用户名: 密码: 验证码:
高质量荧光量子点合成及光电应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去20年里,量子点由于具有窄且对称的发射峰、高的光稳定性和高发光效率等优势,已经作为有机染料的替代物应用于很多领域,如显示或发光器件、太阳能电池和生物标记等等。传统上量子点主要依靠“尺寸依赖”来调控光、电性质,这种方法具有一定局限性。为克服这一弊端,在本论文中,我们建立了“结构依赖”、“组分依赖”等方法来代替“尺寸依赖”方法,取得了一定成果。另一方面,随着人们对量子点在健康和能源等领域应用日益推广,开发大批量生产高质量纳米材料的方法已经迫在眉睫,目前大多数性能优异的纳米材料都是通过热注入法得到,这种方法不适于可放大量,高重复性工业化生产要求,此外,高成本和苛刻的实验条件也是不能进行实际应用的原因。我们开发的单锅无注入合成方法,成功实现了克量级高质量纳米晶合成。本学位论文主要包含以下内容:
     (1)CdTe/CdSe/ZnS核/壳/壳结构量子点
     我们通过三步法得到此种量子点。首先将CdO,十四烷基磷酸和十八烯在室温下加入到三口烧瓶中,在氮气保护和磁力搅拌下加热到290℃,注入Te前驱体溶液(将Te粉在210℃下溶解在三辛基磷和十八烯的溶液中)并生长3mmin后得到CdTe量子点核。然后将纯化后的CdTe量子点核、十四烷基磷酸、三辛基磷和十八烯在室温下一起加入到三口烧瓶中,升温到150℃,每隔30min分别加入Cd前驱体溶液(将Cd(OAc)2在80℃下溶解在三辛基磷和十八烯的溶液中)和Se前驱体溶液(将Se粉在超声下溶解在三辛基磷和十八烯的溶液中),得到CdTe/CdSe核/壳结构量子点。最后将反应温度降低至135℃,加入一定量二乙基二硫代氨基甲酸锌溶液(将二乙基二硫代氨基甲酸锌在超声下溶解在三辛基磷和十八烯(v/v,1:1)的溶液中),反应30min,再升温至200℃反应30min,最终得到CdTe/CdSe/ZnS核/壳/壳结构量子点。这种量子点的荧光效率高达94%,发光范围为540到825nm。在实验条件选择中,我们采用了具有强配位能力的十四烷基磷酸,这是成功要素之一,另外,采用低温生长壳层技术也是关键一点。通过这种新型“结构依赖”能带隙调控方法得到的高质量荧光在转入水相后仍然能够保持,高的光稳定性是由于宽能带ZnS壳层的包覆可以让电子与空穴限定在CdTe/CdSe内部,从而与外部环境隔离开来。
     (2)Zn-Cu-In-S/ZnS (ZCIS/ZnS)合金量子点
     我们通过“组分依赖”能带隙调控方法合成出这种高质量荧光量子点。具体的合成方法是在室温下将金属离子醋酸盐、硬脂酸、十二硫醇和十八烯放入到反应烧瓶中,在氮气保护和磁力搅拌下加热到230℃,注入一定量的S源溶液反应30min得到ZCIS合金量子点核,然后升高温度至240℃,每隔15min注入一定量的Zn前驱体溶液(将Zn(OAc)2在160℃下溶解在油胺和十八烯的溶液中)到反应溶液中,反复5次,最终得至IJZCIS/ZnS合金量子点。最初ZCIS核荧光量子产率小于3%,在包覆ZnS后,可以显著提高到56%,发光范围从518nm到810nm,涵盖了大部分可见光光谱和一部分近红外光谱。实验结果显示Zn/Culn比例、硫源、十二硫醇的量和反应温度都会显著影响合金量子点能带。此外,我们使用巯基十一酸进行配体交换可以将油溶性量子点转入水相中,并保持高荧光量子产率。基于这个优势,在可见光照射下我们将水溶性ZCIS/ZnS量子点进行了降解罗丹明B实验,在2h内就可以将其完全降解,显示出优异光催化性能。
     (3)Mn:ZnS量子点
     我们利用成核掺杂技术,具体方法是在室温下将硬脂酸锰、十二硫醇和十八烯加入到反应烧瓶中,在氮气保护和磁力搅拌下将温度升高到250℃,注入一定量的S前驱体溶液,生长1min得到稳定且小尺寸MnS核(2.0nm),然后通过注入一定量的Zn前驱体溶液(将Zn(OAc)2在160℃下溶解在油胺和十八烯的溶液中),生长20min,再降低温度至230℃注入同等量的Zn前驱体溶液,生长20min,实现在核的外面径向生长ZnS壳层,最终得到Mn:ZnS量子点。我们通过紫外吸收光谱、荧光发射光谱、透射电子显微镜和X射线衍射仪表征了Mn:ZnS量子点的光学性质和结构性质。考察了不同实验条件(包括MnS核和ZnS壳层的反应温度、S前驱体溶液的量、十二硫醇的量和Zn/Mn比例)的影响。使用十二硫醇作为配体可以增强形成小尺寸稳定的MnS核的重复性,从而得到高质量掺杂结构荧光量子点。设计ZnS壳层生长温度实现了Mn离子在掺杂结构量子点中的扩散平衡。
     (4)Cu:ZnxCd1-xS、Cu:Zn-In-S和Cu,Mn:Zn-In-S量子点
     我们利用单锅无注入法,具体是在室温下将金属醋酸盐、S粉、十二硫醇、油胺和十八烯加入到反应烧瓶中,然后在氮气保护和磁力搅拌下升高温度到220℃并反应30min就可以方便得至Cu:ZnxCd1-xS、Cu:Zn-In-S和Cu,Mn:Zn-In-S掺杂量子点。三种掺杂量子点的发光范围可以覆盖整个可见光光谱和部分近红外光谱(从450到810nm),荧光量子产率平均在50%-80%。此外掺杂发光可以通过改变主体材料元素比例、Mn或Cu离子浓度和反应温度等条件方便调控。通过配体交换后,所得水溶性量子点荧光量子效率能够保持最初油溶性量子点的75%以上,并且具有高的热稳定性(高达250℃),长的荧光寿命(亚微秒)。更重要的是我们将不含重金属Cd的低毒性Cu:Zn-In-S/ZnS量子点材料作为发光活性层,组装出量子点发光二极管(QD-LEDs)器件,它的启动电压为3.6V,可以比拟一般QD-LEDs水准,最大荧光强度可以达到220cd m-2(在8.5eV),在0.41mAcm-2注入电流密度下,发光效率(LE)和功率效率(PE)分别为2.45cdA-1和2.14lm W-1,对应亮度为10cdm-2。我们还将Cu, Mn:Zn-In-S/ZnS量子点作为光转换层装配成白光发光二极管(WLED)器件,显示出CRI高达91、发光效率为51lm/W的标准白光。总之,我们证实这些量子点有潜力作为低毒材料用于LEDs和生物标记中。
     (5)克量级合成核壳结构量子点、CdSe多脚棒纳米晶及不同形貌CdS纳米晶
     我们利用单锅无注入法分别制备出了三种半导体纳米晶。第一种是核壳结构量子点(CdS/ZnxCdi1-xS, CdSe/ZnxCdi1-xS和CdTe/ZnxCd1-xS),其壳层为组成梯度变化的合金材料。具体方法是在室温下将CdO、Zn(NO3)2、硫族元素、三辛基磷、硬脂酸和十八烯加入到反应烧瓶中,在氮气保护和磁力搅拌下加热到250℃反应60min,最终得到核壳结构量子点(CdS/ZnxCd1-xS, CdSe/ZnxCd1-xS和CdTe/ZnxCd1-xS)。通过简单地改变反应物种类和配体量,它的发光范围可以从紫光一直调控到近红外区域(400-820nm),发光效率可以高达80%,并且通过配体交换转入水相后仍然可以保持油溶性量子点的量子产率。通过该反应我们很方便地制备出克量级各种颜色(绿色、黄色和红色)高质量荧光量子点,体现出该合成方法大批量生产高质量荧光纳米晶的潜力。第二种是CdSe多脚棒半导体纳米晶。具体的合成方法是在室温下将CdO和Se粉作为反应原料加入到含有三辛基磷、油酸和石蜡反应溶剂的反应烧瓶中,升高温度到210℃生长10min,得到克量级CdSe多脚棒纳米晶。我们考察了不同反应条件(包括反应温度、配体性质和种类、Cd/Se匕例和反应物性质)对CdSe多脚棒纳米晶性质的影响。在包覆ZnS壳层之后,荧光量子产率可以显著提高到85%。第三种是各种各样形状(球形,四面体,枝杈状和花状结构)的CdS纳米晶。具体方法是在室温下将CdO和S粉作为直接反应原料加入到含有三辛基磷、油酸和石蜡反应溶剂的反应烧瓶中,升高温度到230℃生长10min,得到克量级形貌可控的CdS纳米晶。其形貌变化机理与核的结构及单体浓度有关。此外,所得各种形貌(球形,四面体,枝杈状和花状结构)的CdS产品对于降解有机染料显示出优异光催化性能,其中球形CdS纳米晶相对于其他形貌CdS纳米晶比较低的光催化性能可以归因于低的电子-空穴分离效率。综上所述,我们发明的单锅无注入法能够满足工业化生产所需的可升级、低成本及可重复性。
In the past two decades, quantum dots (QDs) have been widely studied and applied in many fields such as light-emitting diodes (LEDs), solar cells and bio-sensor, asanalternativetoorganic dyes, because of their outstanding properties of narrow and symmetric emission peak, high stability, high photoluminescence quantum yield, and so on. Traditionally, the photoelectronic properties of QDs is tuned via the variation of the particle size, while the size-tuning route is limited in many fields. To solve this problem, we established the "structure-tuning" and "composition-tuning" method to tune the bandgap of QDs. On the other hand, with more wide application of quantum dots in health and energy field, to develop massive synthesis of high quality nano-materials isa hot issue. So far hot-injection synthetic method is commonlyused in synthesizingmostnano-materials, which cannot satisfy the requirement of scalable and reproducible production in industrial application. Moreover, high cost and strict experiment conditions also impede the industrial application of QDs. However, the one-pot non-injection synthesis, as we described, has achieved the goal of industrial application. This dissertation contains the following content:
