用户名: 密码: 验证码:
新型无碘准固态电解质的研制及其在染料敏化太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪九十年代诞生的染料敏化太阳能电池(DSSCs)以其成本低廉、性能优越的特点成为硅基光伏器件最具竞争力的替代产品。但传统的含I-/13-氧还电对的有机液态电解质存在易挥发、有毒、吸光、侵蚀金属电流收集极和封装困难等缺陷,影响DSSC的规模化生产和长期稳定性。为此,本论文研发了一些新型不含碘单质(12)的准固态电解质,并探讨了电解质组分对其结晶行为、粘度、离子电导率及由其组装的DSSCs的光电化学性能的影响。获得的主要实验现象和研究结论归纳如下:
     1.采用聚氧化乙烯(PEO)为胶凝剂,CuI为p-型空穴传输材料,LiC104为电荷传输助剂制备了CuI凝胶电解质。该电解质中的PEO能有效地抑制CuI的快速结晶,促进TiO2/CuI电解质形成良好的界面接触;而LiC104能将PEO转化为无定形基质以利于电荷传输。在含20wt%PEO的CuI凝胶电解质中掺杂3wt%LiClO4时获得了最高的离子电导率(8.7×10-3S cm-1),且吸附在Ti02表面的Li+能改善电子从激发态染料到Ti02的注入效率,极大地提高了DSSC的效率(2.81%)。与未加PEO(1.46%)或LiClO4(1.30%)的CuI电解质组装的DSSC相比,效率提高了96-116%。这种CuI凝胶电解质具有成本低、操作简便、环保高效等特点,为固态空穴传输材料在DSSC中的应用开辟了新的途径。
     2.采用PEO为胶凝剂,离子液体1,2-二甲基-3-丙基咪唑碘(DMPⅡ)为电荷传输介质和碘源制备了离子液体凝胶电解质。由含20wt%PEO的离子液体凝胶电解质组装的DSSC能在不含12的情况下正常工作,并达到4.05%的效率,表明在电解质中去除12以规避其对DSSC困扰的思路是可行的。掺杂5wt%KI可极大地提高电解质的离子电导率(1.63×10-2S cm-1),且K+能抑制PEO的结晶、促进电子在TiO2/染料/电解质界面的迁移,从而将电池的效率提高到5.87%,效率改善了45%。这种离子液体凝胶电解质具有成分简单、操作简便和无毒不泄漏等特点,可为准固态DSSC提供新的高效电解质材料。
     3.以1-丁基-3-甲基咪唑碘(BMⅡ)为电荷传输介质和碘源,双三氟甲磺酰亚胺锂(LiTFSI)为电荷传输助剂,采用低粘度的离子液体1-丁基-3-甲基咪唑硫氰酸盐(BMISCN)调节其流变性制备了二元离子液体电解质。由BMⅡ组装的DSSC能在不含12的情况下正常工作但仅获得了2.66%的效率,添加低粘度的BMISCN可降低电解质的粘度并提高电解质中的电荷交换反应,由其组装的DSSC获得了更高效率(4.33%)。LiTFSI不仅能提高电解质的离子电导率,还能改善DSSC中电荷载流子的传输并抑制电荷复合,从而获得了5.55%的效率(与未掺杂相比提高了28%)。这种二元离子液体电解质具有流变性好、无挥发和腐蚀性等特点,为离子液体电解质的研发与应用提供了新思路。
     4.为克服离子液体电解质的流动性问题,以丁二腈作为固态溶剂和基质,离子液体BMⅡ和1-丙基-3-甲基咪唑碘(PMⅡ)为电荷传输介质和碘源制备了新型塑晶离子液体电解质。掺杂5wt%LiClO4到塑晶电解质中时,Li+与丁二腈能通过配位作用将结晶性基质转化为无定形含盐基质,改善了电解质的离子电导率,还能通过静电作用力吸引-和形成的13-以促进其电荷交换反应,进而将DSSC的效率提高到5.50%(与未掺杂相比提高了157%)。这种不含12的塑晶离子液体电解质具有机械性能好、便于封装以及无挥发和腐蚀性等特点,在柔性或固态DSSC的规模化生产方面具有较好的应用前景。
     5.为验证不含I2的离子液体凝胶电解质在染料共敏化DSSC中应用的可行性,采用分步共敏化方法将光谱响应范围互补的有机染料OD-8与D149或SQ2联合对Ti02光阳极进行共敏化并组装成准固态DSSC,利用OD-8和D149或SQ2的吸收光谱匹配互补的特性提高电池的光捕获效率。OD-8/D149(6.21%)或OD-8/SQ2(6.10%)共敏化DSSC的效率均远高于OD-8(4.53%),D149(5.46%)和SQ2(2.86%)单一染料敏化的DSSC此外,不含I2的离子液体凝胶电解质在共敏化DSSC中能成功发挥电解质的功能,且表现出比传统有机液态电解质组装的共敏化DSSC更高的短路电流、开路电压和电池效率,表明不含I2的离子液体凝胶电解质在共敏化DSSC中具有显著的应用前景,也为替代价格昂贵的钌联毗啶类染料和发展宽光谱响应、高效环保的DSSCs提供了一些新的思路。
Due to its low-cost and high efficiency, dye-sensitized solar cells (DSSCs) have been the most promising candidate for traditional silicon solar cells since it was first invented in1991. However, traditional organic liquid electrolytes composed of I-/I3-redox couple are volatile, poisonous, corrosive and with optical absorption, which hurdles the encapsulation of DSSC and limits its industrialization. Thus, we carried out iodine free quasi solid-state electrolytes based on different matrix, and broadened spectral response of photoanodes. The main contents and conclusions are as follows:
     1. CuI gel electrolyte is prepared by employing CuI as hole transport material, PEO as gelator and LiC104as dopant. It is concluded that PEO can inhibit the crystallization of Cul, promoting well interfacial contact between TiO2/CuI. Cul gel electrolyte doped with3wt%LiClO4achieves the highest ionic conductivity of8.7×10-3S cm-1. With LiClO4doped, PEO can be transformed to highly amorphous matrix. In addition, Li+absorbed on TiO2would enhance the electron injection efficiency. With PEO and LiC104participated Cul electrolyte, DSSC achieves an overall efficiency of2.81%, showing a96-116%improvement. The above Cul gel electrolyte is proved to be low cost, simple and eco-friendly, which offers us novel hole transport material for solid-state DSSC.
     2. Ionic liquid gel electrolyte is prepared by employing1,2-dimethyl-3-propyl imidazolium iodide (DMPII) as charge transfer intermediate, PEO as gelator and KI as charge transfer enhancer. With KI participation, ionic conductivity goes up to16.32×10-3S cm-1. The existance of K+in electrolyte can inhibit the crystallization of PEO, and promote electron transfer between TiO2/dye/electrolyte. Compared to the DSSC based on ionic liquid electrolyte without KI (4.05%),5wt%KI doped electrolyte based DSSC obtains an improvement of45%, with Jsc of14.11mA cm-2, Voc of0.71∨and η of5.87%, respectively. Due to the advantages of simple, highly efficient and eco-friendly, the above ionic liquid gel electrolyte provides reference for the development of quasi solid-state DSSCs.
     3. To improve the rheological behavior of ionic liquid electrolyte, binary ionic liquid electrolyte is prepared by employing BMII as charge transfer intermediate, LiTFSI as charge transfer enhancer and BMISCN with low viscosity as dopant. Ionic liquid BMII based DSSC without I2can work well and obtain a low efficiency of2.66%, addition of BMISCN can decrease the viscosity of electrolyte and improve the charge exchange reaction, leading to a higher efficiency of4.33%. LiTFSI doped with electrolyte could not only increase its ionic conductivity, but also improve the transportation of charge carrier and inhibit charge recombination in DSSC, finally yields the highest efficiency of5.55%, with an increasement of28%. I2is demonstrated to be unnecessary in the binary ionic liquid electrolyte. Since the bove binary ionic liquid electrolyte is proved to be simple, non-volatile and eco-friendly, it offers us novel suggestion for development of ionic liquid electrolytes.
     4. In order to overcome the flowability of ionic liquid electrolyte, plastic crystal ionic liquid electrolyte is prepared by employing BMII and PMII as charge transfer intermediate, succinonitrile as solid solvent. It is concluded that5wt%LiClO4doped in plastic crystal ionic liquid electrolyte could transform succinonitrile matrix into amorphous matrix, increase the ionic conductivity of electrolyte and promote the charge exchange reaction between I-and I3-through electrostatic attraction, therefore improves the efficiency of DSSC up to5.50%, revealing an improvement of157%compared to that of without LiC104doped. Attributing to its flexible, non volatile and eco-friendly, the above plastic crystal ionic liquid electrolyte is beneficial for the industrialization development of flexible and solid-state DSSCs.
     5. To demonstrate that iodine-free ionic liquid gel electrolyte is workable in cosensitized DSSC, we combined organic dye OD-8and D149or SQ2with complementary spectral response for stepwise cosensitization of photoanode, and assembled the quasi solid state DSSCs. It is hopeful to take advantage of OD-8and D149or SQ2's complementary spectral response to increase the light harvesting efficiency of DSSC. The overall efficiencies of OD-8/D149(6.21%) and OD-8/SQ2(6.10%) cosensitized DSSCs are superior to that of OD-8(4.53%), D149(5.46%) and SQ2(2.86%) sensitized DSSCs. In addition, iodine-free ionic liquid gel electrolyte can operate successfully in cosensitized DSSC, and achieves higher Jsc, Voc and r(than that of organic liquid electrolyte based DSSC, suggesting that iodine-free ionic liquid gel electrolyte is promising in cosensitized DSSC and provides us novel method for preparation of DSSCs with broad spectra response and eco-friendly.
