G.W., Brouwer A.M., van Stokkum I.H., Farran A., and Leigh D.A., Enhanced hydrogen bonding induced by optical excitation:Unexpected subnanosecond photoinduced dynamics in a peptide-based [2] rotaxane. J Am Chem Soc,2001, 123(45):11327-11328.
    [70]Da Ros T., Guldi D.M., Morales A.F., Leigh D.A., Prato M., and Turco R., Hydrogen bond-assembled fullerene molecular shuttle. Org. Lett.,2003,5(5):689-691.
    [71]Umehara T., Kawai H., Fujiwara K., and Suzuki T., Entropy-and hydrolytic-driven positional switching of macrocycle between imine-and hydrogen-bonding stations in rotaxane-based molecular shuttles. J Am Chem Soc,2008,130(42):13981-13988.
    [72]Wang C., Cao D., Fahrenbach A.C., Fang L., Olson M.A., Friedman D.C., Basu S., Dey S.K., Botros Y.Y., and Stoddart J.F., Solvent-dependent ground-state distributions in a donor-acceptor redox-active bistable 2 catenane. J Phys Org Chem,2012,25(7): 544-552.
    [73]Ogoshi T., Akutsu T., Yamafuji D., Aoki T., and Yamagishi T., Solvent-and achiral-guest-triggered chiral inversion in a planar chiral pseudo 1 catenane. Angew Chem Int Edit,2013,52(31):8111-8115.
    [74]Lin T.-C., Lai C.-C., and Chiu S.-H., A guanidinium ion-based anion-and solvent polarity-controllable molecular switch. Org. Lett.,2008,11(3):613-616.
    [75]Zhang Z.B., Han C.Y., Yu G.C., and Huang F.H., A solvent-driven molecular spring. Chemical Science,2012,3(10):3026-3031.
    [76]Silvi S., Arduini A., Pochini A., Secchi A., Tomasulo M., Raymo F.M., Baroncini M., and Credi A., A simple molecular machine operated by photoinduced proton transfer. J Am Chem Soc,2007,129(44):13378-13379.
    [77]Ling Y, Wang W., and Kaifer A.E., A new cucurbit [8] uril-based fluorescent receptor for indole derivatives. Chem. Commun. (Camb.),2007(6):610-612.
    [78]Ding Z.-J., Zhang Y.-M., Teng X., and Liu Y, Controlled photophysical behaviors between dibenzo-24-crown-8 bearing terpyridine moiety and fullerene-containing ammonium salt. J. Org. Chem.,2011,76(6):1910-1913.
    [79]Suhan N.D., Allen L., Gharib M.T., Viljoen E., Vella S.J., and Loeb S.J., Colour coding the co-conformations of a [2] rotaxane flip-switch. Chem. Commun. (Camb.), 2011,47(21):5991-5993.
    [80]Yamada Y, Okamoto M., Furukawa K., Kato T., and Tanaka K., Switchable intermolecular communication in a four-fold rotaxane. Angew. Chem.,2012,124(3): 733-737.
    [81]Jiao D., Biedermann F., and Scherman O.A., Size selective supramolecular cages from aryl-bisimidazolium derivatives and cucurbit [8] uril. Org. Lett.,2011,13(12): 3044-3047.
    [82]Trabolsi A., Fahrenbach A.C., Dey S.K., Share A.I., Friedman D.C., Basu S., Gasa T.B., Khashab N.M., Saha S., and Aprahamian I., A tristable [2] pseudo [2] rotaxane. Chem. Commun. (Camb.),2010,46(6):871-873.
    [83]Stanier C.A., Alderman S.J., Claridge T.D.W., and Anderson H.L., Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew Chem Int Edit,2002,41(10):1769-1772.
    [84]Bottari G, Dehez F., Leigh D.A., Nash P.J., Perez E.M., Wong J.K., and Zerbetto F., Entropy-driven translational isomerism:A tristable molecular shuttle. Angew. Chem., 2003,115(47):6066-6069.
    [85]Stanier C.A., Alderman S.J., Claridge T.D., and Anderson H.L., Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew. Chem.,2002,114(10):1847-1850.
    [86]Zhang Z.-J., Zhang H.-Y., Chen L., and Liu Y, Interconversion between [5] pseudorotaxane and [3] pseudorotaxane by pasting/detaching two axle molecules. J. Org. Chem.,2011,76(20):8270-8276.