     (1) CdTe/CdSe/ZnS core/shell/shell nanostructure
     Typically, CdO,1-tetradecylphosphonic acid, and1-octadecene were loaded in a three-neck flask clamped in a heating mantle, which was raised to290℃under an argon. At this temperature, Te precursor solution was quickly injected into the reaction flask and kept at this temperature for30min to the grow the CdTe core. Then purified CdTe core,1-tetradecylphosphonic acid, trioctylphosphine and1-octadecene were loaded in a three-neck flask clamped in a heating mantle, which was raised to150℃under an argon, an equimolar amount of the Cd precursor stock solutions, obtained by dissolving Cd(OAc)2in trioctylphosphine and1-octadecene at80℃, and Se precursor stock solutions, obtained by dissolving Se powder in trioctylphosphine and1-octadecene using sonication, was added alternately via a syringe at a30min interval for the growth of CdTe/CdSe core/shell nanocrystals (NCs). the addition of the Cd/Se precursors was stopped and the reaction temperature was lowered down to135℃for the following overgrowth of the ZnS shell. When the temperature of the reaction system stabilized at135℃, a certain amount of zinc diethyldithiocarbamate stock solution, obtained by dissolving zinc diethyldithiocarbamate in trioctylphosphine and1-octadecene (v/v,1:1) at room temperature by sonication, was added and kept at this temperature for30min, and then the temperature was raised to200℃and maintained for another30min to get CdTe/CdSe/ZnS Core/Shell/Shell QDs. The CdTe/CdSe/ZnS QDs possess photoluminescence quantum yields (PL QY) as high as94%and the emission wavelength of the obtained nanostructure can span from540to825nm. In the experiment, an effective shell-coating route was developed for the preparation of CdTe/CdSe core/shell nanostructures by selecting capping reagents with a strong coordinating capacity which is one of the factors of success. In addition, adopting a low temperature for shell deposition is also the key point. The obtained high quality of fluorescence through the kind of new structure depending on the band gap adjustment methods can still be kept when transferred into water phase. The high PL stability of the obtained CdTe/CdSe/ZnS QDs is mainly derived from the passivation effect of the outer ZnS layer with a substantially high bandgap, which effectively confines the excitons within the CdTe/CdSe interface and isolates them from the solution environment.
     (2) ZnCuInS/ZnS (ZCIS/ZnS) alloyed nanocrystals
     The high quality fluorescence QDs have been obtained through the "structure-tuning" method to tune the bandgap of QDs. In a typical procedure, the acetate salts of the corresponding metals, stearic acid, dodecanethiol, and octadecene were loaded in a50-mL three-neck flask clamped in a heating mantle. The mixture was heated to230℃under argon flow. Then S precursor solution, obtained by dissolving sulfur in octadecene at120℃, was injected into the reaction system and kept at this temperature for30min to allow growth of ZCIS NCs. The reaction temperature was raised to240℃for the following overgrowth of the ZnS shell. Zn stock solution (zinc acetate dissolved in oleylamine and1-octadecene at160℃) was injected into the reaction mixture in5batches with a time interval of15min to obtained ZCIS/ZnS NCs. The plain ZCIS NCs did show PL emission but with quite low PL QY (typically below3%). With the deposition of ZnS shell around the ZCIS core NCs, the PL QY increased substantially with a maximum value of56%and emission wavelength tunable from518to810nm covering most part of the visible light spectrum and near infrared spectrum. The various experimental variables, including the Zn/CuIn ratio, amount of sulfur and dodecanethiol, and reaction temperature, have a significant effect on the bandgap of the obtained alloyed NCs. The high PL emission efficiency of the ZCIS/ZnS NCs can also be preserved after phase transfer via ligand replacement. Besides the excellent optical properties, the obtained ZCIS/ZnS NCs also exhibit promising photocatalytical activity in the degradation of rhodamine B.