引文
[1]M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic Chemistry,2005, 44,6841-6851.
    [2]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology:the case for thin-film solar cells, Science,1999,285,692-698.
    [3]P. Wurfel, Physics of solar cells:from basic principles to advanced concepts, Wiley-VCH, Weinheim, 2005.
    [4]K. H. Arakawa, in Handbook of Photovoltaic Science and Engineering, ed, A. Luque and S. Hegedus, Wiley-VCH, Weinheim.,2005,663-700.
    [5]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-739.
    [6]D. M. Li, Y, H. Luo, Q. B. Meng, Towards optimization of materials for dye-sensitized solar cells, Advanced Materials,2009,21,1-5.
    [7]M. Gratzel, Recent advances in sensitized mesoscopic solar cells, Accounts of Chemical Research, 2009,42,1788-1798.
    [8]D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles, The Journal of Physical Chemistry C,2008,112,8486-8494.
    [9]K. Fan, T. Y. Peng, J. N. Chen, J. B. Xia, A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature, Nanoscale,2011,3, 3900-3906.
    [10]K. Fan, J. N. Chen, F. Yang, T. Y. Peng, Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate, Journal of Materials Chemistry, 2012,22,4681-4686.
    [11]M. D. McGehee, Paradigm shifts in dye-sensitized solar cells. Science,2011,334,607-608.
    [12]A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Yu. Yeh, M. Gratzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells:the role of benzene spacers, Angewandte Chemie,2014,126,3017-3021
    [13]A. Hagfeldt, L. C. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chemical Reviews,2010, 110,6595-6663.
    [14]T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, M. Gratzel, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins, Angewandte Chemie International Edition,2010,49,6646-6649.
    [15]P. Gao, Y. J. Kim, J. Ho. Yum, T. W. Holcomb, M. K. Nazeeruddin, M. Gratzel, Facile synthesis of a bulky BPTPA donor group suitable for cobalt electrolyte based dye sensitized solar cells, Journal of Materials Chemistry A,2013,1,5535-5544.
    [16]F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, Y.-B. Cheng, Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells, Advanced Functional Materials,2010,20,1301-1305.
    [17]X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes:efficient electron injection and transfer, Advanced Functional Materials,2010,20,509-515.
    [18]H. P. Li, Z. B. Yang, L. B. Qiu, X. Fang, H. Sun, P. N. Chen, S. W. Pan, H. S. Peng, Stable wire-shaped dye-sensitized solar cells based on eutectic melts, Journal of Material Chemistry A,2014,2, 3841-3846.
    [19]S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, H. J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell, Nano Letters,2011,11,666-671.
    [20]X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-cost copper zinc tin sulflde counter electrodes for high-efficiency DSSCs, Angewandte Chemie International Edition,2011,50,11739-11742.
    [21]Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello, S.-T. Lee, Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for DSSC application, ACS Nano,2010,4,3482-3488.
    [22]L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent, Energy Environmental Science,2012, 5,6057-6060.
    [23]S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, N. Tetreault, Dye-sensitized solar cell based on a three-dimensional photonic crystal, Nano Letters, 2010,10,2303-2309.
    [24]L. E. Polander, A. Yella, B. F. E. Curchod, N. A. Astani, J. Teuscher, R. Scopelliti, P. Gao, S. Mathew, J.-E. Moser, I. Tavernelli, U. Rothlisberger, M. Gratzel, M. K. Nazeeruddin, J. Frey, Towards compatibility between ruthenium sensitizers and cobalt electrolytes in dye-sensitized solar cells, Angewandte Chemie International Edition,2013,52,8731-8735.
    [25]X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, T. E. Mallouk, Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires, Angewandte Chemie, 2012,124,2781-2784.
    [26]G.-R Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells, Angewandte Chemie International Edition,2010,49,3653-3656.
    [27]J. Xia, L. Chen, S. Yanagida, Application of polypyrrole as a counter electrode for a dye-sensitized solar cell, Journal of Materials Chemistry,2011,21,4644-4649.
    [28]K. Park, Q. Zhang, B. B. Garcia, X. Zhou, Y.-H. Jeong, G. Cao, Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells, Advanced Materials,2010,22,2329-2332.
    [29]F. Sauvage, S. Chhor, A. Marchioro, J.-E. Moser, M. Graetzel, Butyronitrile-hased electrolyte for dye-sensitized solar cells, Journal of the American Chemical Society,2011,133,13103-13109.
    [30]S. W. Pan, Z. B. Yang, H. P. Li, L. B. Qiu, H. Sun, H. S. Peng, Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte, Journal of the American Chemical Society,2013,135, 10622-10625.
    [31]Y. Qiu, W. Chen, S. Yang, Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells, Angewandte Chemie,2010,122, 3757-3761.
    [32]A. Listorti, B. O'Regan, J. R. Durrant, Electron transfer dynamics in dye-sensitized solar cells, Chemistry of Materials,2011,23,3381-3399.
    [33]L. Kavan, J. H. Yum, M. Gratzel, Graphene nanoplatelets outperforming platinum as the in electrocatalyst co-bipyridine-mediated dye-sensitized solar cells, Nano Letters,2011,11,5501-5506.
    [34]H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique, Energy Environmental Science, 2011,4,2630-2637.
    [35]C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin, P. T. Chou, Ruthenium (Ⅱ) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells, Angewandte Chemie International Edition,2011,50,2054-2058.
    [36]C. Xu, J. Wu, U. V. Desai, D. Gao, Multilayer assembly of nanowire arrays for dye-sensitized solar cells, Journal of the American Chemical Society,2011,133,8122-8125.
    [37]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science,2011,334,629-634.
    [38]G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells, Accounts of Chemical Research,2009,42,1819-1826.
    [39]J. R. Jennings, Q. Wang, Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells, The Journal of Physical Chemistry C,2009,114,1715-1724.
    [40]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states, ACS Nano,2010,4,6032-6038.
    [41]D. Kuang, C. Klein, H. J. Snaith, J. E. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin, M. Gratzel, Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:influence of lithium ions on the photovoltaic performance of liquid and solid-state cells, Nano Letters,2006,6,769-773.
    [42]S. E. Koops, B. O'Regan, P. R. F. Barnes, J. R. Durrant, Parameters influencing the efficiency of electron injection in dye-sensitized solar cells, Journal of the American Chemical Society,2009,131, 4808-4818.
    [43]K. Kalyanasundaram, M. Gratzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews,1998,177,347-414.
    [44]C. A. Kelly, G. J. Meyer, Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces, Coordination Chemistry Reviews,2001,211,295-315.
    [45]G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells, The Journal of Physical Chemistry B,2001,105,6867-6873.
    [46]G. Boschloo, L. Haggman, A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, The Journal of Physical Chemistry B,2006,110,13144-13150.
    [47]K. Hara, Y. Danoh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells, Langmuir,2004,20,4205-4210.
    [48]C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability, The Journal of Physical Chemistry C,2009,113,21779-21783.
    [49]Z. S. Wang, K. Sayama, H. Sugihara, Efficient eosiny dye-sensitized solar cell containing Br/Br3-electrolyte, The Journal of Physical Chemistry B,2005,109,22449-22455.
    [50]C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, L. Sun, Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br-/Br3-electrolytes, Organic Letters,2009,11,5542-5545.
    [51]B. V. Bergeron, A. Marton, G. Oskam, G. J. Meyer, Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators, The Journal of Physical Chemistry B,2004,109,937-943.
    [52]P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, M. Gratzel, A solvent-free, SeCN-/(SeCN)3'based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells, Journal of the American Chemical Society,2004,126,7164-7165.
    [53]A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture, Journal of the American Chemical Society,2008,130,4007-4015.
    [54]H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun, Organic redox couples and organic counter electrode for efficient organic DSSCs, Journal of the American Chemical Society,2011,133,9413-9422.
    [55]D. Li, H. Li, Y. Luo, K. Li, Q. Meng, M. Armand, L. Chen, Non-Corrosive, Non-absorbing organic redox couple for dye-sensitized solar cells, Advanced Functional Materials,2010,20,3358-3365.
    [56]M. Cheng, X. Yang, S. Li, X. Wang, L. Sun, Efficient dye-sensitized solar cells based on an iodine-free electrolyte using 1-cysteine/1-cystine as a redox couple, Energy Environmental Science, 2012,5,6290-6293.
    [57]T. Daeneke, T. H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes, Nature Chemistry,2011,3,211-215.
    [58]S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells, Journal of the American Chemical Society,2005,127,9648-9654.
    [59]T. Daeneke, Y. Uemura, N. W. Duffy, A. J. Mozer, N. Koumura, U. Bach, L. Spiccia, Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple, Advanced Materials,2012,24,1222-1225.
    [60]Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, High-efficiency organic dye-sensitized solar cells with a copper redox shuttle, Chemical Communications (Camb),2011,47,4376-4378.
    [61]T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, J. T. Hupp, Ni(Ⅲ)/(Ⅳ) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells, Journal of the American Chemical Society,2010,132,4580-4582.
    [62]A. M. Spokoyny, T. C. Li, O. K. Farha, C. W. Machan, C. She, C. L. Stern, T. J. Marks, J. T. Hupp, C. A. Mirkin, Electronic tuning of nickel-based bis(dicarbollide) redox shuttles in dye-sensitized solar cells, Angewandte Chemie International Edition,2010,49,5339-5343.
    [63]H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Con(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells, The Journal of Physical Chemistry B,2001,105,10461-10464.
    [64]S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozzi, Substituted polypyridine complexes of cobalt(Ⅱ/Ⅲ) as efficient electron-transfer mediators in dye-sensitized solar cells, Journal of the American Chemical Society,2002,124,11215-11222.