    [87]Coutrot F., Romuald C., and Busseron E., A new ph-switchable dimannosyl [c2] daisy chain molecular machine. Org. Lett.,2008,10(17):3741-3744.
    [88]Zhang Z.J., Zhang H.Y., Wang H., and Liu Y, A twin-axial hetero [7] rotaxane. Angew. Chem. Int. Ed.,2011,50(46):10834-10838.
    [89]Zhang H., Liu Q., Li J., and Qu D.H., A novel star-shaped zinc porphyrin cored [5]rotaxane. Org. Lett.,2013,15(2):338-341.
    [90]Li H., Zhu Z.X., Fahrenbach A.C., Savoie B.M., Ke C.F., Barnes J.C., Lei J.Y., Zhao Y.L., Lilley L.M., Marks T.J., Ratner M.A., and Stoddart J.F., Mechanical bond-induced radical stabilization. J Am Chem Soc,2013,135(1):456-467.
    [91]Cardenas D.J., Livoreil A., and Sauvage J.-P., Redox control of the ring-gliding motion in a cu-complexed catenane:A process involving three distinct geometries. J Am Chem Soc,1996,118(47):11980-11981.
    [92]Fahrenbach A.C., Warren S.C., Incorvati J.T., Avestro A.J., Barnes J.C., Stoddart J.F., and Grzybowski B.A., Organic switches for surfaces and devices. Adv Mater,2013, 25(3):331-348.
    [93]Livoreil A., Dietrich-Buchecker C.O., and Sauvage J.-P., Electrochemically triggered swinging of a [2]-catenate. J Am Chem Soc,1994,116(20):9399-9400.
    [94]Li H., Zhang H., Zhang Q., Zhang Q.W., and Qu D.H., A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org. Lett.,2012,14(23): 5900-5903.
    [95]Armaroli N., Balzani V., Collin J.-F., Gavina P., Sauvage J.-F., and Ventura B., Rotaxanes incorporating two different coordinating units in their thread:Synthesis and electrochemically and photochemically induced molecular motions. J Am Chem Soc, 1999,121(18):4397-4408.
    [96]Bottari G., Leigh D.A., and Perez E.M., Chiroptical switching in a bistable molecular shuttle. J Am Chem Soc,2003,125(44):13360-13361.
    [97]Wang Q.C., Ma X., Qu D.H., and Tian H., Unidirectional threading synthesis of isomer-free [2]rotaxanes. Chemistry,2006,12(4):1088-1096.
    [98]Ma X., Wang Q., and Tian H., Disparate orientation of 1 rotaxanes. Tetrahedron Lett., 2007,48(40):7112-7116.
    [99]Di Motta S., Avellini T., Silvi S., Venturi M., Ma X., Tian H., Credi A., and Negri F., Photophysical properties and conformational effects on the circular dichroism of an azobenzenecyclodextrin [1]rotaxane and its molecular components. Chem-eur J,2013, 19(9):3131-3138.
    [100]Liu Y., Zhao Y.L., Zhang H.Y., Fan Z., Wen G.D., and Ding F., Spectrophotometric study of inclusion complexation of aliphatic alcohols by beta-cyclodextrins with azobenzene tether. J Phys Chem B,2004,108(26):8836-8843.
    [101]Zhang X.Y., and Nau W.M., Chromophore alignment in a chiral host provides a sensitive test for the orientation-intensity rule of induced circular dichroism. Angew Chem Int Edit,2000,39(3):544-+.
    [102]Ma X., Wang Q.C., Qu D.H., Xu Y., Ji F.Y., and Tian H., A light-driven pseudo[4]rotaxane encoded by induced circular dichroism in a hydrogel. Adv Funct Mater,2007,17(5):829-837.
    [103]Perez E.M., Dryden D.T., Leigh D.A., Teobaldi G., and Zerbetto F., A generic basis for some simple light-operated mechanical molecular machines. J Am Chem Soc,2004, 126(39):12210-12211.
    [104]Qu D.H., Wang Q.C., Ma X., and Tian H., A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem-eur J, 2005,11(20):5929-5937.
    [105]Yu B.R., Wang B.Y., Guo S.W., Zhang Q., Zheng X.R., Lei H.T., Liu W.S., Bu W.F., Zhang Y., and Chen X., Ph-controlled reversible formation of a supramolecular hyperbranched polymer showing fluorescence switching. Chem-eur J,2013,19(15): 4922-4930.