     (3) Mn:ZnS QDs
     Our synthetic method based on "nucleation-doping" strategy. Typically, manganese stearate, dodecanethiol, and octadecene were loaded into a three-neck flask. Then the reaction system was filled with N2, and the temperature was further raised to250℃. At this temperature, S precursor solution, obtained by dissolving sulfur powder in octadecene at120℃, was injected into the reaction system and kept at this temperature for1min to allow growth of stable and small size of MnS nanoclusters (2nm). One half Zn stock solution (zinc acetate dissolved in oleylamine and1-octadecene at160℃) was injected to the solution and kept at250℃for20min, then the temperature was set to230℃, the other half Zn stock solution was injected to the solution and kept at230℃for20min to obtained Mn:ZnS QDs. The optical properties and structure of the obtained Mn:ZnS QDs have been characterized by UV-vis, PL spectroscopy, transmission electron microscopy, and X-ray diffraction. The resulting nearly monodisperse d-dots were found to be of spherical shape with a zinc-blende crystal structure. The influences of various experimental variables, including the reaction temperature for the MnS core nanocluster and ZnS host material, the amount of S precursor solution, dodecanethiol, as well as Zn/Mn ratio have been systematically investigated. The use of dodecanethiol as capping ligand ensured the reproducible access to a stable small-sized MnS core. This paves the way for reproducibly obtaining highly luminescent doped QDs. Programmed overcoating temperature for growth of ZnS shell was employed to realize balanced diffusion of the Mn ions in the Mn:ZnS QDs.
     (4) Cu:ZnxCd1-xS、 Cu:Zn-In-S and Cu, Mn:Zn-In-S QDs
     Our synthetic method based on "single-step noninjection" synthetic approach. In a typical procedure, the acetate salts of the acetate salts of the corresponding metals, S powder, dodecanethiol, oleylamine and octadecene were loaded in a three-neck flask clamped in a heating mantle. Then the reaction system was filled with N2, and the temperature was further raised to250℃, and kept at this temperature for30min to obtained Cu:ZnxCd1-xS, Cu:Zn-In-S and Cu, Mn:Zn-In-S QDs respectively, the resulting doped QDs show composition-tunable PL emission over the entire visible spectral window and extending to the near-infrared spectral window (from450to810nm), the average dopant emission show50-80%PL QY. In addition, the doped emission can be convenient tuned by changing the ratios of host material elements, Mn or Cu ion concentration and reaction temperature. Importantly, the initial high PL QY of the obtained doped QDs in organic media can be preserved when transferred into aqueous media via ligand exchange. Furthermore, electroluminescent devices with good performance (with a maximum luminance of220cd m-, low turn-on voltages of3.6V) have been fabricated with the use of these Cd-free low toxicity Cu:Zn-In-S/ZnS QDs as an active layer in these QD-based LEDs. we explored the possibility of using Cu, Mn:Zn-In-S/ZnS QDs as colour converting materials for white light-emitting applications. The devices exhibit high colour rendering index of91, luminous efficiency of51lm/W. Overall, these materials have promising potential as less toxic NCs for applications in LEDs and biolabeling.
     (5) Gram-scaled synthesis of core-shell structure of QDs, CdSe multipod NCs and shape-tunable CdS NCs
     The three kinds of semiconductor NCs have been obtained respectively through the "single-step noninjection" synthetic approach. The first is high quality core/shell QDs (CdS/ZnxCd1-xS, CdSe/ZnxCd1-xS, and CdTe/ZnxCd1-xS) with shell material composed of gradient alloy structure. In a typical procedure, CdO, Zn(NO3)2, chalcogenide elements, trioctylphosphine, stearic acid and octadecene were loaded in a three-neck flask clamped in a heating mantle at air. the temperature was further raised to250℃, and kept at this temperature for30min to obtained core/shell QDs (CdS/ZnxCd1-xS, CdSe/ZnxCd1-xS, and CdTe/ZnxCd1-xS). With simple variation of reaction recipe (reactants and feeding ratio), luminescence color of the resulting QDs can be conveniently tuned from violet to near-infrared (400-820nm). The emission efficiency of the as-prepared QDs can be up to80%. Moreover, the high emission efficiency can be preserved after QDs transferred into aqueous media via ligand exchange. Gram-scaled green, yellow, and red emissive core/shell QDs can be obtained in one bath reaction. And second is the CdSe multipod NCs. In a typical procedure, CdO, Se powder, trioctylphosphine, oleic acid and paraffin were loaded in a three-neck flask clamped in a heating mantle. Then the reaction system was filled with N2, the temperature was further raised to250℃, and kept at this temperature for10min to obtained CdSe multipod NCs. The influence of various experimental variables, including reaction temperature, nature and amount of surfactants, Cd-to-Se ratio, and the nature of reactants, on the morphology of the obtained CdSe NCs have been systematically investigated. After deposition of ZnS shell around the CdSe multipod NCs, the PL QY of the obtained CdSe/ZnS can be up to85%. The third is the CdS NCs with a wide variety of shapes including spheres, tetrahedrons, and branched and flower-like structures. In a typical procedure, CdO, S powder, trioctylphosphine, oleic acid and paraffin were loaded in a three-neck flask clamped in a heating mantle. Then the reaction system was filled with N2, the temperature was further raised to230℃, and kept at this temperature for30min to obtained the shape-controlled CdS NCs. The shape-controlled growth mechanism could be explained by the nuclei structure and monomer concentration. All the CdS nanocrystal samples with different morphologies exhibit good photocatalytic activity for degradation of dyes. The observed lower photocatalytic activity of the sphere-shaped CdS NCs could be ascribed to the higher PL QY relative to those with other morphologies, which results in low electron-hole separation efficiency. Overall, our reported preparation approach can satisfy the requirements of industrial production bearing the advantage of low-cost, reproducibility and scalability.
引文
[1]Reimann S M and Manninen M, Electronic Structure of Quantum Dots [J], Reviews of Modern Physics,2002,74,1283-1342.
    [2]Bawendi M G, Steigerwald M L and Brus L E, The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") [J], Annual Review of Physical Chemistry, 1990,41,477-496.
    [3]姚建曦,赵高凌,韩高荣,工艺条件对CdS纳米粒子量子尺寸效应的影响[J],浙江大学学报(工学版),2003,37,450-454.
    [4]Smith A, Ruan G, Rhyner M, et al., Engineering Luminescent Quantum Dots for in Vivo Molecular and Cellular Imaging [J], Annals of Biomedical Engineering,2006,34, 3-14.
    [5]Smith A M, Duan H, Mohs A M, et al., Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging [J], Advanced Drug Delivery Reviews,2008,60, 1226-1240.
    [6]成戡,方正,马云飞等,近红外发光Ag2S-CdS核壳结构水溶性量子点的合成及光学性质[J],无机化学学报,2013,29,326-332.
    [7]林章碧,苏星光,张皓等,用水溶液中合成的量子点作为生物荧光标记物的研究[J],高等学校化学学报,2003,24,216-220.
    [8]Norris D J, Sacra A, Murray C B, et al., Measurement of the Size Dependent Hole Spectrum in CdSe Quantum Dots [J], Physical Review Letters,1994,72,2612-2615.
    [9]Smith A M and Nie S, Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering [J], Accounts of Chemical Research,2009,43,190-200.
    [10]Nirmal M, Dabbousi B O, Bawendi M Q, et al., Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals[J], Nature,1996,383,802-804.
    [11]Empedocles S and Bawendi M, Spectroscopy of Single CdSe Nanocrystallites [J], Accounts of Chemical Research,1999,32,389-396.
    [12]施朝淑,陈永虎,张国斌等,闪烁晶体的发光研究进展[J],发光学报,2002,23,217-222.