    [65]M. J. Devries, M. J. Pellin, J. T. Hupp, Dye-sensitized solar cells:driving-force effects on electron recombination dynamics with cobalt-based shuttles, Langmuir,2010,26,9082-9087.
    [66]K. B. Aribia, T. Moehl, S. M. Zakeeruddin, M. Gratzel, Tridentate cobalt complexes as alternative redox couples for high-efficiency dye-sensitized solar cells, Chemical Science,2013,4,454-459.
    [67]H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel, M. K. Nazeeruddin, Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator, Langmuir,2009,25,7602-7608.
    [68]E. A. Gibson, A. L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, L. Hammarstrom, A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V,Angewandte Chemie International Edition,2009,48,4402-4405.
    [69]M. Cheng, X. Yang, F. Zhang, J. Zhao, L. Sun, Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple, Angewandte Chemie,2012,124, 10034-10037.
    [70]Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Gratzel, The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical:an efficient, iodine-free redox mediator for dye-sensitized solar cells, Advanced Functional Materials,2008,18,341-346.
    [71]F. Kato, A. Kikuchi, T. Okuyama, K. Oyaizu, H. Nishide, Nitroxide radicals as highly reactive redox mediators in dye-sensitized solar cells, Angew Chem Int Ed Engl,2012,51,10177-10180.
    [72]C. Wu, Y. Gong, S. Han, T. Jin, B. Chi, J. Pu, L. Jian, Electrochemical characterization of a novel iodine-free electrolyte for dye-sensitized solar cell, Electrochimica Acta,2012,71,33-38.
    [73]E. Olsen, G. Hagen, S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing Lil/I2, Solar Energy Materials and Solar Cells,2000,63,267-273.
    [74]H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Solid-state composite electrolyte Lil/ 3-hydroxypropionitrile/Si02 for dye-sensitized solar cells, Journal of the American Chemical Society, 2005,127,6394-6401.
    [75]H. Wang, X. Liu, Z. Wang, H. Li, D. Li, Q. Meng, L. Chen, Effect of iodine addition on solid-state electrolyte LiI/3-hydroxypropionitrile (1:4) for dye-sensitized solar cells, The Journal of Physical Chemistry B,2006,110,5970-5974.
    [76]N. Ikeda, K. Teshima, T. Miyasaka, Conductive polymer-carbon-imidazolium composite:a simple means for constructing solid-state dye-sensitized solar cells, Chemical Communications (Camb), 2006,1733-1735.
    [77]N. Ikeda, T. Miyasaka, A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide, Chemical Communications (Camb),2005,1886-1888.
    [78]N. Ikeda, T. Miyasaka, Plastic and solid-state dye-sensitized solar cells incorporating single-wall carbon nanotubes, Chemistry Letters,2007,36,466-467.
    [79]C.-P. Lee, L.-Y. Lin, P.-Y. Chen, R. Vittal, K.-C. Ho, All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor, Journal of Materials Chemistry,2010,20, 3619-3625.
    [80]W. S. Chi, D. K. Roh, S. J. Kim, S. Y. Heo, J. H. Kim, Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells, Nanoscale, 2013,5,5341-5348.
    [81]F. Cao, G. Oskam, P. C. Searson, A solid state, dye sensitized photoelectrochemical cell, The Journal of Physical Chemistry,1995,99,17071-17073.
    [82]Y. F. Chan, C. C. Wang, C. Y. Chen, Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated, Journal of Materials Chemistry A,2013,1,5479-5486.
    [83]Z. Tang, J. Wu, Q. Liu, M. Zheng, Q. Tang, Z. Lan, J. Lin, Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells, Journal of Power Sources,2012,203,282-287.
    [84]S.-H. Park, I. Y. Song, J. Lim, Y. S. Kwon, J. Choi, S. Song, J. R. Lee, T. Park, A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte, Energy Environmental Science,2013,6,1559-1564.
    [85]Q. Li, H. Chen, L. Lin, P. Li, Y. Qin, M. Li, B. He, L. Chu, Q. Tang, Quasi-solid-state dye-sensitized solar cell from polyaniline integrated poly (hexamethylene diisocyanate tripolymer/polyethylene glycol) gel electrolyte, Journal of Materials Chemistry A,2013,1,5326-5332.
    [86]K. F. Chen, C. H. Liu, C. K. Hsieh, C. L. Lin, H. K. Huang, C. H. Tsai, F. R. Chen, New fabrication proces s of long-life dye-sensitized solar cells by in situ gelation of quasi-solid polymer electrolytes, Journal of Power Sources,2014,247,939-946.
    [87]H. Sun, H. P. Li, X. You, Z. B. Yang, J. Deng, L. B. Qiu, H. S. Peng, Quasi-solid-state, coaxial, fi ber-shaped dye-sensitized solar cells, Journal of Materials Chemistry A,2014,2,345-349.
    [88]S. J. Park, K. Yoo, J.-Y. Kim, J. Y. Kim, D.-K. Lee, B. Kim, H. Kim, J. H. Kim, J. Cho, M. J. Ko, Water-based thixotropic polymer gel electrolyte for BSSCs, ACS Nano,2013,7,4050-4056.
    [89]Q. H. Li, Q. W. Tang, N. Dua, Y. C. Qina, J. Xiao, B. L. He, H. Y. Chen, L. Chu, Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells, Journal of Power Sources,2014,248,816-821.
    [90]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature,1998,395,583-585.
    [91]M. Hu, J. Z. Sun, Y. G. Rong, Y. Yang, L. F. Liu, X. Li, M. Forsyth, D. R. MacFarlane, H. W. Han, Enhancement of monobasal solid-state dye-sensitized solar cells with polymer electrolyte ass embling imidazolium iodide-functionalized silica nanoparticles, Journal of Power Sources,2014,248, 283-288.
    [92]B. Bozic-Weber, S. Y. Brauchli, E. C. Constable, S. O. Furer, C. E. Housecroft, I. A. Wright, Hole-transport functionalized copper(1) dye sensitized solar cells, Physical Chemistry Chemical Physics,2013,15,4500-4504.
    [93]I. Chung, B. Lee, J. He, R. P. Chang, M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature,2012,485,486-489.
    [94]P. Docampo, S. Guldin, M. Stefik, P. Tiwana, M. C. Orilall, S. Huttner, H. Sai, U. Wiesner, U. Steiner, H. J. Snaith, Control of solid-state dye-sensitized solar cell performance by block-copolymer-directed TiO2 synthesis, Advanced Functional Materials,2010,20,1787-1796.
    [95]C. Y. Hsu, Y. C. Chen, R. Y. Y. Lin, K. C. Ho, J. T. Lin, Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials, Physical Chemistry Chemical Physics,2012,14,14099-14109.
    [96]F. Li, J. R. Jennings, Q, Wang, Determining the conductivities of the two charge transport phases in solid-state dye-sensitized solar cells by impedance spectroscopy, The Journal of Physical Chemistry C,2013,117,10980-10989.
    [97]C. T. Weisspfennig, D. J. Hollman, C. Menelaou, S. D. Stranks, H. J. Joyce, M. B. Johnston, H. J. Snaith, L. M. Herz, Dependence of dye regeneration and charge collection on the pore-filling fraction in solid-state dye-sensitized solar cells, Advanced Functional Materials,2014,24,668-677.
    [98]B. O'Regan, F. Lenzmann, R. Muis, J. Wienke, A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and cuscn:analysis of pore filling and Ⅳ characteristics, Chemistry of Materials,2002,14,5023-5029.
    [99]M. Planells, A. Abate, D. J. Hollman, S. D. Stranks, V. Bharti, J. Gaur, D. Mohanty, S. Chand, H. J. Snaith, N. Robertson, Diacerylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells, Journal of Materials Chemistry A,2013,1,6949-6960.
    [100]C. L. Chen, T. W. Chang, S. C. Su, H. S. Teng, Y. L. Lee, High performance solid-state dye-sensitized solar cells based on poly(acrylonitrile-co-vinyl acetate)/TiO2 nanoparticles redox electrolytes, Journal of Power Sources,2014,247,406-411.
    [101]H. J. Snaith, L. Schmidt-Mende, Advances in liquid-electrolyte and solid-state dye-sensitized solar cells, Advanced Materials,2007,19,3187-3200.
    [102]M. Wang, S. J. Moon, M. Xu, K. Chittibabu, P. Wang, N. L. Cevey-Ha, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer, Small,2010,6,319-324.
    [103]W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter, The Journal of Physical Chemistry C,2011,115,7038-7043.
    [104]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells:effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, The Journal of Physical Chemistry B, 2001,105,12809-12815.
    [105]N. Mohmeyer, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, M. Gratzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators, Journal of Materials Chemistry,2004,14,1905-1909.
    [106]Q. Yu, C. Yu, F. Guo, J. Wang, S. Jiao, S. Gao, H. Li, L. Zhao, A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator, Energy Environmental Science, 2012,5,6151-6155.
    [107]Z. Huo, S. Dai, C. Zhang, F. Kong, X. Fang, L. Guo, W. Liu, L. Hu, X. Pan, K. Wang, Low molecular mass organogelator based gel electrolyte with effective charge transport property for long-term stable quasi-solid-state DSSCs, The Journal of Physical Chemistry B,2008,112,12927-12933.
    [108]Q. H. Li, X. X. Chen, Q. W. Tang, H. T. Xu, B. L. He, Y. C. Qin, Imbibition of polypyrrole into three-dimensional poly(hydroxyethyl methacrylate/glycerol) gel electrolyte for robust quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry A,2013,1,8055-8060.
    [109]A. F. Nogueira, J. R. Durrant, M. A. De Paoli, Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte, Advanced Materials,2001,13,826-830.
    [110]S. S. Yuan, Q. W. Tang, B. L. He, Y. Zhao, Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells, Journal of Power Sources,2014,260,225-232.