    [106]Zhou W., Zhang H., Li H., Zhang Y., Wang Q.C., and Qu D.H., A bis-spiropyran-containing multi-state 2 rotaxane with fluorescence output. Tetrahedron, 2013,69(26):5319-5325.
    [107]Sun S., Hu X.-Y., Chen D., Shi J., Dong Y, Lin C., Pan Y., and Wang L., Pillar [5] arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polym Chem-Uk,2013,4(7):2224-2229.
    [108]Zhou W., Wu Y., Zhai B.Q., Wang Q.C., and Qu D.H., An anthracene-containing bistable 2 rotaxane featuring color and fluorescence changes. Rsc Advances,2014, 4(10):5148-5151.
    [109]Berna J., Franco-Pujante C., and Alajarin M., Competitive binding for triggering a fluorescence response in a hydrazodicarboxamide-based 2 rotaxane. Org Biomol Chem,2014,12(3):474-478.
    [110]Zhang Y.M., Han M., Chen H.Z., Zhang Y., and Liu Y., Reversible molecular switch of acridine red by triarylpyridine-modified cyclodextrin. Org. Lett.,2013,15(1): 124-127.
    [111]Zhang H., Hu J., and Qu D.H., Dual-mode control of pet process in a ferrocene-functionalized [2]rotaxane with high-contrast fluorescence output. Org. Lett.,2012,14(9):2334-2337.
    [112]Paynter R.A., Wellons S., and Winefordner J., New method of analysis based on room-temperature phosphorescence. Anal. Chem.,1974,46(6):736-738.
    [113]Wellons S.L., Paynter R.A., and Winefordner J.D., Room temperature phosphorimetry of biologically-important compounds adsorbed on filter paper. Spectrochim. Acta, Pt. A:Mol. Spectrosc.,1974,30(12):2133-2140.
    [114]Kuijt J., Ariese F., Brinkman U.A.T., and Gooijer C., Room temperature phosphorescence in the liquid state as a tool in analytical chemistry. Anal Chim Acta, 2003,488(2):135-171.
    [115]Wang F., Han C., He C., Zhou Q., Zhang J., Wang C., Li N., and Huang F., Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc,2008,130(34):11254-11255.
    [116]Wang F., Zhang J., Ding X., Dong S., Liu M., Zheng B., Li S., Wu L., Yu Y., and Gibson H.W., Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem.,2010,122(6):1108-1112.
    [117]Yoon H.-J., and Jang W.-D., Polymeric supramolecular systems for drug delivery. J Mater Chem,2010,20(2):211-222.
    [118]Ma X., Sun R.Y., Li W.F., and Tian H., Novel electrochemical and ph stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. Polym Chem-Uk,2011,2(5):1068-1070.
    [119]Iijima K., Kohsaka Y., Koyama Y, Nakazono K., Uchida S., Asai S., and Takata T. Stimuli-degradable cross-linked polymers synthesized by radical polymerization using a size-complementary 3 rotaxane cross-linker. Polym J,2014,46(1):67-72.
    [120]Vukotic V.N., and Loeb S.J., Coordination polymers containing rotaxane linkers. Chem. Soc. Rev.,2012,41(18):5896-5906.
    [121]Zheng B., Wang F., Dong S.Y., and Huang F.H., Supramolecular polymers constructed by crown ether-based molecular recognition. Chem. Soc. Rev.,2012,41(5): 1621-1636.
    [122]Yan X.Z., Zheng B., and Huang F.H., Integrated motion of molecular machines in supramolecular polymeric scaffolds. Polym Chem-Uk,2013,4(8):2395-2399.
    [123]Liu K., Kang Y., Wang Z., and Zhang X.,25th anniversary article:Reversible and adaptive functional supramolecular materials:"Noncovalent interaction" matters. Adv Mater,2013,25(39):5530-5548.
    [124]Lindoy L.F., Park K.M., and Lee S.S., Metals, macrocycles and molecular assemblies macrocyclic complexes in metallo-supramolecular chemistry. Chem. Soc. Rev., 2013,42(4):1713-1727.