    [13]Yao J, Larson D R, Vishwasrao H D, et al., Blinking and Nonradiant Dark Fraction of Water-Soluble Quantum Dots in Aqueous Solution [J], Proceedings of the National Academy of Sciences of the United States of America,2005,102,14284-14289.
    [14]Ebenstein Y, Mokari T and Banin U, Fluorescence Quantum Yield of CdSe/ZnS Nanocrystals Investigated by Correlated Atomic-Force and Single-Particle Fluorescence Microscopy [J], Applied Physics Letters,2002,80,4033-4035.
    [15]Gomez D E, Califano M and Mulvaney P, Optical Properties of Single Semiconductor Nanocrystals [J], Physical chemistry chemical physics,2006,8,4989-5011.
    [16]Mahler B, Spinicelli P, Buil S, et al., Towards Non-Blinking Colloidal Quantum Dots [J], Nat Mater,2008,7,659-664.
    [17]Chen Y, Vela J, Htoon H, et al., "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking [J], Journal of the American Chemical Society,2008,130, 5026-5027.
    [18]Wang X, Ren X, Kahen K, et al., Non-Blinking Semiconductor Nanocrystals [J], Nature,2009,459,686-689.
    [19]Talapin D V, Rogach A L, Kornowski A, et al., Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine—Trioctylphosphine Oxide—Trioctylphospine Mixture [J], Nano Letters,2001,1,207-211.
    [20]Jang E, Jun S, Chung Y, et al., Surface Treatment to Enhance the Quantum Efficiency of Semiconductor Nanocrystals [J], The Journal of Physical Chemistry B,2004,108, 4597-4600.
    [21]Micic O I, Cheong H M, Fu H, et al., Size-Dependent Spectroscopy of InP Quantum Dots [J], The Journal of Physical Chemistry B,1997,101,4904-4912.
    [22]Talapin D V, Gaponik N, Borchert H, et al., Etching of Colloidal InP Nanocrystals with Fluorides:Photochemical Nature of the Process Resulting in High Photo luminescence Efficiency [J], The Journal of Physical Chemistry B,2002,106, 12659-12663.
    [23]Nag A, Kovalenko M V, Lee J-S, et al., Metal-Free Inorganic Ligands for Colloidal Nanocrystals:S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as Surface Ligands [J], Journal of the American Chemical Society,2011,133,10612-10620.
    [24]Parak W J, Manna L, Simmel F C, et al., in Nanoparticles, Wiley-VCH Verlag GmbH & Co. KGaA,2005, pp.4-49.
    [25]Wei S-H and Zunger A, Calculated Natural Band Offsets of All II-VI and III-V Semiconductors:Chemical Trends and the Role of Cation D Orbitals [J], Applied Physics Letters,1998,72,2011-2013.
    [26]Colvin V L, Schlamp M C and Alivisatos A P, Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer [J], Nature,1994, 370,354-357.
    [27]Bruchez M, Moronne M, Gin P, et al., Semiconductor Nanocrystals as Fluorescent Biological Labels [J], Science,1998,281,2013-2016.
    [28]Kim S, Fisher B, Eisler H-J, et al., Type-II Quantum Dots:CdTe/CdSe (Core/Shell) and CdSe/ZnTe (Core/Shell) Heterostructures [J], Journal of the American Chemical Society,2003,125,11466-11467.
    [29]Halpert J E, Porter V J, Zimmer J P, et al, Synthesis of CdSe/CdTe Nanobarbells [J], Journal of the American Chemical Society,2006,128,12590-12591.
    [30]Seo H and Kim S-W, In Situ Synthesis of CdTe/CdSe Core-Shell Quantum Dots [J], Chemistry of Materials,2007,19,2715-2717.
    [31]Chen C-Y, Cheng C-T, Yu J-K, et al., Spectroscopy and Femtosecond Dynamics of Type-Ⅱ CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor [J], The Journal of Physical Chemistry B,2004,108,10687-10691.
    [32]Xie R, Zhong X and Basche T, Synthesis, Characterization, and Spectroscopy of Type-Ⅱ Core/Shell Semiconductor Nanocrystals with ZnTe Cores [J], Advanced Materials,2005,17,2741-2745.
    [33]Spanhel L, Haase M, Weller H, et al., Photochemistry of Colloidal Semiconductors.20. Surface Modification and Stability of Strong Luminescing CdS Particles [J], Journal of the American Chemical Society,1987,109,5649-5655.
    [34]Fernee M J, Watt A, Warner J, et al., Inorganic Surface Passivation of Pbs Nanocrystals Resulting in Strong Photoluminescent Emission [J], Nanotechnology, 2003,14,991.
    [35]Hoener C F, Allan K A, Bard A J, et al., Demonstration of a Shell-Core Structure in Layered Cadmium Selenide-Zinc Selenide Small Particles by X-Ray Photoelectron and Auger Spectroscopies [J], The Journal of Physical Chemistry,1992,96, 3812-3817.
    [36]Kortan A R, Hull R, Opila R L, et al., Nucleation and Growth of Cadmium Selendie on Zinc Sulfide Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media [J], Journal of the American Chemical Society,1990,112,1327-1332.
    [37]Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al., (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J], The Journal of Physical Chemistry B,1997,101,9463-9475.
    [38]Hines M A and Guyot-Sionnest P, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J], The Journal of Physical Chemistry, 1996,100,468-471.
    [39]Danek M, Jensen K F, Murray C B, et al., Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe [J], Chemistry of Materials,1996,8,173-180.
    [40]Peng X, Schlamp M C, Kadavanich A V, et al., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J], Journal of the American Chemical Society,1997,119,7019-7029.
    [41]Li J J, Wang Y A, Guo W, et al., Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents Via Successive Ion Layer Adsorption and Reaction [J], Journal of the American Chemical Society,2003, 125,12567-12575.
    [42]Tsay J M, Doose S, Pinaud F, et al., Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation [J], The Journal of Physical Chemistry B,2005,109,1669-1674.
    [43]Mokari T and Banin U, Synthesis and Properties of CdSe/ZnS Core/Shell Nanorods [J], Chemistry of Materials,2003,15,3955-3960.
    [44]Kudera S, Zanella M, Giannini C, et al., Sequential Growth of Magic-Size CdSe Nanocrystals [J], Advanced Materials,2007,19,548-552.
    [45]Jun S and Jang E, Interfused Semiconductor Nanocrystals:Brilliant Blue Photoluminescence and Electroluminescence [J], Chemical Communications,2005, 4616-4618.
    [46]Zeng R, Zhang T, Dai G, et al., Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSes Shell-Alloyed Doped Nanocrystals [J], The Journal of Physical Chemistry C,2011,115,3005-3010.
    [47]Chen H-S, Lo B, Hwang J-Y, et al., Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSes Quantum Dots Synthesized from ZnO [J], The Journal of Physical Chemistry B,2004, 108,17119-17123.
    [48]Liao L, Zhang H and Zhong X, Facile Synthesis of Red-to near-Infrared-Emitting CdTexSe1-x Alloyed Quantum Dots Via a Noninjection One-Pot Route [J], Journal of Luminescence,2011,131,322-327.
    [49]Protiere M and Reiss P, Highly Luminescent Cd1_xZnxSe/ZnS Core/Shell Nanocrystals Emitting in the Blue-Green Spectral Range [J], Small,2007,3,399-403.