    [111]W. Kwon, Y. J. Chang, Y. C. Park, H. M. Jang, S. W. Rhee, A light scattering polymer gel electrolyte for high performance DSSCs, Journal of Materials Chemistry,2012,22,6027-6031.
    [112]M. Wang, X. Pan, X. Fang, L. Guo, W. Liu, C. Zhang, Y. Huang, L. Hu, S. Dai, A new type of electrolyte with a light-trapping scheme for high-efficiency quasi-solid-state dye-sensitized solar cells, Advanced Materials,2010,22,5526-5530.
    [113]Y. Zhou, W. Xiang, S. Chen, S. Fang, X. Zhou, J. Zhang, Y. Lin, Improvements of photocurrent by using modified SiO2 in the poly(ether urethane)/poly(ethylene oxide) polymer electrolyte for all-solid-state dye-sensitized solar cells, Chemical Communications (Camb),2009,3895-3897.
    [114]Z. Yu, D. Qin, Y. Zhang, H. Sun, Y. Luo, Q. Meng, D. Li, Quasi-solid-state dye-sensitized solar cell fabricated with poly ((3-hydroxyethyl methacrylate) based organogel electrolyte, Energy Environmental Science,2011,4,1298-1305.
    [115]V. Armel, J. M. Pringle, P. Wagner, M. Forsyth, D. Officer, D. R. MacFarlane, Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte, Chemical Communications (Camb),2011, 47,9327-9329.
    [116]D. R. MacFarlane, J. Huang, M. Forsyth, Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries, Nature,1999,402,792-794.
    [117]Q. Li, X. Chen, J. Zhao, L. Qiu, Y. Zhang, B. Sun, F. Yan, Organic ionic plastic crystal-based electrolytes for solid-state dye-sensitized solar cells, Journal of Materials Chemistry,2012,22, 6674-6679.
    [118]P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane, M. Gratzel, Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell, Journal of the American Chemical Society,2004,126,13590-13591.
    [119]D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Gratzel, Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte, Journal of the American Chemical Society, 2006,128,7732-7733.
    [120]L. Y. Chang, C. P. Lee, R. Vittal, J. J. Lin, K.-C. Ho, Enhanced performance of a DSSC with an amphiphilic polymer-gelled ionic liquid electrolyte, Journal of Materials Chemistry A,2013,1, 3055-3060.
    [121]J. Chen, T. Peng, W. Shi, R. Li, J. Xia, An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells, Electrochimica Acta,2013,107,231-237.
    [122]N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, M. Gratzel, An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry,2006,16,2978-2983.
    [123]M. Marszalek, F. D. Arendse, J. D. Decoppet, S. S. Babkair, A. A. Ansari, S. S. Habib, M. K. Wang, S. M. Zakeeruddin, M. Gratzel, Ionic liquid-sulfolane composite electrolytes for high-performance and stable dye-sensitized solar cells, Advanced Energy Materials,2013,1-8.
    [124]L. Wang, H. Zhang, R. Ge, C. Wang, W. Guo, Y. Shi, Y. Gao, T. Ma, First application of bis(oxalate)borate ionic liquids in high-performance DSSCs, RSC Advances,2013,3,12975-12980.
    [125]S. M. Zakeeruddin, M. Gratzel, Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells, Advanced Functional Materials,2009,19,2187-2202.
    [126]J. Zhao, F. Yan, L. Qiu, Y. Zhang, X. Chen, B. Sun, Benzimidazolyl functionalized ionic liquids as an additive for high performance DSSCs, Chemical Communications (Camb),2011,47,11516-11518.
    [127]M. Gorlov, L. Kloo, Ionic liquid electrolytes for dye-sensitized solar cells, Dalton Transactions,2008, 0,2655-2666.
    [128]X. Huang, D. Qin, X. Zhang, Y. Luo, S. Huang, D. Li,Q. Meng, The potential of eutectic mixtures as environmentally friendly, solvent-free electrolytes for DSSCs, RSC Advances,2013,3,6922-6929.
    [129]M. Marszalek, Z. Fei, D.-R. Zhu, R. Scopelliti, P. J. Dyson, S. M. Zakeeruddin, M. Gratzel, Application of ionic liquids containing tricyanomethanide [C(CN)s]-or tetracyanoborate [B(CN)4]-anions in dye-sensitized solar cells, Inorganic Chemistry,2011,50,11561-11567.
    [130]P. Terech, R. G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels, Chemical Review,1997,97,3133-3159.
    [131]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chemical Communications,2002,374-375.
    [132]Z. Huo, C. Zhang, X. Fang, M. Cai, S. Dai, K. Wang, Low molecular mass organogelator based gel electrolyte gelated by a quaternary ammonium halide salt for quasi-solid-state dye-sensitized solar cells, Journal of Power Sources,2010,195,4384-4390.
    [133]C. L. Chen, H. Teng, Y. L. Lee, In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells, AdvancedMaterials,2011,23,4199-4204.
    [134]J. Y. Bae, D. Lim, H. G. Yun, M. Kim, J. Jin, B. S. Bae, A quasi-solid-state DSSC based on sol-gel derived in situ gelation of a siloxane hybrid electrolyte, RSC Advances,2012,2,5524-5527.
    [135]H. Yang, C. Yu, Q. Song, Y. Xia, F. Li, Z. Chen, X. Li, T. Yi, C. Huang, High-temperature and long-term stable solid-state electrolyte for dye-sensitized solar cells by self-assembly, Chemistry of Materials,2006,18,5173-5177.
    [136]A. F. Nogueira, C. Longo, M. A. De Paoli, Polymers in dye sensitized solar cells:overview and perspectives, Coordination Chemistry Reviews,2004,248,1455-1468.
    [137]Y. Ren, Z. Zhang, S. Fang, M. Yang,S. Cai, Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells, Solar Energy Materials and Solar Cells, 2002,71,253-259.
    [138]J. Kang, W. Li, X. Wang, Y. Lin, X. Xiao, S. Fang, Polymer electrolytes from PEO and novel quaternary ammonium iodides for DSSCs, Electrochimica Acta,2003,48,2487-2491.
    [139]G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki, P. Falaras, A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells, Journal of Photochemistry and Photobiology A:Chemistry,2002,149,191-198.
    [140]J. Y. Lee, B. Bhattacharya, D.-W. Kim, J.-K. Park, Polyethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications, The Journal of Physical Chemistry C,2008,112,12576-12582.
    [141]K. C. Ho, R. X. Dong, S. Y. Shen, H. W. Chen, C. C. Wang, C. T. Liu, R. Vittal, J. J. Lin, A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells, Journal of Materials Chemistry A,2013,1,8471-8478.
    [142]T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Letters, 2002,2,1259-1261.
    [143]M. A. K. L. Dissanayake, L. R. A. K. Bandara, R. S. P. Bokalawala, P. A. R. D. Jayathiiaka, O. A. Ileperuma, S. Somasundaram, A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell, Materials Research Bulletin,2002,37,867-874.
    [144]T. M. W. J. Bandara, M. A. K. L. Dissanayake, I. Albinsson, B. E. Mellander, Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile):MgI2 plasticized electrolyte, Journal of Power Sources,2010,195,3730-3734.
    [145]M. Biancardo, K. West, F. C. Krebs, Quasi-solid-state dye-sensitized solar cells:Pt and PEDOT.PSS counter electrodes applied to gel electrolyte assemblies, Journal of Photochemistry and Photobiology A:Chemistry,2007,187,395-401.
    [146]M. Biancardo, K. West, F. C. Krebs, Optimizations of large area quasi-solid-state dye-sensitized solar cells, Solar Energy Materials and Solar Cells,2006,90,2575-2588.
    [147]Z. Yu, D. Qin, Y. Zhang, H. Sun, Y. Luo, Q. Meng, D. Li, Quasi-solid-state dye-sensitized solar cell fabricated with poly ([P]-hydroxyethyl meth aery late) based organogel electrolyte, Energy Environmental Science,2011,4,1298-1305.
    [148]A. R. S. Priya, A. Subramania, Y.-S. Jung, K.-J. Kim, High-performance quasi-solid-state DSSC based on an electrospun PVdF-HFP Membrane electrolyte, Langmuir,2008,24,9816-9819.
    [149]A. F. Nogueira, M.-A. De Paoli, I. Montanari, R. Monkhouse, J. Nelson, J. R. Durrant, Electron transfer dynamics in dye sensitized nanocrystalline solar cells using a polymer electrolyte, The Journal of Physical Chemistry B,2001,105,7517-7524.
    [150]M. S. Kang, J. H. Kim, J. Won, Y. S. Kang, Oligomer approaches for solid-state dye-sensitized solar cells employing polymer electrolytes, The Journal of Physical Chemistry C,2007,111,5222-5228.
    [151]Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen, X.-Z. Zhao, Effect of lithium iodide addition on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell, The Journal of Physical Chemistry,2008,112,6594-6602.
    [152]W. F. Lee, Y. C. Chen, Effect of intercalated reactive mica on water absorbency for poly (sodium acrylate) composite superabsorbents, European Polymer Journal,2005,41,1605-1612.
    [153]J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, S. C. Hao, T. Sato, S. Yin, A novel thermosetting gel electrolyte for stable quasi-solid-state DSSCs, Advanced Materials,2007,19,4006-4011.
    [154]Z. Lan, J. Wu, J. Lin, M. Huang, Quasi-solid-state DSSCs with a novel efficient absorbent for liquid electrolyte based on PAA-PEG hybrid, Journal of Power Sources,2007,164,921-925.
    [155]G. M. Lowman, P. T. Hammond, Solid-state dye-sensitized solar cells combining a porous TiO2 film and a layer-by-layer composite electrolyte, Small,2005,1,1070-1073.
