用户名: 密码: 验证码:
电化学与质谱/红外光谱联用的电催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种高效清洁的能源利用方式,有望解决人类当下所面临的环境和能源危机。目前发展相对成熟的质子交换膜型燃料电池使用氢气作为燃料,然而氢气的储运仍存在未解决的技术问题。其他潜在的可取代氢气的燃料包括了氨、甲醇、乙醇等,但相应的电化学反应动力学缓慢,相关的电催化机理和催化剂研究仍是当前的研究热点。本论文工作构建了两类用于电催化反应机理研究的谱学电化学方法,即差分电化学质谱和电化学在线红外光谱,并对氨氧化反应、甲醇氧化反应和乙醇氧化反应进行了研究。取得的主要研究进展如下:
     1.差分电化学质谱(DEMS)方法的构建
     我们构建了两种DEMS系统:膜电极DEMS系统和盘电极DEMS系统。在膜电极DEMS系统中,工作电极为含PTFE的碳膜,同时利用其疏水透气性这一特点将其作为真空采样管路与电解池之间的膜接口。在碳膜上下表面的压力差作用下,电化学反应生成的挥发性产物一旦生成即被抽入质谱仪中被检测。在盘电极DEMS系统中,由疏水透气的毛细管采样口对盘电极表面生成的挥发性物种进行采样;另外为了对非水体系的气体产物进行检测,我们还引入了产物富集罩的设计,解决了采样口无法在非水体系中直接进样的难题。
     2.氨电氧化反应的DEMS研究
     我们利用构建的盘电极DEMS系统,对水体系和非水体系氨氧化反应进行对比研究。发现水溶液中Pt和Pd氨氧化反应的抑制现象与表面含氧物种的大量生成存在关联,而在非水体系中表面含氧物种不存在的情况下,Pt和Pd表现出了随电势正移不断增长的催化活性,由此推断出水体系中表面含氧物种作为毒物抑制氨氧化反应的证据。另外,在非水体系中Pd催化氨氧化活性比Pt更高,在水体系中无催化氨氧化活性的Au在非水体系中也表现出了较明显的活性。
     3.电化学与红外光谱联用方法的构建
     电化学与红外光谱的联用方法可以与DEMS系统形成互补。我们首先构建了常规的电化学与反射红外光谱联用的方法,实验发现,电极与棱镜之间薄层溶液会造成离子传导阻碍、反应物补充不及时以及难以获得定量的数据等问题。因此我们构建了电化学和透射红外光谱的联用系统,该系统通过附带离子交换膜的工作电极采样罩的设计,使富集的产物流动至透射红外液体池进行检测。此方法具备以下几个优点:电化学行为正常、反应物及时补充、可定量获得产物浓度、可开展变温实验。
     4.碱性体系中Pt和Pd催化甲醇氧化反应的研究
     在碱性体系中,Pt和Pd均表现出了远高于酸性体系的甲醇氧化催化活性,并且Pd的催化活性与Pt接近。二者表面的形貌组成均会对催化甲醇氧化活性产生影响,表面原子配位数较低的Pt(110)和Pd(110)晶面更有利于甲醇氧化反应的发生。另外,在Pt和Pd表面修饰Ru之后,其甲醇氧化催化活性得到了明显提高,提高的程度随着Ru覆盖度的增长呈现了先增大后减小的趋势。最后,利用在线电化学流动透射红外光谱对碱性体系Pt催化甲醇氧化产物进行检测,发现CO32-的电流效率随着反应温度的升高明显增大。
     5.碱性体系中Pt和Pd催化乙醇氧化反应的研究
     在碱性体系中,Pt和Pd均表现出了远高于酸性体系的乙醇氧化催化活性。二者表面的形貌组成均会对催化乙醇氧化活性产生影响,表面原子配位数较低的Pt(110)和Pd(110)晶面不仅有利于表面含氧物种的生成,还可能有利于碳碳键断裂过程的发生。电沉积制备的表面(110)晶面比例较高的Pd的乙醇氧化催化活性甚至高于Pt。利用在线电化学流动透射红外光谱对碱性体系电催化乙醇氧化反应进行研究,发现较高的温度以及较厚的催化层均有利于完全氧化产物CO32-的电流效率的提高,而且乙醛氧化生成CO32-的电流效率比乙醇作为反应物时更高。
As a clean and efficient energy convertor, fuel cells can solve the current environment and energy crisis. The hydrogen-fueled proton exchange membrane fuel cell is relatively matured, yet there are some technical problems in the storage and transportation of hydrogen. The hydrogen gas can be replaced by several alternative fuels, such as ammonia, methanol and ethanol, which, however, suffer from slow reaction kinetics. Therefore, research efforts have been focused on the catalysts and the reaction mechanism of the oxidation of these fuels. In this thesis, two types of spectroelectrochemical methods were constructed for electrocatalysis study, namely, the differential electrochemical mass spectrometry and the on-line electrochemical infrared spectroscopy. These two methods were applied to the study of the electrooxidation reactions of ammonia, methanol and ethanol. Major results of this work are summerized as follows:
     1. Construction of differential electrochemical mass spectrometry (DEMS)
     Two types of DEMS were constructed:DEMS system for membrane electrodes and DEMS system for disk electrodes. In the design of DEMS system for membrane electrodes, a PTFE-containing carbon film functions as the working electrode, which is also the membrane inlet connecting the vacuum sampling pipe and the electrochemical cell. Driven by the pressure between the two sides of the carbon film, volatile species, once formed during electrochemical reactions, can be sampled by MS. In the set-up of DEMS system for disk electrodes, volatile products formed on the surface of disk electrodes were sampled by a hydrophobic capillary probe. Besides, the disk electrode is capped by a polyethylene mini-hood for the detection of gaseous products produced by reactions in nonaqueous media.