    [50]Zhong X, Feng Y, Knoll W, et al., Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width [J], Journal of the American Chemical Society, 2003,125,13559-13563.
    [51]Zhong X, Han M, Dong Z, et al., Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability [J], Journal of the American Chemical Society,2003, 125,8589-8594.
    [52]Sung Y-M, Lee Y-J and Park K-S, Kinetic Analysis for Formation of Cd1_xZnxSe Solid-Solution Nanocrystals [J], Journal of the American Chemical Society,2006,128, 9002-9003.
    [53]Zhong X, Zhang Z, Liu S, et al., Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1_xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength [J], The Journal of Physical Chemistry B,2004,108,15552-15559.
    [54]Zhong X, Feng Y, Zhang Y, et al., A Facile Route to Violet-to Orange-Emitting Cd1-xZnxSe Alloy Nanocrystals Via Cation Exchange Reaction [J], Nanotechnology, 2007,18,385606.
    [55]Regulacio M D and Han M-Y, Composition-Tunable Alloyed Semiconductor Nanocrystals [J], Accounts of Chemical Research,2010,43,621-630.
    [56]Deng Z, Yan H and Liu Y, Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots Via a Facile Phosphine-Free Colloidal Method [J], Journal of the American Chemical Society,2009,131,17744-17745.
    [57]Tang J, Hinds S, Kelley S O, et al., Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles [J], Chemistry of Materials,2008,20,6906-6910.
    [58]Pan D, Weng D, Wang X, et al., Alloyed Semiconductor Nanocrystals with Broad Tunable Band Gaps [J], Chemical Communications,2009,4221-4223.
    [59]Jang E, Jun S and Pu L, High Quality CdSeS Nanocrystals Synthesized by Facile Single Injection Process and Their Electroluminescence [J], Chemical Communications,2003,2964-2965.
    [60]Qian H, Qiu X, Li L, et al., Microwave-Assisted Aqueous Synthesis: A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots [J], The Journal of Physical Chemistry B,2006,110,9034-9040.
    [61]Smith A M and Nie S, Bright and Compact Alloyed Quantum Dots with Broadly Tunable near-Infrared Absorption and Fluorescence Spectra through Mercury Cation Exchange [J], Journal of the American Chemical Society,2010,133,24-26.
    [62]Rogach A L, Eychmuller A, Hickey S G, et al., Infrared-Emitting Colloidal Nanocrystals:Synthesis, Assembly, Spectroscopy, and Applications [J], Small,2007,3, 536-557.
    [63]Irvine S E, Staudt T, Rittweger E, et al., Direct Light-Driven Modulation of Luminescence from Mn-Doped ZnSe Quantum Dots [J], Angewandte Chemie,2008, 120,2725-2728.
    [64]Raola O E and Strouse G F, Synthesis and Characterization of Eu-Doped Cadmium Selenide Nanocrystals [J], Nano Letters,2002,2,1443-1447.
    [65]Hanif K M, Meulenberg R W and Strouse G F, Magnetic Ordering in Doped Cdi.xCoxSe Diluted Magnetic Quantum Dots [J], Journal of the American Chemical Society,2002,124,11495-11502.
    [66]Borchert H, Haubold S, Haase M, et al., Investigation of ZnS Passivated InP Nanocrystals by XPS [J], Nano Letters,2001,2,151-154.
    [67]Norberg N S, Kittilstved K R, Amonette J E, et al., Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-Tc Ferromagnetic Nanocrystalline Thin Films [J], Journal of the American Chemical Society,2004,126,9387-9398.
    [68]Norman T J, Magana D, Wilson T, et al., Optical and Surface Structural Properties of Mn2+-Doped ZnSe Nanoparticles [J], The Journal of Physical Chemistry B,2003,107, 6309-6317.
    [69]Norris D J, Yao N, Charnock F T, et al., High-Quality Manganese-Doped ZnSe Nanocrystals [J], Nano Letters,2000,1,3-7.
    [70]Yang B, Shen X, Zhang H, et al., Luminescent and Magnetic Properties in Semiconductor Nanocrystals with Radial-Position-Controlled Mn2+Doping [J], The Journal of Physical Chemistry C,2013,117,15829-15834.
    [71]Radovanovic P V and Gamelin D R, Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots:D Demonstration of an Isocrystalline Core/Shell Synthetic Method [J], Journal of the American Chemical Society,2001,123,12207-12214.
    [72]Levy L, Ingert D, Feltin N, et al., Solid Solution of Cd1-yMnyS Nanocrystals [J], Langmuir,2002,18,1490-1493.
    [73]Yang Y, Chen O, Angerhofer A, et al., Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals [J], Journal of the American Chemical Society,2006,128, 12428-12429.
    [74]Erwin S C, Zu L, Haftel M I, et al., Doping Semiconductor Nanocrystals [J], Nature, 2005,436,91-94.
    [75]Suyver J F, Wuister S F, Kelly J J, et al., Luminescence of Nanocrystalline ZnSe:Mn2+ [J], Physical Chemistry Chemical Physics,2000,2,5445-5448.
    [76]Pradhan N and Peng X, Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry [J], Journal of the American Chemical Society,2007,129,3339-3347.
    [77]Srivastava B B, Jana S and Pradhan N, Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights [J], Journal of the American Chemical Society,2010,133,1007-1015.
    [78]Xie R, Rutherford M and Peng X, Formation of High-Quality Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors [J], Journal of the American Chemical Society,2009,131,5691-5697.
    [79]Park J, An K, Hwang Y, et al., Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals [J], Nat Mater,2004,3,891-895.
    [80]Hyeon T, Lee S S, Park J, et al., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process [J], Journal of the American Chemical Society,2001,123,12798-12801.
    [81]Kwon S G and Hyeon T, Formation Mechanisms of Uniform Nanocrystals Via Hot-Injection and Heat-up Methods [J], Small,2011,7,2685-2702.
    [82]Li L and Reiss P, One-Pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection [J], Journal of the American Chemical Society,2008,130, 11588-11589.
    [83]Sun S, Murray C B, Weller D, et al., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J], Science,2000,287,1989-1992.
    [84]Cao Y C and Wang J, One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals [J], Journal of the American Chemical Society,2004,126,14336-14337.
    [85]Yang Y A, Wu H, Williams K R, et al., Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection [J], Angewandte Chemie,2005,117,6870-6873.
    [86]Zhong H, Lo S S, Mirkovic T, et al., Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS2 Nanocrystals and Their Size-Dependent Properties [J], ACS Nano,2010,4,5253-5262.
    [87]Dahan M, Levi S, Luccardini C, et al., Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking [J], Science,2003,302,442-445.
    [88]Park K, Lee S, Kang E, et al., New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy [J], Advanced Functional Materials,2009,19, 1553-1566.
    [89]Dubertret B, Skourides P, Norris D J, et al., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles [J], Science,2002,298,1759-1762.
    [90]Chin P T K, de Mello Donega C, van Bavel S S, et al., Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color [J], Journal of the American Chemical Society,2007,129,14880-14886.
    [91]徐昕,贺蓉,崔大祥,微波辅助快速合成水溶性CdTe/CdSe核壳量子点[J],功能材料,2011,42,659-662,667.