    [156]Z. Lan, J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells, Energy Environmental Science,2009,2,524-528.
    [157]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials,2003,2,402-407.
    [158]C. A. Angell, Relaxation in liquids, polymers and plastic crystals-strong/fragile patterns and problems, Journal of Non-Crystalline Solids,1991,131-133, Part 1,13-31.
    [159]J. Adebahr, A. J. Seeber, D. R. MacFarlane, M. Forsyth, Lil-doped N,N-dimethyl-pyrrolidinium iodide, an archetypal rotator-phase ionic conductor, The Journal of Physical Chemistry,2005,1095, 20087-20092.
    [160]J. M. Pringle, P. C. Howlett, D. R. MacFarlane, M. Forsyth, Organic ionic plastic crystals:recent advances, Journal of Materials Chemistry,2010,20,2056-2062.
    [161]J. Golding, N. Hamid, D. R. MacFarlane, M. Forsyth, C. Forsyth, C. Collins, J. Huang, N-Methyl-N-alkyl-pyrrolidinium hexafluorophosphate salts:novel molten salts and plastic crystal phases, Chemistry of Materials,2001,13,558-564.
    [162]H. M. Hawthorne, J. N. Sherwood, Lattice defects in plastic organic solids. Part 1. Self-diffusion and plastic deformation in pivalic acid, hexamethylethane and cyclohexane, Transactions of the Faraday Society,1970,66,1783-1791.
    [163]G. Cardini, R. Righini, S. Califano, Computer simulation of the dynamics of the plastic phase of succinonitrile, The Journal of Chemical Physics,1991,95,679-685.
    [164]A. Masui, S. Yoshioka, S. Kinoshita, Light scattering study of liquid and plastic phases of succinonitrile from 0.003 to 3000 cm-1, Chemical Physics Letters,2001,341,299-305.
    [165]S. Long, D. R. MacFarlane, M. Forsyth, Fast ion conduction in molecular plastic crystals, Solid State Ionics,2003,161,105-112.
    [166]P. J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nature Materials,2004,3, 476-481.
    [167]Q. Dai, D. R. MacFarlane, P. C. Howlett, M. Forsyth, Rapid I-/I3- diffusion in a molecular-plastic-crystal electrolyte for potential application in solid-state photoelectrochemical cells, Angewandte Chemie,2005,117,317-320.
    [168]L. Z. Fan, Y. S. Hu, A. J. Bhattacharyya, J. Maier, Succinonitrile as a versatile additive for polymer electrolytes, Advanced Functional Materials,2007,17,2800-2807.
    [169]Z. Chen, H. Yang, X. Li, F. Li, T. Yi, C. Huang, Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells, Journal of'Materials Chemistry,2007,17,1602-1607.
    [170]J. Chen, T. Peng, K. Fan, R. Li, J. Xia, Optimization of plastic crystal ionic liquid electrolyte for solid-state dye-sensitized solar cell, Electrochimica Acta,2013,94,1-6.
    [171]B. Lee, D. B. Buchholz, P. Guo, D.-K. Hwang, R. P. H. Chang, Optimizing the performance of a plastic dye-sensitized solar cell, The Journal of Physical Chemistry C,2011,115,9787-9796.
    [172]E. I. Cooper, C. A. Angell, Ambient temperature plastic crystal fast ion conductors, Solid State Ionics, 1986,18-19, Part 1,570-576.
    [173]S. I. F. Mineyuki Hattori, D. Nakamura, R. lkeda, Studies of the anisotropic self-diffusion and reorientation of butylammonium cations in the rotator phase of butylammonium chloride using H magnetic resonance, electrical conductivity and thermal measurements Journal of American Chemical Society Faraday Trans.,1990,86,3777-3783
    [174]D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, Pyrrolidinium imides:a new family of molten salts and conductive plastic crystal phases, The Journal of Physical Chemistry B,1999,103, 4164-4170.
    [175]Q. Li, J. Zhao, B. Sun, B. Lin, L. Qiu, Y. Zhang, X. Chen, J. Lu, F. Yan, High-temperature solid-state dye-sensitized solar cells based on organic ionic plastic crystal electrolytes, Advanced Materials, 2012,24,945-950.
    [176]S. C. Li, L. H. Qiu, C. Z. Shi, X. J. Chen, F. Yan, Water-Resistant, Solid-State, Dye-sensitized solar cells based on hydrophobic organic ionic plastic crystal electrolytes, Advanced Materials,2014,26, 1266-1271.
    [177]V. Armel, M. Forsyth, D. R. MacFarlane, J. M. Pringle, Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells, Energy Environmental Science,2011,4,2234-2239.
    [178]K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Room temperature ionic liquids and their mixtures-a review, Fluid Phase Equilibria,2004,219,93-98.
    [179]J. S. Wilkes, A short history of ionic liquids-from molten salts to neoteric solvents, Green Chemistry, 2002,4,73-80.
    [180]Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, M. Gratzel, High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nature Materias,2008,7,626-630.
    [181]D. Li, M. Wang, J. Wu, Q. Zhang, Y. Luo, Z. Yu, Q. Meng, Z. Wu, Application of a new cyclic guanidinium ionic liquid on dye-sensitized solar cells (DSCs), Langmuir,2009,25,4808-4814.
    [182]P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, Journal of the American Chemical Society,2003,125,1166-1167.
    [183]K. C. Huang, Y. H. Chang, C. Y. Chen, C. Y. Liu, L. Y. Lin, R. Virtal, C. G. Wu, K. F. Lin, K. C. Ho, Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state DSSC by using 15-crown-5-functionalized MWCNT, Journal of Materials Chemistry,2011,21,18467-18474.
    [184]Q. Miao, S. Zhang, H. Xu, P. Zhang, H. Li, A novel ionic liquid-metal complex electrolyte for a remarkable increase in the efficiency of dye-sensitized solar cells, Chemical Communications (Camb),2013,49,6980-6982.
    [185]P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, A binary ionic liquid electrolyte to achieve>7% power conversion efficiencies in dye-sensitized solar cells, Chemistry of Materials, 2004,16,2694-2696.
    [186]P. Wang, B. Wenger, R. Humphry-Baker, J. E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Gratzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids, Journal of the American Chemical Society,2005,127,6850-6856.
    [187]F. Hao, H. Lin, Y. Liu, J. Li, Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte, Physical Chemistry Chemical Physics,2011,13,6416-6422.
    [188]L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, C. Bisio, K. Nazeeruddin, L. Marchese, M. Graetzel, Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte, Journal of Materials Chemistry A,2013,1,10142-10147.
    [189]Y. Fang, J. Zhang, X. Zhou, Y. Lin,S. Fang, A novel thixotropic and ionic liquid-based gel electrolyte for efficient dye-sensitized solar cells, Electrochimica Acta,2012,68,235-239.
    [190]N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin, M. Gratzel, An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry,2006,16,2978-2983.
    [191]J. Lu, F. Yan, J. Texter, Advanced applications of ionic liquids in polymer science, Progress in Polymer Science,2009,34,431-448.
    [192]P. K. Singh, B. Bhattacharya, R. K. Nagarale, S. P. Pandey, K. W. Kim, H. W. Rhee, Ionic liquid doped poly(N-methyl 4-vinylpyridine iodide) solid polymer electrolyte for dye-sensitized solar cell, Synthetic Metals,2010,160,950-954.
    [193]N. Jeon, D. K. Hwang, Y. S. Kang, S. Soonlm, D. W. Kim, Quasi-solid-state dye-sensitized solar cells assembled with polymeric ionic liquid and poly (3,4-ethylenedioxythiophene) counter electrode, Electrochemistry Communications,2013,34,1-4.
    [194]D. Xu, H. G. Zhang, X. J. Chen, F. Yan, Imidazolium functionalized cobalt tris (bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-sensitized solar cells, Journal of Materials Chemistry A,2013,1,11933-11941.
    [195]L. Y. Chang, C. P. Lee, R. Vittal, J. J. Lin, K. C. Ho, Enhanced performance of a dye-sensitized solar cell with an amphiphilic polymer-gelled ionic liquid electrolyte, Journal of Materials Chemistry A, 2013,1,3055-3060.
    [196]G. Wang, L. Wang, S. Zhuo, S. Fang, Y. Lin, An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells, Chemical Communications (Camb),2011,47, 2700-2702.
    [197]Y. Fang, W. Xiang, X. Zhou, Y. Lin, S. Fang, High-performance novel acidic ionic liquid polymer/ionic liquid composite polymer electrolyte for dye-sensitized solar cells, Electrochemistry Communications,2011,13,60-63.
    [198]X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu, H. Zhang, X. Han, B. Sun, G Fu, Y. Zhang, F. Yan, Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry,2012,22,18018-18024.
    [199]F. Li, F. Cheng, J. Shi, F. Cai, M. Liang, J. Chen, Novel quasi-solid electrolyte for dye-sensitized solar cells, Journal of Power Sources,2007,165,911-915.
    [200]J. Shi, L. Wang, Y. Liang, S. Peng, F. Cheng, J. Chen, All-solid-state dye-sensitized solar cells with alkyloxy-imidazolium iodide ionic polymer/SiO2 nanocomposite electrolyte and triphenylamine-based organic dyes, The Journal of Physical Chemistry C,2010,114,6814-6821.
    [201]J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin, M. Gratzel, A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials, Nature Communications,2012,3,631-638.
    [202]J. Liu, X. Yang, J. Cong, L. Kloo, L. Sun, Solvent-free ionic liquid electrolytes without elemental iodine for dye-sensitized solar cells, Physical Chemistry Chemical Physics,2012,14,11592-11595.
    [203]H. Stegemann, A. Rohde, A. Reiche, A. Schnittke, H. Fullbier, Room temperature molten polyiodides, Electrochimica Acta,1992,37,379-383.