     2. DEMS study of ammonia oxidation reaction (AOR)
     A comparative DEMS study of AOR in both aqueous and nonaqueous media revealed that the inhibition of ammonia oxidation reaction catalyzed by Pt or Pd could be due to the surface blocking of oxygenated species. It was found that, during AOR in nonaqueous media where no surface oxygenated species exist, the catalytic activity of Pt and Pd increases with the increasing potential, which proves the inhibition role of surface oxygenated species in AOR in aqueous media. In addition, Pd shows an even higher activity toward AOR than Pt in nonaqueous media, and the oxidation of ammonia can proceed on Au which is inactive in aqueous media.
     3. The combination of electrochemistry and infrared spectroscopy
     As the complementation of DEMS, the combination of electrochemistry and infrared spectroscopy was set up for electrochemical mechanism studies. First of all, a conventional electrochemical FTIR reflection spectroscopy was constructed. However, several issues were caused by the thin layer electrolyte between the disk electrode and prism, such as poor ionic conduction, exhaustion of reactants and inapplicability of quantitative analysis. Consequently, a new system combining electrochemistry and FTIR transmission spectroscopy was set up. By the design of a sampling system attached with an ion-exchange membrane for the working electrode, enriched products can be sampled and then detected in the transmission IR cell. The new system possesses several advantages, such as normal electrochemical behaviors, supplement of reactants, quantitative analysis of concentration, and controllable reacting temperature.
     4. The study of methanol oxidation reaction (MOR) on Pt and Pd in alkaline media
     In alkaline media, the MOR activity of Pt and Pd is remarkably higher than that in acidic media, and Pd shows a comparable activity with Pt. MOR on both Pt and Pd is a structure-sensitive reaction which is favored on low-coordinated Pt(110) and Pd(110) sites. Besides, the MOR activity of Pt and Pd can be further enhanced by the decoration of Ru, and there is a maximum of the enhancement of MOR activity in a wide range of Ru coverage. Lastly, the products of MOR on Pt in alkaline media were detected by on-line electrochemical flowing FTIR transmission spectroscopy, showing that the efficiency of carbonate formation increases with temperature.
     5. The study of ethanol oxidation reaction (EOR) on Pt and Pd in alkaline media
     The EOR activity of Pt and Pd in alkaline media is remarkably higher than that in acidic media. The effect of surface morphology on the catalytic activities of Pt and Pd indicates that low-coordinated Pt(110) and Pd(110) sites favor the formation of surface oxygenated species and the split of C-C bond. The electrodeposited Pd with a large number of (110) sites shows an even higher activity toward EOR than Pt. After the investigation of products of EOR in alkaline media by on-line electrochemical flowing FTIR transmission spectroscopy, it was found that the efficiency of carbonate formation is higher at elevated temperatures and thick catalyst layers. Additionally, the efficiency of carbonate formation is much higher in acetaldehyde oxidation reaction than that in EOR.
引文
[1]燃料电池[OL].百度百科http://baike.baidu.com/view/1532.htm
    [2]衣宝廉.燃料电池[M].北京化学工业出版社,2000.
    [3]镇江,凤君.燃料电池及其应用[M].电子工业出版社,2005.
    [4]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社,2000.
    [5]凤君.高效环保的燃料电池发电系统及其应用[M].机械工业出版社,2006.
    [6]O'Hayre, R. Y. A. N.,车硕源,Colella, W. H. I. T. N. E. Y.燃料电池基础[M].北京:电子工业出版社,2007.
    [7]Carrette, L., Friedrich, K. A., Stimming, U. Fuel cells:principles, types, fuels, and applications [J]. ChemPhysChem,2000,1(4),162-193.