    [125]Chi X., Xue M., Yao Y, and Huang F., Redox-responsive complexation between a pillar [5] arene with mono (ethylene oxide) substituents and paraquat. Org. Lett., 2013,15(18):4722-4725.
    [126]Liu Y, Huang Z., Liu K., Kelgtermans H., Dehaen W, Wang Z., and Zhang X., Porphyrin-containing hyperbranched supramolecular polymers:Enhancing Io2-generation efficiency by supramolecular polymerization. Polym. Chem.,2013, 5(1):53-56.
    [127]Spagnoli S., Block D., Botzung-Appert E., Colombier I., Baldeck P.L., Ibanez A., and Corval A., Photochromism of spiropyran nanocrystals embedded in sol-gel matrices. J Phys Chem B,2005,109(18):8587-8591.
    [128]Zhu L.L., Ma X., Ji F.Y, Wang Q.C., and Tian H., Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems. Chem-eur J, 2007,13(33):9216-9222.
    [129]Dong S., Luo Y, Yan X., Zheng B., Ding X., Yu Y., Ma Z., Zhao Q., and Huang F., A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem.,2011,123(8):1945-1949.
    [130]Dong S., Zheng B., Xu D., Yan X., Zhang M., and Huang F., A crown ether appended super gelator with multiple stimulus responsiveness. Adv Mater,2012,24(24): 3191-3195.
    [131]Qi Z., de Molina P.M., Jiang W., Wang Q., Nowosinski K., Schulz A., Gradzielski M., and Schalley C.A., Systems chemistry:Logic gates based on the stimuli-responsive gel-sol transition of a crown ether-functionalized bis(urea) gelator. Chemical Science, 2012,3(6):2073-2082.
    [132]Zhang Q., Qu D.-H., Ma X., and Tian H., Sol-gel conversion based on photoswitching between noncovalently and covalently linked netlike supramolecular polymers. Chem. Commun. (Camb.),2013,49(84):9800-9802.
    [133]Hsueh S.Y., Kuo C.T., Lu T.W., Lai C.C., Liu Y.H., Hsu H.F., Peng S.M., Chen C.h., and Chiu S.H., Acid/base-and anion-controllable organogels formed from a urea-based molecular switch. Angew. Chem. Int. Ed.,2010,49(48):9170-9173.
    [134]Blanco V., Carlone A., Hanni K.D., Leigh D.A., and Lewandowski B., A rotaxane-based switchable organocatalyst. Angew Chem Int Edit,2012,51(21): 5166-5169.
    [135]Zhu L., Yan H., Ang C.Y., Nguyen K.T., Li M., and Zhao Y, Photoswitchable supramolecular catalysis by interparticle host-guest competitive binding. Chem-eur J, 2012,18(44):13979-13983.
    [136]Yu G.C., Zhou X.R., Zhang Z.B., Han C.Y., Mao Z.W., Gao C.Y., and Huang F.H., Pillar[6]arene/paraquat molecular recognition in water:High binding strength, ph-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc,2012,134(47):19489-19497.
    [137]Coskun A., Spruell J.M., Barin G., Dichtel W.R., Flood A.H., Botros Y.Y., and Stoddart J.F., High hopes:Can molecular electronics realise its potential? Chem. Soc. Rev., 2012,41(14):4827-4859.
    [138]Avestro A.J., Belowich M.E., and Stoddart J.F., Cooperative self-assembly:Producing synthetic polymers with precise and concise primary structures. Chem. Soc. Rev., 2012,41(18):5881-5895.
    [139]Andreasson J., and Pischel U., Storage and processing of information using molecules: The all-photonic approach with simple and multi-photochromic switches. Israel J Chem,2013,53(5):236-246.
    [140]de Silva A.P., and McClenaghan N.D., Molecular-scale logic gates. Chem-eur J,2004, 10(3):574-586.
    [141]Leigh D.A., Morales M.A.F., Perez E.M., Wong J.K.Y., Saiz C.G., Slawin A.M.Z., Carmichael A.J., Haddleton D.M., Brouwer A.M., Buma W.J., Wurpel G.W.H., Leon S., and Zerbetto F., Patterning through controlled submolecular motion: Rotaxane-based switches and logic gates that function in solution and polymer films. Angew Chem Int Edit,2005,44(20):3062-3067.
    [142]Magri D.C., Brown G.J., McClean G.D., and de Silva A.P., Communicating chemical congregation:A molecular and logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. J Am Chem Soc,2006,128(15):4950-4951.