    [92]Blackman B, Battaglia D M, Mishima T D, et al., Control of the Morphology of Complex Semiconductor Nanocrystals with a Type II Heterojunction, Dots Vs Peanuts, by Thermal Cycling [J], Chemistry of Materials,2007,19,3815-3821.
    [93]Blackman B, Battaglia D and Peng X, Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth [J], Chemistry of Materials,2008,20,4847-4853.
    [94]Schops O, Le Thomas N, Woggon U, et al., Recombination Dynamics of CdTe/CdS Core-Shell Nanocrystals [J], The Journal of Physical Chemistry B,2006,110, 2074-2079.
    [95]Wang J, Long Y, Zhang Y, et al., Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots [J], ChemPhysChem,2009,10,680-685.
    [96]Ivanov S A, Piryatinski A, Nanda J, et al., Type-II Core/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures, and Spectroscopic Properties [J], Journal of the American Chemical Society,2007,129,11708-11719.
    [97]Yu W W, Wang Y A and Peng X, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals [J], Chemistry of Materials,2003,15,4300-4308.
    [98]Pong B-K, Trout B L and Lee J-Y, Modified Ligand-Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water:A Procedure Guided by Computational Studies [J], Langmuir,2008,24,5270-5276.
    [99]Xie R, Kolb U, Li J, et al., Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals [J], Journal of the American Chemical Society,2005,127,7480-7488.
    [100]Trindade T, O'Brien P and Pickett N L, Nanocrystalline Semiconductors:Synthesis, Properties, and Perspectives [J], Chemistry of Materials,2001,13,3843-3858.
    [101]Balet L P, Ivanov S A, Piryatinski A, et al., Inverted Core/Shell Nanocrystals Continuously Tunable between Type-I and Type-Ⅱ Localization Regimes [J], Nano Letters,2004,4,1485-1488.
    [102]Foos E E, Wilkinson J, Makinen A J, et al., Synthesis and Surface Composition Study of CdSe Nanoclusters Prepared Using Solvent Systems Containing Primary, Secondary, and Tertiary Amines [J], Chemistry of Materials,2006,18,2886-2894.
    [103]Peng Z A and Peng X, Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals Via Alternative Routes:Nucleation and Growth [J], Journal of the American Chemical Society,2002,124,3343-3353.
    [104]Qu L and Peng X, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth [J], Journal of the American Chemical Society,2002,124,2049-2055.
    [105]Norris D J and Bawendi M G, Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots [J], Physical Review B,1996,53, 16338-16346.
    [106]Hatami F, Grundmann M, Ledentsov N N, et al., Carrier Dynamics in Type-Ⅱ GaSb/GaAs Quantum Dots [J], Physical Review B,1998,57,4635-4641.
    [107]Peng X, Band Gap and Composition Engineering on a Nanocrystal (Bcen) in Solution [J], Accounts of Chemical Research,2010,43,1387-1395.
    [108]Somers R C, Bawendi M G and Nocera D G, CdSe Nanocrystal Based Chem-/Bio-Sensors [J], Chemical Society Reviews,2007,36,579-591.
    [109]Burda C, Chen X, Narayanan R, et al., Chemistry and Properties of Nanocrystals of Different Shapes [J], Chemical Reviews,2005,105,1025-1102.
    [110]Panthani M G, Akhavan V, Goodfellow B, et al., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics [J], Journal of the American Chemical Society,2008,130,16770-16777.
    [111]Pan D, Wang X, Zhou Z H, et al., Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps [J], Chemistry of Materials,2009,21, 2489-2493.
    [112]Neumann B, Bogdanoff P and Tributsch H, TiO2-Protected Photoelectrochemical Tandem Cu(In,Ga)Se2 Thin Film Membrane for Light-Induced Water Splitting and Hydrogen Evolution [J], The Journal of Physical Chemistry C,2009,113, 20980-20989.
    [113]Uematsu T, Taniguchi S, Torimoto T, et al., Emission Quench of Water-Soluble ZnS-AgInS2 Solid Solution Nanocrystals and Its Application to Chemosensors [J], Chemical Communications,2009,7485-7487.
    [114]Torimoto T, Adachi T, Okazaki K-i, et al., Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore [J], Journal of the American Chemical Society,2007,129,12388-12389.
    [115]Nakamura H, Kato W, Uehara M, et al., Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System [J], Chemistry of Materials,2006,18,3330-3335.
    [116]Wang X, Pan D, Weng D, et al., A General Synthesis of Cu-In-S Based Multicomponent Solid-Solution Nanocrystals with Tunable Band Gap, Size, and Structure [J], The Journal of Physical Chemistry C,2010,114,17293-17297.
    [117]Castro S L, Bailey S G, Raffaelle R P, et al., Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors [J], Chemistry of Materials,2003,15,3142-3147.
    [118]Arici E, Sariciftci N S and Meissner D, Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices [J], Advanced Functional Materials,2003,13,165-171.
    [119]Castro S L, Bailey S G, Raffaelle R P, et al., Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor [J], The Journal of Physical Chemistry B,2004,108,12429-12435.
    [120]Zhong H, Zhou Y, Ye M, et al., Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals [J], Chemistry of Materials, 2008,20,6434-6443.
    [121]Li L, Daou T J, Texier I, et al., Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals:Cadmium-Free Quantum Dots for in Vivo Imaging [J], Chemistry of Materials,2009,21,2422-2429.
    [122]陈炳煜,钟海政,邹炳锁,Ⅰ-Ⅲ-Ⅵ族半导体纳米晶,化学进展,2011,23,2276-2286.
    [123]Connor S T, Hsu C-M, Weil B D, et al., Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods [J], Journal of the American Chemical Society,2009,131,4962-4966.
    [124]Nairn J J, Shapiro P J, Twamley B, et al., Preparation of Ultrafine Chalcopyrite Nanoparticles Via the Photochemical Decomposition of Molecular Single-Source Precursors [J], Nano Letters,2006,6,1218-1223.
    [125]Kruszynska M, Borchert H, Parisi J, et al., Synthesis and Shape Control of CuInS2 Nanoparticles [J], Journal of the American Chemical Society,2010,132, 15976-15986.
    [126]Courtel F M, Hammami A, Imbeault R, et al., Synthesis of N-Type CuInS2 Particles Using N-Methylimidazole, Characterization and Growth Mechanism [J], Chemistry of Materials,2010,22,3752-3761.
    [127]Greenham N C, Peng X and Alivisatos A P, Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity [J], Physical Review B,1996, 54,17628-17637.
    [128]Gu Z, Zou L, Fang Z, et al., One-Pot Synthesis of Highly Luminescent CdTe/CdS Core/Shell Nanocrystals in Aqueous Phase [J], Nanotechnology,2008,19,135604.
    [129]Zhang J Z, Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles:Effects of Size and Surface [J], Accounts of Chemical Research,1997,30,423-429.
    [130]Cumberland S L, Hanif K M, Javier A, et al., Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials [J], Chemistry of Materials,2002,14,1576-1584.
    [131]Schalley C A, Muller T, Linnartz P, et al., Mass Spectrometric Characterization and Gas-Phase Chemistry of Self-Assembling Supramolecular Squares and Triangles [J], Chemistry-A European Journal,2002,8,3538-3551.
    [132]Li X, Kikugawa N and Ye J, Nitrogen-Doped Lamellar Niobic Acid with Visible Light-Responsive Photocatalytic Activity [J], Advanced Materials,2008,20, 3816-3819.