    [8]Hirschchenhofer, J. H., Stauffer, D. B., Engleman, R. R., Klett, M. G. Fuel Cell Handbook [M], Fourth Edition,1998.
    [9]查全性.燃料电池技术的发展与我国应有的对策[J].应用化学,1993,10(5),38-42.
    [10]Joon, K. Fuel cells-a 21st century power system [J]. Journal of Power Sources,1998,71(1), 12-18.
    [11]李莉.氨与燃料电池[J].能源技术,2005,26(3),102-105.
    [12]Simons, E. L., Cairns, E. J., Surd, D. J. The performance of direct ammonia fuel cells [J]. Journal of The Electrochemical Society,1969,116(5),556-561.
    [13]Vidal-Iglesias, F. J., Garcia-Araez, N., Montiel, V., Feliu, J. M., Aldaz, A. Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium [J]. Electrochemistry communications,2003,5(1),22-26.
    [14]Endo, K., Katayama, Y., Miura, T. Pt-Ir and Pt-Cu binary alloys as the electrocatalyst for ammonia oxidation [J]. Electrochimica acta,2004,49(9),1635-1638.
    [15]Endo, K., Nakamura, K., Katayama, Y, Miura, T. Pt-Me (Me= Ir, Ru, Ni) binary alloys as an ammonia oxidation anode [J]. Electrochimica acta,2004,49(15),2503-2509.
    [16]Vidal-Iglesias, F. J., Solla-Gullon, J., Rodriguez, P., Herrero, E., Montiel, V., Feliu, J. M., Aldaz, A. Shape-dependent electrocatalysis:ammonia oxidation on platinum nanoparticles with preferential (100) surfaces [J]. Electrochemistry Communications,2004,6(10), 1080-1084.
    [17]Vidal-Iglesias, F. J., Solla-Gullon, J., Montiel, V, Feliu, J. M., Aldaz, A. Ammonia selective oxidation on Pt(100) sites in an alkaline medium [J]. The Journal of Physical Chemistry B,2005,109(26),12914-12919.
    [18]Rosca, V., Koper, M. T. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces [J]. Physical Chemistry Chemical Physics,2006,8(21),2513-2524.
    [19]Vidal-Iglesias, F. J., Solla-Gullon, J., Feliu, J. M., Baltruschat, H., Aldaz, A. DEMS study of ammonia oxidation on platinum basal planes [J]. Journal of Electroanalytical Chemistry,2006,588(2),331-338.
    [20]Vidal-Iglesias, F. J., Solla-Gullon, J., Montiel, V., Feliu, J. M., Aldaz, A. Screening of electrocatalysts for direct ammonia fuel cell:Ammonia oxidation on PtMe (Me:Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles [J]. Journal of Power Sources,2007, 171(2),448-456.
    [21]Yao, K., Cheng, Y. F. Electrodeposited Ni-Pt binary alloys as electrocatalysts for oxidation of ammonia [J]. Journal of Power Sources,2007,173(1),96-101.
    [22]Moran, E., Cattaneo, C, Mishima, H., De Mishima, B. L., Silvetti, S. P., Rodriguez, J. L., Pastor, E. Ammonia oxidation on electrodeposited Pt-Ir alloys [J]. Journal of Solid State Electrochemistry,2008,12(5),583-589.
    [23]Yao, K., Cheng, Y. F. Fabrication by electrolytic deposition of Pt-Ni electrocatalyst for oxidation of ammonia in alkaline solution [J]. International Journal of Hydrogen Energy,2008,33(22),6681-6686.
    [24]Zeng, Y. F, Imbihl, R. Structure sensitivity of ammonia oxidation over platinum [J]. Journal of Catalysis,2009,261(2),129-136.
    [25]Boggs, B. K., Botte, G. G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media [J]. Electrochimica Acta,2010,55(19), 5287-5293.
    [26]Gootzen, J. F. E., Wonders, A. H., Visscher, W., Van Santen, R. A., Van Veen, J. A. R. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum [J]. Electrochimica acta,1998,43(12),1851-1861.
    [27]Oswin, H. G., Salomon, M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte [J]. Canadian Journal of Chemistry,1963,41(7),1686-1694.
    [28]Wasmus, S., Vasini, E. J., Krausa, M., Mishima, H. T., Vielstich, W. DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide [J]. Electrochimica acta,1994,39(1),23-31.
    [29]Endo, K., Katayama, Y., Miura, T. A rotating disk electrode study on the ammonia oxidation [J]. Electrochimica acta,2005,50(11),2181-2185.
    [30]Cooper, M., Botte, G. G. Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate [J]. Journal of the Electrochemical Society,2006,153(10), A1894-A1901.
    [31]Offermans, W. K., Jansen, A. P. J., Van Santen, R. A. Ammonia activation on platinum{111}: A density functional theory study [J]. Surface science,2006,600(9),1714-1734.