    [143]Avellini T., Li H., Coskun A., Barin G, Trabolsi A., Basuray A.N., Dey S.K., Credi A., Silvi S., Stoddart J.F., and Venturi M., Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. Angew Chem Int Edit,2012,51(7): 1611-1615.
    [144]Kim D.S., Lynch V.M., Park J.S., and Sessler J.L., Three distinct equilibrium states via self-assembly:Simple access to a supramolecular ion-controlled nand logic gate. J Am Chem Soc,2013,135(39):14889-14894.
    [145]Qu D.H., Wang Q.C., and Tian H., A half adder based on a photochemically driven [2] rotaxane. Angew. Chem. Int. Ed.,2005,44(33):5296-5299.
    [146]Qu D.H., Ji F.Y., Wang Q.C., and Tian H., A double inhibit logic gate employing configuration and fluorescence changes. Adv Mater,2006,18(15):2035-2038.
    [147]Jia C.C., Li H., Jiang J.L., Wang J.D., Chen H.L., Cao D., Stoddart J.F., and Guo X.F., Interface-engineered bistable [2]rotaxane-graphene hybrids with logic capabilities. Adv Mater,2013,25(46):6752-6759.
    [148]Hernandez R., Tseng H.R., Wong J.W., Stoddart J.F., and Zink J.I., An operational supramolecular nanovalve. J Am Chem Soc,2004,126(11):3370-3371.
    [149]Saha S., Leung K.C.F., Nguyen T.D., Stoddart J.F., and Zink J.I., Nanovalves. Adv Funct Mater,2007,17(5):685-693.
    [150]Yang Y.-W., Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Medchemcomm,2011,2(11):1033-1049.
    [151]Angelos S., Yang Y.W., Patel K., Stoddart J.F., and Zink J.I., Ph-responsive supramolecular nanovalves based on cucurbit [6] uril pseudorotaxanes. Angew. Chem., 2008,120(12):2254-2258.
    [152]Meng H., Xue M., Xia T., Zhao Y.-L., Tamanoi F., Stoddart J.F., Zink J.I., and Nel A.E., Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by ph-sensitive nanovalves. J Am Chem Soc,2010,132(36): 12690-12697.
    [153]Thomas C.R., Ferris D.P., Lee J.-H., Choi E., Cho M.H., Kim E.S., Stoddart J.F., Shin J.-S., Cheon J., and Zink J.I., Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc,2010,132(31):10623-10625.
    [154]Zhao Y.-L., Li Z., Kabehie S., Botros Y.Y., Stoddart J.F., and Zink J.I., Ph-operated nanopistons on the surfaces of mesoporous silica nanoparticles. J Am Chem Soc,2010, 132(37):13016-13025.
    [155]Zhang Q., Qu D.H., Wu J., Ma X., Wang Q., and Tian H., A dual-modality photoswitchable supramolecular polymer. Langmuir,2013,29(17):5345-5350.
    [156]Sun R., Zhang Q., Wang Q., and Ma X., Novel supramolecular ct polymer employing disparate pseudorotaxanes as relevant monomers. Poly,2013,54(10):2506-2510.
    [157]Fang R., Liu Y, Wang Z., and Zhang X., Water-soluble supramolecular hyperbranched polymers based on host-enhanced π-π interaction. Polym Chem-Uk,2013,4(4): 900-903.
    [158]Ji X., Yao Y, Li J., Yan X., and Huang F., A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc,2012,135(1): 74-77.
    [159]Nakahata M., Takashima Y, and Harada A., Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew. Chem. Int. Ed.,2014
    [160]Zhang M.M., Xu D.H., Yan X.Z., Chen J.Z., Dong S.Y, Zheng B., and Huang F.H., Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Edit,2012,51(28):7011-7015.
    [161]Ashton P.R., Campbell P.J., Glink P.T., Philp D., Spencer N., Stoddart J.F., Chrystal E.J., Menzer S., Williams D.J., and Tasker P.A., Dialkylammonium ion/crown ether complexes:The forerunners of a new family of interlocked molecules. Angewandte Chemie International Edition in English,1995,34(17):1865-1869.