    [133]Bae W K, Char K, Hur H, et al., Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients [J], Chemistry of Materials,2008,20,531-539.
    [134]Norris D J, Efros A L and Erwin S C, Doped Nanocrystals [J], Science,2008,319, 1776-1779.
    [135]Suyver J F, Wuister S F, Kelly J J, et al., Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+[J], Nano Letters,2001,1,429-433.
    [136]Bol A A and Meijerink A, Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+.1. Surface Passivation and Mn2+Concentration [J], The Journal of Physical Chemistry B,2001,105,10197-10202.
    [137]Pradhan N, Goorskey D, Thessing J, et al., An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals [J], Journal of the American Chemical Society,2005,127,17586-17587.
    [138]Nag A, Chakraborty S and Sarma D D, To Dope Mn2+in a Semiconducting Nanocrystal [J], Journal of the American Chemical Society,2008,130,10605-10611.
    [139]Chen D, Viswanatha R, Ong G L, et al., Temperature Dependence of "Elementary Processes" in Doping Semiconductor Nanocrystals [J], Journal of the American Chemical Society,2009,131,9333-9339.
    [140]Wang C, Gao X, Ma Q, et al., Aqueous Synthesis of Mercaptopropionic Acid Capped Mn2+-Doped ZnSe Quantum Dots [J], Journal of Materials Chemistry,2009,19, 7016-7022.
    [141]Zheng J, Yuan X, Ikezawa M, et al., Efficient Photoluminescence of Mn2+Ions in MnS/ZnS Core/Shell Quantum Dots [J], The Journal of Physical Chemistry C,2009, 113,16969-16974.
    [142]Zheng J, Ji W, Wang X, et al., Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell [J], The Journal of Physical Chemistry C,2010,114,15331-15336.
    [143]Zheng F, Ping W, Xinhua Z, et al., Synthesis of Highly Luminescent Mn:ZnSe/ZnS Nanocrystals in Aqueous Media [J], Nanotechnology,2010,21,305604.
    [144]Srivastava B B, Jana S, Karan N S, et al., Highly Luminescent Mn-Doped ZnS Nanocrystals:Gram-Scale Synthesis [J], The Journal of Physical Chemistry Letters, 2010,1,1454-1458.
    [145]Acharya S, Sarma D D, Jana N R, et al., An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals [J], The Journal of Physical Chemistry Letters,2009,1, 485-488.
    [146]Zeng R, Rutherford M, Xie R, et al., Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents [J], Chemistry of Materials,2010,22, 2107-2113.
    [147]Zhu D, Jiang X, Zhao C, et al., Green Synthesis and Potential Application of Low-Toxic Mn:ZnSe/ZnS Core/Shell Luminescent Nanocrystals [J], Chemical Communications,2010,46,5226-5228.
    [148]Karan N S, Sarma D D, Kadam R M, et al., Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals [J], The Journal of Physical Chemistry Letters,2010,1, 2863-2866.
    [149]Shen H, Wang H, Li X, et al., Phosphine-Free Synthesis of High Quality ZnSe, ZnSe/ZnS, and Cu-, Mn-Doped ZnSe Nanocrystals [J], Dalton Transactions,2009, 10534-10540.
    [150]Corrado C, Hawker M, Livingston G, et al., Enhanced Cu Emission in ZnS Cu,Cl/ZnS Core-Shell Nanocrystals [J], Nanoscale,2010,2,1213-1221.
    [151]Jana S, Srivastava B B, Acharya S, et al., Prevention of Photooxidation in Blue-Green Emitting Cu Doped ZnSe Nanocrystals [J], Chemical Communications,2010,46, 2853-2855.
    [152]Stouwdam J W and Janssen R A J, Electroluminescent Cu-Doped CdS Quantum Dots [J], Advanced Materials,2009,21,2916-2920.
    [153]Chen Y, Huang L, Li S, et al., Aqueous Synthesis of Glutathione-Capped Cu+ and Ag+-Doped ZnxCd1-xS Quantum Dots with Full Color Emission [J], Journal of Materials Chemistry C,2013,1,751-756.
    [154]Sarkar S, Karan N S and Pradhan N, Ultrasmall Color-Tunable Copper-Doped Ternary Semiconductor Nanocrystal Emitters [J], Angewandte Chemie International Edition, 2011,50,6065-6069.
    [155]刘晓艳,曹健,郎集会等,Mn、Cu、Y掺杂ZnS纳米晶体的制备及表征[J],吉林师范大学学报:自然科学版,2011,32,28-30.
    [156]Corrado C, Jiang Y, Oba F, et al., Synthesis, Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals [J], The Journal of Physical Chemistry A,2009,113, 3830-3839.
    [157]Zhong X, Liu S, Zhang Z, et al., Synthesis of High-Quality CdS, ZnS, and ZnxCd1-xS Nanocrystals Using Metal Salts and Elemental Sulfur [J], Journal of Materials Chemistry,2004,14,2790-2794.
    [158]Kamat P V, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J], The Journal of Physical Chemistry C,2008,112,18737-18753.
    [159]Sapra S, Prakash A, Ghangrekar A, et al., Emission Properties of Manganese-Doped ZnS Nanocrystals [J], The Journal of Physical Chemistry B,2005,109,1663-1668.
    [160]Califano M, Franceschetti A and Zunger A, Temperature Dependence of Excitonic Radiative Decay in CdSe Quantum Dots: The Role of Surface Hole Traps [J], Nano Letters,2005,5,2360-2364.
    [161]Zhang J, Zhang X and Zhang J Y, Size-Dependent Time-Resolved Photoluminescence of Colloidal CdSe Nanocrystals [J], The Journal of Physical Chemistry C,2009,113, 9512-9515.
    [162]Talapin D V, Mekis I, Gotzinger S, et al., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals [J], The Journal of Physical Chemistry B,2004,108, 18826-18831.
    [163]Talapin D V, Koeppe R, Gotzinger S, et al., Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality [J], Nano Letters,2003,3,1677-1681.
    [164]Xie R and Peng X, Synthesis of Cu-Doped InP Nanocrystals (D-Dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable Nir Emitters [J], Journal of the American Chemical Society,2009,131,10645-10651.
    [165]Zhong H, Wang Z, Bovero E, et al., Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime:Synthesis, Optical Properties, and Electroluminescence [J], The Journal of Physical Chemistry C,2011,115,12396-12402.
    [166]Tan Z, Zhang Y, Xie C, et al., Near-Band-Edge Electroluminescence from Heavy-Metal-Free Colloidal Quantum Dots [J], Advanced Materials,2011,23, 3553-3558.
    [167]Chen B, Zhong H, Zhang W, et al., Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals:Off-Stoichiometry Effects and Improved Electroluminescence Performance [J], Advanced Functional Materials,2012,22, 2081-2088.
    [168]Murray C B, Norris D J and Bawendi M G, Synthesis and Characterization of Nearly Monodisperse CdE (E= Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites [J], Journal of the American Chemical Society,1993,115,8706-8715.
    [169]Hines M A and Guyot-Sionnest P, Bright Uv-Blue Luminescent Colloidal ZnSe Nanocrystals [J], The Journal of Physical Chemistry B,1998,102,3655-3657.