    [204]C. P. Lee, P.-Y. Chen, R. Vittal, K. C. Ho, Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black, Journal of Materials Chemistry,2010,20,2356-2361.
    [205]J. Chen, T. Peng, K. Fan, J. Xia, Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt, Journal of Materials Chemistry,2011,21,16448.
    [206]Y. G. Rong, X. Li, G. G. Liu, H. Wang, Z. L. Ku, M. Xu, L. F. Liu, M. Hu, Y. Yang, M. L. Zhang, T. F. Liu, H. W. Han, Monolithic quasi-solid-state dye-sensitized solar cells based on iodine-free polymer gel electrolyte, Journal of Power Sources,2013,235,243-250.
    [207]Y. G. Rong, Z. L. Ku, M. Xu, L. F. Liu, M. Hu, Y. Yang, J. Z. Chen, A. Y. Mei, T. F. Liu, H. W. Han, Efficient monolithic quasi-solid-state dye-sensitized solar cells based on poly(ionic liquids) and carbon counter electrodes, RSC Advances,2014,4,9271-9274.
    [208]L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, S. K. Batabyal, K. Nonomura, M. Gratzel, S. G. Mhaisalkar, A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells, Physical Chemistry Chemical Physics,2012,14, 16182-16186.
    [209]J. J. Cid, J. H. Yum, S. R. Jang, M. K. Nazeeruddin, E. Martinez-Ferrero, E. Palomares, J. Ko, M. Gratzel, T. Torres, Molecular cosensitization for efficient panchromatic dye-sensitized solar cells, Angewandte Chemie International Edition,2007,46,8358-8362.
    [210]M. Kimura, H. Nomoto, N. Masaki, S. Mori, Dye molecules for simple co-sensitization process: fabrication of mixed-DSSCs, Angewandte Chemie International Edition,2012,51,4371-4374.
    [1]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [2]M. Gratzel, Photoelectrochemical cells, Nature,2001,414,338-344.
    [3]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Progress in Photovoltaics:Research and Applications,2006,14, 589-601.
    [4]H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Solid-state composite electrolyte LiI/3-Hydroxypropionitrile/SiO2 for dye-sensitized solar cells, Journal of the American Chemical Society,2005,127,6394-6401.
    [5]J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, T. Sato, An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%, Journal of the American Chemical Society,2008,130,11568-11569.
    [6]G. R. A. Kumara, K. Tennakone, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semiconductor Science and Technology,1995, 10,1689-1693.
    [7]P. M. Sirimanne, P. Bogdanoff, S. Fiechter, H. Tributsch, On the photo-degradation of dye sensitized solid-state TiO2/dye/CuI cells, Semiconductor Science and Technology,2003,18,708-711.
    [8]G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone, Dye-sensitized solid-state solar cells:use of crystal growth inhibitors for deposition of the hole collector, Chemistry of Materials, 2002,14,954-955.
    [9]Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an efficient solid-state dye-sensitized solar cell, Langmuir, 2003,19,3572-3574.
    [10]S. Moribe, A. Takeichi, J. Seki, N. Kato, K. Higuchi, K. Ueyama, K. Mizumoto, T. Toyoda, Applied Physics Express,2012,5,112302-1-112302-3.
    [11]A. F. Nogueira, C. Longo, M.-A. De Paoli, Polymers in dye sensitized solar cells:overview and perspectives, Coordination Chemistry Reviews,2004,248,1455-1468.
    [12]Y. Ren, Z. Zhang, S. Fang, M. Yang, S. Cai, Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells, Solar Energy Materials and Solar Cells, 2002,71,253-259.
    [13]S. Ganesan, B. Muthuraaman, V. Mathew, J. Madhavan, P. Maruthamuthu, S. Austinsuthanthiraj, Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell, Solar Energy Materials and Solar Cells,2008,92,1718-1722.
    [14]Z. P. Huo, S. Y. Dai, C. N. Zhang, F. T. Kong, X. Q. Fang, L. Guo, W. Q. Liu, L. H. Hu, X. Pan, K. J. Wang, Low molecular mass organogelator based gel electrolyte with effective charge transport property for long-term stable quasi-solid-state dye-sensitized solar cells, The Journal of Physical Chemistry B,2008,112,12927-12933.
    [15]Z. X. Yu, D. Qin, Y. D. Zhang, H. C. Sun, Y. H. Luo, Q. B. Meng, D. M. Li, Quasi-solid-state dye-sensitized solar cell fabricated with poly(β-hydroxyethyl methacrylate) based organogel electrolyte, Energy Environmental Science,2011,4,1298-1305.
    [16]J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, S. C. Hao, T. Sato, S. Yin, A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells, Advanced Materials,2007,19, 4006-4011.
    [17]C. L. Chen, H. S. Teng, Y. L. Lee, In Situ Gelation of Electrolytes for highly efficient gel-state dye-sensitized solar cells, Advanced Material,2011,23,4199-4204.
    [18]T. Kado, K. Soeda, K. Negoro, S. Hayase, Dye-sensitized solar cells consisting of CuI-containing gels, Chemistry Letters,2006,35,444-445.
    [19]B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials and Solar Cells,2006,90,549-573.
    [20]D. Li, D. Qin, M. Deng, Y. Luo, Q. Meng, Optimization the solid-state electrolytes for dye-sensitized solar cells, Energy Environmental Science,2009,2,283-291.
    [21]A. Ferry, L. Edman, M. Forsyth, D. R. MacFarlane, J. Sun, Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3, Journal of Applied Physics,1999,86,2346-2348.
    [22]A. Bernson, J. Lindgren, W. Huang, R. Freeh, Coordination and conformation in PEO, PEGM and PEG systems containing lithium or lanthanum triflate, Polymer,1995,36,4471-4478.
    [23]D. E. Fenton, J. M. Parker, P. V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer,1973,14,589-592.
    [24]J. Zhou, Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides, Solid State Ionics,2004,166,275-293.
    [25]W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik, Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s, The Journal of Physical Chemistry B,1998,102, 6968-6974.
    [26]E. Peled, D. Golodnitsky, E. Strauss, J. Lang, Y. Lavi, Li/CPE/FeS2 rechargeable battery, Electrochimica Acta,1998,43,1593-1599.
    [27]C. A. Angell, C. Liu, E. Sanchez, Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity, Nature,1993,362,137-139.
    [28]J. Stygar, A. Biernat, A. Kwiatkowska, P. Lewandowski, A. Rusiecka, A. Zalewska, W. Wieczorek, Effect of cation and salt concentration on conductivity and microstructure characteristics of polyether electrolytes doped with alkali metal perchlorates, The Journal of Physical Chemistry B,2004,108, 4263-4267.
    [29]V. P. S. Perera, K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with Cul as the hole collector, Solar Energy Materials and Solar Cells,2003,79,249-255.
    [30]S. Y. Cha, Y.-G. Lee, M.-S. Kang, Y. S. Kang, Correlation between ionic conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte, Journal of Photochemistry and Photobiology A:Chemistry,2010,211,193-196.
    [31]J. R. Jennings, Q. Wang, Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells, The Journal of Physical Chemistry C,2009,114, 1715-1724.
    [32]S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, Charge separation versus recombination in dye-sensitized nanocrystalline solar cells:the minimization of kinetic redundancy, Journal of the American Chemical Society,2005,127,3456-3462.
    [1]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740,
    [2]B. Li, L. Wang, B. Kang, P. Wang,Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials and Solar Cells,2006,90,549-573.
    [3]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN") on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society,1993,115,6382-6390.
    [4]M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A:Chemistry,2004,164,3-14.
    [5]D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang,Z. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles, The Journal of Physical Chemistry C,2008,112,8486-8494.
    [6]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of DSSCs:effect of device masking on conversion efficiency, Progress in Photovoltaics:Research and Applications,2006,14,589-601.
    [7]G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone, Dye-sensitized solid-state solar cells:use of crystal growth inhibitors for deposition of the hole collector, Chemistry of Materials, 2002,14,954-955.
    [8]Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an efficient solid-state dye-sensitized solar cell, Langmuir, 2003,19,3572-3574.
    [9]J. E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S. D. Ogier, K. Carr, M. Gratzel, J. R. Durrant, Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors, Advanced Functional Materials,2006,16,1832-1838.
    [10]E. Lancelle-Beltran, P. Prene, C. Boscher, P. Belleville, P. Buvat, C. Sanchez, All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency, Advanced Materials,2006,18,2579-2582.
    [11]R. Zhu, C.-Y. Jiang, B. Liu, S. Ramakrishna, Highly efficient nanoporous Ti02-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye, Advanced Materials,2009, 21,994-1000.
    [12]Y. Yang, C. H. Zhou, S. Xu, H. Hu, B.-L. Chen, J. Zhang, S. J. Wu, W. Liu, X. Z. Zhao, Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes, Journal of Power Sources,2008,185,1492-1498.
    [13]J. Chen, J. Xia, K. Fan, T. Peng, A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells, Electrochimica Acta,2011,56,5554-5560.
    [14]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chemical Communications, 2002,374-375.
    [15]J. Zhou, Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides, Solid State Ionics,2004,166,275-293.
    [16]P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, Journal of the American Chemical Society,2003,125,1166-1167.
    [17]H. Usui, H. Matsui, N. Tanabe, S. Yanagida, Improved dye-sensitized solar cells using ionic nano-composite gel electrolytes, Journal of Photochemistry and Photobiology A:Chem,2004,164, 97-101.
    [18]K. M. Lee, P. Y. Chen, C. P. Lee, K. C. Ho, Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for DSSCs, Journal of Power Sources,2009,190,573-577.
    [19]Z. Chen, H. Yang, X. Li, F. Li, T. Yi, C. Huang, Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells, Journal of Materials Chemistry,2007,17,1602.