    [162]Ishow E., Credi A., Balzani V, Spadola F., and Mandolini L., A molecular-level plug/socket system:Electronic energy transfer from a binaphthyl unit incorporated into a crown ether to an anthracenyl unit linked to an ammonium ion. Chem-eur J, 1999,5(3):984-989.
    [163]Li S.J., Zhu K.L., Zheng B., Wen X.H., Li N., and Huang F.H., A bis(m-phenylene)-32-crown-10/paraquat [2]rotaxane. Eur J Org Chem,2009(7): 1053-1057.
    [164]Dasgupta S., and Wu J.S., Formation of 2 rotaxanes by encircling 20,21 and 22 crown ethers onto the dibenzylammonium dumbbell. Chemical Science,2012,3(2): 425-432.
    [165]Sobczuk A.A., Tsuchiya Y., Shiraki T., Tamaru S.-i., and Shinkai S., Creation of chiral thixotropic gels through a crown-ammonium interaction and their application to a memory-erasing recycle system. Chem-eur J,2012,18(10):2832-2838.
    [166]Choudhary U., and Northrop B.H., Allyl-functionalized dioxynaphthalene 38 crown-10 macrocycles:Synthesis, self-assembly, and thiol-ene functionalization. Chem-eur J,2014,20(4):999-1009.
    [167]Ishow E., Credi A., Balzani V., Spadola F., and Mandolini L., A molecular-level plug/socket system:Electronic energy transfer from a binaphthyl unit incorporated into a crown ether to an anthracenyl unit linked to an ammonium ion. Chem-eur J, 1999,5(3):984-989.
    [168]Smith K.M., and Falk J.E. Porphyrins and metalloporphyrins. Elsevier Amsterdam, 1975
    [169]Ashton P.R., Philp D., Spencer N., and Stoddart J.F., A new design strategy for the self-assembly of molecular shuttles. J Chem Soc Chem Comm,1992(16):1124-1128.
    [170]Chambron J.-C, Heitz V., and Sauvage J.-P., A rotaxane with two rigidly held porphyrins as stoppers. J. Chem. Soc., Chem. Commun.,1992(16):1131-1133.
    [171]Raymont V., Wilson H., Pfrunder M., McMurtrie J.C., and Mullen K.M., New approaches to the synthesis of strapped porphyrin containing bipyridinium 2 rotaxanes. New J Chem,2013,37(4):893-900.
    [172]Coumans R.G.E., Elemans J., Rowan A.E., and Nolte R.J.M., Interlocked porphyrin switches. Chem-eur J,2013,19(24):7758-7770.
    [173]Wang X.Y., Han J.M., and Pei J., Energy transfer and concentration-dependent conformational modulation:A porphyrin-containing 3 rotaxane. Chem-Asian J,2012, 7(10):2429-2437.
    [174]Ventura B., Flamigni L., Collin J.P., Durola F., Heitz V., Reviriego F., Sauvage J.P., and Trolez Y., Nir emission of cyclic 4 rotaxanes containing pi-extended porphyrin chromophores. Phys. Chem. Chem. Phys.,2012,14(30):10589-10594.
    [175]Brown A., and Beer P.D., Porphyrin-functionalised rotaxanes for anion recognition. DTr,2012,41(1):118-129.
    [176]Han M., Zhang H.Y., Yang L.X., Ding Z.J., Zhuang R.J., and Liu Y, A 2 catenane and pretzelane based on sn-porphyrin and crown ether. Eur J Org Chem,2011(36): 7271-7277.
    [177]Marois J.S., Cantin K., Desmarais A., and Morin J.F.,3 rotaxane-porphyrin conjugate as a novel supramolecular host for fullerenes. Org. Lett.,2008,10(1):33-36.
    [178]Frey J., Tock C., Collin J.P., Heitz V., and Sauvage J.P., A 3 rotaxane with two porphyrinic plates acting as an adaptable receptor. J Am Chem Soc,2008,130(14): 4592-+.
    [179]Shibata M., Tanaka S., Ikeda T., Shinkai S., Kaneko K., Ogi S., and Takeuchi M., Stimuli-responsive folding and unfolding of a polymer bearing multiple cerium(iv) bis(porphyrinate) joints:Mechano-imitation of the action of a folding ruler. Angew Chem Int Edit,2013,52(1):397-400.