    [170]Qu L, Peng Z A and Peng X, Alternative Routes toward High Quality CdSe Nanocrystals [J], Nano Letters,2001,1,333-337.
    [171]Yu W W and Peng X, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers [J], Angewandte Chemie International Edition,2002,41,2368-2371.
    [172]Kairdolf B A, Smith A M and Nie S, One-Pot Synthesis, Encapsulation, and Solubilization of Size-Tuned Quantum Dots with Amphiphilic Multidentate Ligands [J], Journal of the American Chemical Society,2008,130,12866-12867.
    [173]de Mello Donega C, Hickey S G, Wuister S F, et al., Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals [J], The Journal of Physical Chemistry B,2002,107,489-496.
    [174]Deng Z, Cao L, Tang F, et al., A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis [J], The Journal of Physical Chemistry B,2005,109, 16671-16675.
    [175]Zhong X, Feng Y and Zhang Y, Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution [J], The Journal of Physical Chemistry C,2007,111,526-531.
    [176]Gaponik N, Hickey S G, Dorfs D, et al., Progress in the Light Emission of Colloidal Semiconductor Nanocrystals [J], Small,2010,6,1364-1378.
    [177]Reiss P, Protiere M and Li L, Core/Shell Semiconductor Nanocrystals [J], Small,2009, 5,154-168.
    [178]Cho J, Jung Y K and Lee J-K, Kinetic Studies on the Formation of Various Ⅱ-Vi Semiconductor Nanocrystals and Synthesis of Gradient Alloy Quantum Dots Emitting in the Entire Visible Range [J], Journal of Materials Chemistry,2012,22, 10827-10833.
    [179]Maikov G I, Vaxenburg R, Sashchiuk A, et al., Composition-Tunable Optical Properties of Colloidal Ⅳ-Ⅵ Quantum Dots, Composed of Core/Shell Heterostructures with Alloy Components [J], ACS Nano,2010,4,6547-6556.
    [180]Sarma D D, Nag A, Santra P K, et al., Origin of the Enhanced Photoluminescence from Semiconductor CdSes Nanocrystals [J], The Journal of Physical Chemistry Letters,2010,1,2149-2153.
    [181]Owen J S, Chan E M, Liu H, et al., Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals [J], Journal of the American Chemical Society, 2010,132,18206-18213.
    [182]Li Z, Ji Y, Xie R, et al., Correlation of CdS Nanocrystal Formation with Elemental Sulfur Activation and Its Implication in Synthetic Development [J], Journal of the American Chemical Society,2011,133,17248-17256.
    [183]Reiss P, Bleuse J and Pron A, Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J], Nano Letters,2002,2,781-784.
    [184]Liu L and Zhong X, A General and Reversible Phase Transfer Strategy Enabling Nucleotides Modified High-Quality Water-Soluble Nanocrystals [J], Chemical Communications,2012,48,5718-5720.
    [185]Zrazhevskiy P, Sena M and Gao X, Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery [J], Chemical Society Reviews,2010,39, 4326-4354.
    [186]Kamat P V, Tvrdy K, Baker D R, et al., Beyond Photovoltaics:Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells [J], Chemical Reviews,2010,110, 6664-6688.
    [187]Kwon S G, Piao Y, Park J, et al., Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by "Heating-up" Process [J], Journal of the American Chemical Society, 2007,129,12571-12584.
    [188]Manna L, Scher E C and Alivisatos A P, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals [J], Journal of the American Chemical Society,2000,122,12700-12706.
    [189]Pang Q, Zhao, Cai Y, et al., CdSe Nano-Tetrapods:D Controllable Synthesis, Structure Analysis, and Electronic and Optical Properties [J], Chemistry of Materials,2005,17, 5263-5267.
    [190]Huang J, Kovalenko M V and Talapin D V, Alkyl Chains of Surface Ligands Affect Polytypism of CdSe Nanocrystals and Play an Important Role in the Synthesis of Anisotropic Nanoheterostructures [J], Journal of the American Chemical Society,2010, 132,15866-15868.
    [191]Asokan S, Krueger K M, Colvin V L, et al., Shape-Controlled Synthesis of CdSe Tetrapods Using Cationic Surfactant Ligands [J], Small,2007,3,1164-1169.
    [192]Lynn Ko W Y, Bagaria H G, Asokan S, et al., CdSe Tetrapod Synthesis Using Cetyltrimethylammonium Bromide and Heat Transfer Fluids [J], Journal of Materials Chemistry,2010,20,2474-2478.
    [193]Mohamed M B, Tonti D, Salman A A, et al., Chemical Synthesis and Optical Properties of Size-Selected CdSe Tetrapod-Shaped Nanocrystals [J], ChemPhysChem, 2005,6,2505-2507.
    [194]Manna L, Milliron D J, Meisel A, et al., Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals [J], Nat Mater,2003,2,382-385.
    [195]Zlateva G, Zhelev Z, Bakalova R, et al., Precise Size Control and Synchronized Synthesis of Six Colors of CdSe Quantum Dots in a Slow-Increasing Temperature Gradient [J], Inorganic Chemistry,2007,46,6212-6214.
    [196]Liu L, Peng Q and Li Y, Preparation of CdSe Quantum Dots with Full Color Emission Based on a Room Temperature Injection Technique [J], Inorganic Chemistry,2008,47, 5022-5028.
    [197]Liu L, Zhuang Z, Xie T, et al., Shape Control of CdSe Nanocrystals with Zinc Blende Structure [J], Journal of the American Chemical Society,2009,131,16423-16429.
    [198]Wang Z L, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies [J], The Journal of Physical Chemistry B,2000,104,1153-1175.
    [199]Zhang H, Shen L and Guo S, Insight into the Structures and Properties of Morphology-Controlled Legs of Tetrapod-Like ZnO Nanostructures [J], The Journal of Physical Chemistry C,2007,111,12939-12943.
    [200]Yong K-T, Sahoo Y, Swihart M T, et al., Shape Control of CdS Nanocrystals in One-Pot Synthesis [J], The Journal of Physical Chemistry C,2007,111,2447-2458.
    [201]Chu H, Li X, Chen G, et al., Shape-Controlled Synthesis of CdS Nanocrystals in Mixed Solvents [J], Crystal Growth & Design,2005,5,1801-1806.
    [202]Peng X, Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals [J], Advanced Materials,2003,15,459-463.
    [203]Zhang Y, Zhu J, Song X, et al., Controlling the Synthesis of CoO Nanocrystals with Various Morphologies [J], The Journal of Physical Chemistry C,2008,112, 5322-5327.
    [204]Xie R, Li Z and Peng X, Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals [J], Journal of the American Chemical Society,2009,131,15457-15466.
    [205]Wang J, Li B, Chen J, et al., Diethylenetriamine-Assisted Synthesis of CdS Nanorods under Reflux Condition and Their Photocatalytic Performance [J], Journal of Alloys and Compounds,2012,535,15-20.
    [206]Zuo T, Sun Z, Zhao Y, et al., The Big Red Shift of Photoluminescence of Mn Dopants in Strained CdS:A Case Study of Mn-Doped MnS-CdS Heteronanostructures [J], Journal of the American Chemical Society,2010,132,6618-6619.
    [207]Hazarika A, Layek A, De S, et al., Ultranarrow and Widely Tunable Mn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of ZnS-CdS Alloys [J], Physical Review Letters,2013,110,267401/1-267401/5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700