    [20]H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Solid-state composite electrolyte LiI/3-Hydroxypropionitrile/SiO2 for dye-sensitized solar cells, Journal of the American Chemical Society,2005,127,6394-6401.
    [21]N. Ikeda, K. Teshima, T. Miyasaka, Conductive polymer-carbon-imidazolium composite:a simple means for constructing solid-state dye-sensitized solar cells, Chemical Communications,2006, 1733-1735.
    [22]C.-P. Lee, P. Y. Chen, R. Vittal, K. C. Ho, Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-Ioaded carbon black, Journal of Materials Chemistry,2010,20,2356-2361.
    [23]C. P. Lee, L. Y. Lin, P. Y. Chen, R. Vittal, K. C. Ho, All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor, Journal of Materials Chemistry,2010,20, 3619-3625.
    [24]F. H. Hurley, T. P. WIer, Electrodeposition of metals from fused quaternary ammonium salts, Journal of the Electrochemical Society,1951,98,203-206.
    [25]M. Gauthier, D. Fauteux, G. Vassort, A. Belanger, M. Duval, P. Ricoux, J. M. Chabagno, D. Muller, P. Rigaud, M. B. Armand, D. Deroo, Assessment of polymer-electrolyte batteries for ev and ambient temperature applications, Journal of the Electrochemical Society,1985,132,1333-1340.
    [26]J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang, Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles, Chemical Communications,2004,1662-1663.
    [27]J. T. Park, K. J. Lee, M.-S. Kang, Y. S. Kang, J. H. Kim, Nanocomposite polymer electrolytes containing silica nanoparticles:Comparison between poly(ethylene glycol) and poly(ethylene oxide) dimethyl ether, Journal of Applied Polymer Science,2007,106,4083-4090.
    [28]G. P. Kalaignan, M. S. Kang, Y. S. Kang, Effects of compositions on properties of PEO-K1-I2 salts polymer electrolytes for DSSC, Solid State Ionics,2006,177,1091-1097.
    [29]Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen, X. Z. Zhao, Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell, The Journal of Physical Chemistry B,2008,112, 6594-6602.
    [30]S. Agarwala, L. N. S. A. Thummalakunta, C. A. Cook, C. K. N. Peh, A. S. W. Wong, L. Ke, G. W. Ho, Co-existence of Lil and KI in filler-free, quasi-solid-state electrolyte for efficient and stable dye-sensitized solar cell, Journal of Power Sources,2011,196,1651-1656.
    [31]D. F. Watson, G. J. Meyer, Cation effects in nanocrystalline solar cells, Coordination Chemistry Reviews,2004,248,1391-1406.
    [1]B. O'Regan, M. Gratzal, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [2]C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano,2009,3,3103-3109.
    [3]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science,2011,334,629-634.
    [4]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on excitation dissociation, charge recombination, and surface states, ACS Nano,2010,4,6032-6038.
    [5]C. Wu, Y. Gong, S. Han, T. Jin, B. Chi, J. Pu, L. Jian, Electrochemical characterization of a novel iodine-free electrolyte for dye-sensitized solar cell, Electrochimica Acta,2012,71,33-38.
    [6]E. Olsen, G. Hagen, S. E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2, Solar Energy Materials and Solar Cells,2000,63,267-273.
    [7]G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone, Dye-sensitized solid-state solar cells:use of crystal growth inhibitors for deposition of the hole collector, Chemistry of Materials, 2002,14,954-955.
    [8]V. P. S. Perera, M. K. I. Senevirathna, P. K. D. D. P. Pitigala, K. Tennakone, Doping CuSCN films for enhancement of conductivity:Application in dye-sensitized solid-state solar cells, Solar Energy Materials and Solar Cells,2005,86,443-450.
    [9]I. Y. Song, S. H. Park, J. Lim, Y. S. Kwon, T. Park, A novel hole transport material for iodine-free solid state dye-sensitized solar cells, Chemical Communications (Comb),2011,47,10395-10357.
    [10]R. Zhu, C. Y. Jiang, B. Liu, S. Ramakrishna, Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye, Advanced Materials, 2009,21,994-1000.
    [11]J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. Sato, A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells, Advanced Functional Materials,2007,17,2645-2652.
    [12]Y. Yang, C. H. Zhou, S. Xu, H. Hu, B. L. Chen, J. Zhang, S. J. Wu, W. Liu, X. Z. Zhao, Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes, Journal of Power Sources,2008,185,1492-1498.
    [13]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chemical Communications,2002,374-375.
    [14]J. Chen, J. Xia, K. Fan, T. Peng, A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells, Electrochimica Acta,2011,56,5554-5560.
    [15]H. R. Jhong, D. S. H. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells, Electrochemistry Communications, 2009,11,209-211.
    [16]M. Marszalek, Z. Fei, D. R. Zhu, R. Scopelliti, P. J. Dyson, S. M. Zakeeruddin, M. Gratzel, Application of ionic liquids containing tricyanomethanide [C(CN)3]" or tetracyanoborate [B(CN)4]" anions in dye-sensitized solar cells, Inorganic Chemistry,2011,50,11561-11567.
    [17]Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, M. Gratzel, High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nature Materials,2008,7,626-630.
    [18]G. Wang, L. Wang, S. Zhuo, S. Fang, Y. Lin, An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells, Chemical Communications (Camb),2011,47, 2700-2702.
    [19]S. M. Zakeeruddin, M. Gratzel, Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells, Advanced Functional Materials,2009,19,2187-2202.
    [20]D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Gratzel, Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte, Journal of the American Chemical Society, 2006,128,7732-7733.
    [21]N. Ikeda, K. Teshima, T. Miyasaka, Conductive polymer-earbon-imidazolium composite:a simple means for constructing solid-state dye-sensitized solar cells, Chemical Communications,2006, 1733-1735.
    [22]D. Li, M. Wang, J. Wu, Q. Zhang, Y. Luo, Z. Yu, Q. Meng, Z. Wu, Application of a new cyclic guanidinium ionic liquid on dye-sensitized solar cells (DSCs), Langmuir,2009,25,4808-4814.
    [23]M. Gorlov, L. Kloo, Ionic liquid electrolytes for dye-sensitized solar cells, Dalton Transactions, 2008,O,2655-2666.
    [24]P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Gratzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids, Journal of the American Chemical Society,2005,127,6850-6856.
    [25]P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, A binary ionic liquid electrolyte to achieve>7% power conversion efficiencies in dye-sensitized solar cells, Chemistry of Materials, 2004,16,2694-2696.
    [26]F. Hao, H. Lin, Y. Liu, J. Li, Anionic structure-dependent photoelectrochemical responses of DSSCs based on a binary ionic liquid electrolyte, Physical Chemistry Chemical Physics,2011,13, 6416-6422.
    [27]C. P. Lee, P. Y. Chen, R. Vittal, K. C. Ho, Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black, Journal of Materials Chemistry,2010,20,2356-2361.
    [28]C. P. Lee, L. Y. Lin, P. Y. Chen, R. Vittal, K. C. Ho, All-solid-state DSSCs incorporating SWCNTs and crystal growth inhibitor, Journal of Materials Chemistry,2010,20,3619.
    [29]Y. Fang, W. Xiang, X. Zhou, Y. Lin, S. Fang, High-performance novel acidic ionic liquid polymer/ionic liquid composite polymer electrolyte for dye-sensitized solar cells, Electrochemistry Communications,2011,13,60-63.
    [30]H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata, F. Matsui, Multi-colored dye-sensitized solar cells, Journal of Photochemistry and Photobiology A:Chemistry,2004,164,67-73.
    [31]K. Hayamizu, Y. Aihara, S. Arai, Garcia, Pulse-gradient spin-echo 1H,7Li, and 19F NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2, The Journal of Physical Chemistry B,1999,103,519-524.
    [32]A. J. B. L. R. Faulkner, Electrochemical methods:fundamentals and applications, Wiley-VCH, Weinheim,2001,2nd ed.
    [33]I. Ruff, V. J. Friedrich, K. Csillag, Transfer diffusion.111. Kinetics and mechanism of the triiodide-iodide exchange reaction, The Journal of Physical Chemistry,1972,76,162-165.
    [34]I. Ruff, V. J. Friedrich, Transfer diffusion. I. Theoretical, The Journal of Physical Chemistry,1971, 75,3297-3302.
    [35]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Gratzel, A new ionic liquid electrolyte enhances the conversion efficiency of DSSCs, The Journal of Physical Chemistry B,2003,107,13280-13285.
    [36]G. Wang, L. Wang, S. Zhuo, S. Fang, Y. Lin, An iodine-free electrolyte based on ionic liquid polymers for all-solid-state DSSCs, Chemical Communications,2011,47,2700-2702.
    [37]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyI-4,4'-dicarboxyIate) Ru(II) charge-transfer sensitizers (X= Cl\Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society,1993,115,6382-6390.
    [38]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, The Journal of Physical Chemistry B,2002,106,10004-10010.
    [39]R. Kawano, M. Watanabe, Equilibrium potentials and charge transport of an I-/I3-redox couple in an ionic liquid, Chemical Communications,2003,330-331.
    [40]A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering,2005, John Wiley and Sons, Inc., New York.
    [1]B. O'Regan, M. Gratzal, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [2]C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano,2009,3,3103-3109.
    [3]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science,2011,334,629-634.
    [4]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states, ACS Nano,2010,4,6032-6038.
    [5]C. Wu, Y. Gong, S. Han, T. Jin, B. Chi, J. Pu, L. Jian, Electrochemical characterization of a novel iodine-free electrolyte for dye-sensitized solar cell, Electrochimica Acta,2012,71,33-38.
    [6]E. Olsen, G. Hagen, S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing Lil/I2, Solar Energy Materials and Solar Cells,2000,63,267-273.