    [180]Collin J.P., Frey J., Heitz V., Sauvage J.P., Tock C., and Allouche L., Adjustable receptor based on a 3 rotaxane whose two threaded rings are rigidly attached to two porphyrinic plates:Synthesis and complexation studies. J Am Chem Soc,2009, 131(15):5609-5620.
    [181]Roche C., Sour A., and Sauvage J.P., A flexible copper(i)-complexed 4 rotaxane containing two face-to-face porphyrinic plates that behaves as a distensible receptor. Chem-eur J,2012,18(27):8366-8376.
    [182]Eastwood D., and Gouterman M., Porphyrins:Xviii. Luminescence of (co),(ni), pd, pt complexes. J Mol Spectrosc,1970,35(3):359-375.
    [183]Harada A., Cyclodextrin-based molecular machines. Accounts Chem Res,2001,34(6): 456-464.
    [184]Mayer B., Zhang X.Y., Nau W.M., and Marconi G, Co-conformational variability of cyclodextrin complexes studied by induced circular dichroism of azoalkanes. J Am Chem Soc,2001,123(22):5240-5248.
    [185]Wenz G, Han B.H., and Muller A., Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev.,2006,106(3):782-817.
    [186]Harada A., Takashima Y., and Yamaguchi H., Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.,2009,38(4):875-882.
    [187]Girek T., Cyclodextrin-based rotaxanes. J Incl Phenom Macro,2012,74(1-4):1-21.
    [188]Zhou D.X., Sun T., and Deng W., Recent progress in supramolecular self-assembly based on cyclodextrin. Chinese J Org Chem,2012,32(2):239-253.
    [189]Scypinski S., and Love L.J.C., Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins. Anal. Chem.,1984,56(3):322-327.
    [190]Scypinski S., and Love L.J.C., Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls. Anal. Chem.,1984, 56(3):331-336.
    [191]Rojas-Duran T.R., Fente C.A., Vazquez B.I., Franco C.M., Sanz-Medel A., and Cepeda A., Study of a room temperature phosphorescence phenomenon to allow the detection of aflatoxigenic strains in culture media, Int J Food Microbiol,2007,115(2): 149-158.
    [192]Sanchez-Barragan I., Costa-Fernandez J.M., Sanz-Medel A., Valledor M., and Campo J.C., Room-temperature phosphorescence (rtp) for optical sensing. TrAC, Trends Anal. Chem.,2006,25(10):958-967.
    [193]Wei Y., Kang H., Ren Y, Qin G., Shuang S., and Dong C., A simple method for the determination of enantiomeric composition of propranolol enantiomers. Analyst,2013, 138(1):107-110.
    [194]Femia R.A., and Love L.J.C., Phosphorescence of polynuclear aromatic hydrocarbons in heptakis(6-bromo-6-deoxy-beta-cyclodextrin). J. Phys. Chem.,1985,89(10): 1897-1901.
    [195]Femia R.A., and Love L.J.C, Synchronous wavelength scanning room temperature phosphorescence:Comparison of cyclodextrin and micellar media. Spectrochim. Acta A, Mol. Spectrosc.,1986,42A(11):1239-1246.
    [196]Ponce A., Wong P.A., Way J.J., and Nocera D.G., Intense phosphorescence triggered by alcohols upon formation of a cyclodextrin ternary complex. The Journal of Physical Chemistry,1993,97(42):11137-11142.
    [197]Wei Y.-S., Jin W.-J., Zhu R.-H., Xing G.-W., Liua C.-S., Zhang S.-S., and Zhou B.-L Investigation of heavy atom effect of halide alkanes in β-cyclodextrin induced room temperature phosphorimetry. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1996,52(6):683-690.
    [198]Segura A., Cruces C.C., Fernandez B.A., and Pena G.A.M.D.L., Optimization and comparative study of the roomtemperature phosphorescence of acenaphthene in beta-cyclodextrin in the presence of two bromoalcohols. ApSpe,1998,52(3):420-425.
    [199]Segura-Carretero A., Cruces-Blanco C, Canabate-Diaz B., Fernandez-Sanchez J.F., and Fernandez-Gutierrez A., Heavy-atom induced room-temperature phosphorescence: A straightforward methodology for the determination of organic compounds in solution. Anal Chim Acta,2000,417(1):19-30.
    [200]de la Pena A., Mahedero M., and Bautista-Sanchez A., Host-guest room temperature phosphorescence of 1-naphthalenacetic acid included in β-cyclodextrin in presence of 1,3-dibromopropane. Anal Lett,2001,34(13):2391.
    [201]Zhai Y.-Q., Zhang S.-Z., Xie J.-W., and Liu C.-S., Fluorescence and room temperature phosphorescence of 6-bromo-2-naphthol in β-cyclodextrin solution and its selective molecular recognition for cyclohexane. Anal Chim Acta,2003,494(1-2):71-80.
    [202]Zhang H.R., Wei Y.S., Jin W.J., and Liu C.S., Investigation of six-membered carbocyclic compounds as a molecular switch block of room temperature phosphorescence in nondeoxygenated β-cyclodextrin solution. Anal Chim Acta,2003, 484(1):111-120.
    [203]Rojas-Duran T, Sanchez-Barragan I., Costa-Fernandez J.M., and Sanz-Medel A., Direct and rapid discrimination of aflatoxigenic strains based on fibre-optic room temperature phosphorescence detection. Analyst,2007,132(4):307-313.
    [204]Lammers I., Buijs J., Ariese F., and Gooijer C., Sensitized enantioselective laser-induced phosphorescence detection in chiral capillary electrophoresis. Anal. Chem.,2010,82(22):9410-9417.
    [205]Wang Y, Feng T., Chao J., Qin L., Zhang Z., and Jin W., Phosphorescence properties and chiral discrimination of camphorquinone enantiomers in the presence of a-cyclodextrin and 1,2-dibromoethane. J. Photochem. Photobiol. A:Chem.,2010, 212(1):49-55.
    [206]Eustis S., and El-Sayed M.A., Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.,2006, 35(3):209-217.
    [207]Salem A.K., Searson P.C., and Leong K.W., Multifunctional nanorods for gene delivery. Nat Mater,2003,2(10):668-671.
    [208]Huang X., El-Sayed I.H., Qian W., and El-Sayed M.A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc,2006,128(6):2115-2120.
    [209]Oldenburg A.L., Hansen M.N., Zweifel D.A., Wei A., and Boppart S.A., Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. OExpr,2006,14(15):6724-6738.
    [210]Rex M., Hernandez F.E., and Campiglia A.D., Pushing the limits of mercury sensors with gold nanorods. Anal. Chem.,2006,78(2):445-451.
    [211]Durr N.J., Larson T., Smith D.K., Korgel B.A., Sokolov K., and Ben-Yakar A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett,2007,7(4):941-945.
    [212]Jain P.K., El-Sayed I.H., and El-Sayed M.A., Au nanoparticles target cancer. Nano Today,2007,2(1):18-29.
    [213]Khanal B.P., and Zubarev E.R., Rings of nanorods. Angew. Chem. Int. Ed.,2007, 46(13):2195-2198.
    [214]Chen H., Shao L., Li Q., and Wang J., Gold nanorods and their plasmonic properties. Chem. Soc. Rev.,2013,42(7):2679-2724.
    [215]Huang X., Neretina S., and E1-Sayed M.A., Gold nanorods:From synthesis and properties to biological and biomedical applications. Adv Mater,2009,21(48): 4880-4910.
    [216]Orendorff C.J., Hankins P.L., and Murphy C.J., Ph-triggered assembly of gold nanorods. Langmuir,2005,21(5):2022-2026.
    [217]Jebb M., Sudeep P., Pramod P., Thomas K.G., and Kamat P.V., Ruthenium (ii) trisbipyridine functionalized gold nanorods. Morphological changes and excited-state interactions. The Journal of Physical Chemistry B,2007,111(24):6839-6844.
    [218]Xue C., Xu Y., Pang Y, Yu D., Dai L., Gao M., Urbas A., and Li Q., Organo-soluble porphyrin mixed monolayer-protected gold nanorods with intercalated fullerenes. Langmuir,2012,28(14):5956-5963.
    [219]Vigderman L., Manna P., and Zubarev E.R., Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew. Chem.,2012,124(3): 660-665.
    [220]Ma X., Xue Y, Dai L., Urbas A., and Li Q., Hydrophilic cucurbit [7] uril-pseudorotaxane-anchored-monolayer-protected gold nanorods.Eur J Inorg Chem,2013,2013(14):2682-2686.
    [221]邬帅帆.基于大环主体的功能性超分子组装体的合成及性能研究:华东理工大学.2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700