    [7]G. R. A. Kumara. K. Tennakone, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, A dye-sensitized nano-porous solid.-state photovoltaic cell Semicond. Sd. Technol,1995,10, 1689-1693..
    [8]G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara,K. Tennakone, Dye-sensitized solid-state solar cells:use of crystal growth inhibitors for deposition of the hole collector, Chemistry of Materials, 2002,14,954-955.
    [9]Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an efficient solid-state dye-sensitized solar cell, Langmuir, 2003,19,3572-3574.
    [10]B. O'Regan, D. T. Schwartz, Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN:initiation and potential mechanisms, Chemistry of Materials,1998,10,1501-1509.
    [11]S. Tan, J. Zhai, B. Xue, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells, Langmuir,2004,20,2934-2937.
    [12]R. Zhu, C. Y. Jiang, B. Liu, S. Ramakrishna, Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye, Advanced Materials,2009, 21,994-1000.
    [13]J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. Sato, A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells, Advanced Functional Materials,2007,17,2645-2652.
    [14]Y. Yang, C. H. Zhou, S. Xu, H. Hu, B. L. Chen, J. Zhang, S. J. Wu, W. Liu, X. Z. Zhao, Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes, Journal of Power Sources,2008,185,1492-1498.
    [15]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chemical Communications,2002,374-375.
    [16]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells:effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, The Journal of Physical Chemistry B, 2001,105,12809-12815.
    [17]J. Chen, J. Xia, K. Fan, T. Peng, A novel Cul-based iodine-free gel electrolyte for dye-sensitized solar cells, Electrochimica Acta,2011,56,5554-5560.
    [18]J. Chen, T. Peng, K. Fan, J. Xia, Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt, Journal of Materials Chemistry,2011,21,16448.
    [19]S. M. Zakeeruddin, M. Gratzel, Solvent-Free Ionic liquid electrolytes for mesoscopic dye-sensitized solar cells, Advanced Functional Materials,2009,19,2187-2202.
    [20]P. Wang, B. Wenger, R. Humphry-Baker, J. E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. GrStzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids, Journal of the American Chemical Society,2005,127,6850-6856.
    [21]D. Kuang, C. Klein, Z. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin, M. Gratzel, Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells, Small,2007,3,2094-2102.
    [22]P. J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nature Materials,2004,3, 476-481.
    [23]J. L. P. Derollez, M. Descamps, W. Press, H. Fontaine, Structure of succinonitrile in its plastic phase, J. Phys.:Condens. Matter 1990,2,6893-6903.
    [24]D. R. MacFarlane, J. Huang, M. Forsyth, Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries, Nature,1999,402,792-794.
    [25]Y. Abu-Lebdeh, A. Abouimrane, P. J. Alarco, A. Hammami, L. Ionescu-Vasii, M. Armand, Ambient temperature proton conducting plastic crystal electrolytes, Electrochemistry Communications,2004,6, 432-434.
    [26]Y. Abu-Lebdeh, P.-J. Alarco, M. Armand, Conductive organic plastic crystals based on pyrazolium imides, Angewandte Chemie,2003,115,4637-4639.
    [27]P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane, M. Gratzel, Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell, Journal of the American Chemical Society,2004,126,13590-13591.
    [28]V. Armel, J. M. Pringle, P. Wagner, M. Forsyth, D. Officer, D. R. MacFarlane, Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte, Chemical Communications (Camb),2011, 47,9327-9329.
    [29]Z. Chen, H. Yang, X. Li, F. Li, T. Yi, C. Huang, Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells, Journal of Materials Chemistry,2007,17,1602-1607.
    [30]L. Z. Fan, Y. S. Hu, A. J. Bhattacharyya, J. Maier, Succinonitrile as a versatile additive for polymer electrolytes, Advanced Functional Materials,2007,17,2800-2807.
    [31]C. P. Lee, L. Y. Lin, P. Y. Chen, R. Vittal, K. C. Ho, All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor, Journal of Materials Chemistry,2010,20,3619.
    [32]D.-W. Seo, S. Sarker, N. C. D. Nath, S.-W. Choi, A. J. S. Ahammad, J.-J. Lee, W.-G. Kim, Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells, Electrochimica Acta,2010,55,1483-1488.
    [33]I. Ruff, V. J. Friedrich, K. Csillag, Transfer diffusion.Ⅲ. Kinetics and mechanism of the triiodide-iodide exchange reaction, The Journal of Physical Chemistry,1972,76,162-165.
    [34]D. F. Watson, G. J. Meyer, Cation effects in nanocrystalline solar cells, Coordination Chemistry Reviews,2004,248,1391-1406.
    [1]B. O'Regan, M. Gratzal, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [2]M. Gratzel, Photoelectrochemical cells, Nature,2001,414,338-344.
    [3]C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Gratzel, C.-G. Wu, S. M. Zakeeruddin, M. Gratzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano,2009,3,3103-3109.
    [4]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science,2011,334,629-634.
    [5]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states, ACS Nano,2010,4,6032-6038.
    [6]P. Peehy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2 based solar cells, Journal of the American Chemical Society,2001,123,1613-1624.
    [7]K. Lee, S. W. Park, M. J. Ko, K. Kim, N.-G Park, Selective positioning of organic dyes in a mesoporous inorganic oxide film, Nature Material,2009,8,665-671.
    [8]D. Kuang, P. Walter, F. Niiesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells, Langmuir,2007,23,10906-10909.
    [9]A. C. Khazraji, S. Hotchandani, S. Das, P. V. Kamat, Controlling dye (merocyanine-540) aggregation on nanostructured TiO2 films:an organized assembly approach for enhancing the efficiency of photosensitization, The Journal of Physical Chemistry B,1999,103,4693-4700.
    [10]S. Ferrere, B. A. Gregg, New perylenes for dye sensitization of TiO2, New Journal of Chemistry,2002, 26,1155-1160.
    [11]K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes, Solar Energy Materials and Solar Cells,2003,77,89-103.
    [12]T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes, Journal of the American Chemical Society,2004,126,12218-12219.
    [13]B. E. Hardin, A. Sellinger, T. Moehl, R. Humphry-Baker, J. E. Moser, P. Wang, S. M. Zakeeruddin, M. Gratzel, M. D. McGehee, Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells, Journal of the American Chemical Society,2011,133,10662-10667.
    [14]M. D. Brown, P. Parkinson, T. Torres, H. Miura, L. M. Herz, H. J. Snaith, Surface energy relay between cosensitized molecules in solid-state dye-sensitized solar cells, The Journal of Physical Chemistry C,2011,115,23204-23208.
    [15]N. C. Jeong, H. J. Son, C. Prasittichai, C. Y. Lee, R. A. Jensen, O. K. Farha, J. T. Hupp, Effective panchromatic sensitization of electrochemical solar cells:strategy and organizational rules for spatial separation of complementary light harvesters on high-area photoelectrodes, Journal of the American Chemical Society,2012,134,19820-19827.
    [16]H. Choi, S. Kim, S. O. Kang, J. Ko, M. S. Kang, J. N. Clifford, A. Forneli, E. Palomares, M. K. Nazeeruddin, M. Gratzel, Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells, Angewandte Chemie International Edition,2008,47,8259-8263.
    [17]A. Ehret, L. Stuhl, M. T. Spitler, Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes, The Journal of Physical Chemistry B,2001,105,9960-9965.
    [18]K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Solar Energy Materials and Solar Cells,2003,80,47-71.
    [19]H. Choi, S. Kim, S. O. Kang, J. Ko, M.-S. Kang, J. N. Clifford, A. Forneli, E. Palomares, M. K. Nazeeruddin, M. Gratzel, Stepwise cosensitization of nanocrystalline tio2 films utilizing Al2O3 layers in dye-sensitized solar cells, Angewandte Chemie International Edition,2008,47,8259-8263.
    [20]Y. Chen, Z. Zeng, C. Li, W. Wang, X. Wang, B. Zhang, Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes, New Journal of Chemistry,2005,29, 773-776.
    [21]J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Gratzel, J. R. Durrant, Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films, Journal of the American Chemical Society,2004,126,5670-5671.
    [22]K. M. Lee, Y. C. Hsu, M. Ikegami, T. Miyasaka, K. R. Justin Thomas, J. T. Lin, K. C. Ho, Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells, Journal of Power Sources,2011,196,2416-2421.
    [23]S. Q. Fan, C. Kim, B. Fang, K. X. Liao, G. J. Yang, C. J. Li, J. J. Kim, J. Ko, Improved efficiency of over 10%in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode, The Journal of Physical Chemistry C,2011,115,7747-7754.
    [24]B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. Ho. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Gratzel, M. D. McGehee, Increased light harvesting in dye-sensitized solar cells with energy relay dyes, Nature Photonics,2009,3,406-412.
    [25]M. Kimura, H. Nomoto, N. Masaki, S. Mori, Dye molecules for simple co-sensitization process: fabrication of mixed-DSSCs, Angewandte Chemie International Edition,2012,51,4371-4374.
    [26]Z. S. Xue, L. Wang, B. Liu, Facile fabrication of co-sensitized plastic dye-sensitized solar cells using multiple electrophoretic deposition, Nanoscale,2013,5,2269-2273.
    [27]D. B. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells, Langmuir,2007,23,10906-10909.
    [28]J. N. Chen, T. Y. Peng, K. Fan, J. B. Xia, Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt, Journal of Materials Chemistry,2011,21,16448.
    [29]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2 bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X= Cl-, Br-, F, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society,1993,115,6382-6390.
    [30]J. Bisquert, A. Zaban, I. Mora-Sero, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in DSSCs by open-circuit photovoltage decay method, Journal of the American Chemical Society,2004,126,13550-13559.
    [31]A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, Chemical Physicals Chemistry,2003,4, 859-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700