    [32]Vidal-Iglesias, F. J., Solla-Gullon, J., Perez, J. M., Aldaz, A. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes [J]. Electrochemistry communications,2006,8(1),102-106.
    [33]Zhou, L., Cheng, Y. F., Amrein, M. Fabrication by electrolytic deposition of platinum black electrocatalyst for oxidation of ammonia in alkaline solution [J]. Journal of Power Sources,2008,177(1),50-55.
    [34]Rosca, V., Duca, M., de Groot, M. T., Koper, M. T. Nitrogen cycle electrocatalysis [J]. Chemical reviews,2009,109(6),2209-2244.
    [35]甲醇燃料电池[OL].百度百科http://baike.baidu.com/view/3677919.htm
    [36]乙醇燃料电池[OL].百度百科.1ittp://baike.baidu.com/view/4085094.htm
    [37]王得丽.甲醇电氧化铂钌催化剂的多因素研究[D].武汉大学,2008.
    [38]Zhao, X., Yin, M., Ma, L., Liang, L., Liu, C., Liao, J., Lu, T., Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science,2001,4(8), 2736-2753.
    [39]A. Hamnett, Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell [J], Catal. Today,1997,38,445-457.
    [40]S. Wasmus, A. Kuver, Methanol Oxidation and Direct Methanol Fuel Cells:a Selective Review [J], J. Electroanal. Chem,1999,461,14-31.
    [41]Watanabe, M., Motoo, S. Electrocatalysis by ad-atoms:Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60(3),267-273.
    [42]Herrero, E., Franaszczuk, K., Wiecskowski, A. A voltammetric identification of the surface redox couple effective in methanol oxidation on a ruthenium-covered platinum (110) electrode [J]. Journal of Electroanalytical Chemistry,1993,361(1),269-273.
    [43]Ma, L., Liu, C., Liao, J., Lu, T., Xing, W., Zhang, J. High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation [J]. Electrochimica Acta,2009,54(28),7274-7279.
    [44]A. S. Arico, S. Srinivasan, V. Antonucci, DMFCs:from fundamental aspects to technology development [J], Fuel Cells,2001,1,1-29.
    [45]朱科,陈延禧,张继炎.直接乙醇燃料电池的研究现状及前景[J].电源技术,2004,28(3),187-190.
    [46]罗彬,周德璧,赵大鹏,刘军,王珏,王俊杰.直接乙醇燃料电池阳极催化材料的研究进展[J].材料导报,2008,21(F11),288-291.
    [47]Lai, S. C., Koper, M. T. Ethanol electro-oxidation on platinum in alkaline media [J]. Physical Chemistry Chemical Physics,2009,11(44),10446-10456.
    [48]Shin, J., Tomquist, W. J., Korzeniewski, C., Hoaglund, C. S. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes [J]. Surface science,1996,364(2),122-130.
    [49]Sun, S., Halseid, M. C., Heinen, M., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure:a high-temperature/high-pressure DEMS study [J]. Journal of Power Sources,2009,190(1), 2-13.
    [50]Rousseau, S., Coutanceau, C., Lamy, C., Leger, J. M. Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes [J]. Journal of Power Sources,2006,158(1),18-24.
    [51]杨勇,林祖赓.谱学电化学方法及其在化学电源研究中的应用[J].电源技术,1995,19(2),2-6.
    [52]Wen, T. C., Sivakumar, C., Gopalan, A. In situ, UV-Vis spectroelectrochemical studies on the initial stages of copolymerization of aniline with diphenylamine-4-sulphonic acid [J]. Electrochimica acta,2001,46(7),1071-1085.
    [53]Xie, W., Herrmann, C., Kompe, K., Haase, M., Schlucker, S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions [J]. Journal of the American Chemical Society,2011,133(48),19302-19305.
    [54]Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V, Tarascon, J. M., Grey, C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries [J]. Journal of the American Chemical Society,2009,131(26),9239-9249.
    [55]Hammond J. S., Winogard N. XPS spectroscopic study of potentiostatic and galvanostatic oxidation of Pt electrodes in H2SO4 and HC1O4 [J]. J.Electroanal. Chem.,1977,78:55
    [56]Oda, I., Shingaya, Y., Matsumoto, H., Ito, M. UPD mechanisms of copper and thallium on a Pt(111) electrode studied by in-situ IRAS and EC-STM [J]. Journal of Electroanalytical Chemistry,1996,409(1),95-101.
    [57]Helmut Baltruschat. Differential electrochemical mass spectrometry [J]. Journal of the American Society for Mass Spectrometry,2004,15:1693-1706
    [58]Osawa, M., Yoshii, K. In situ and real-time surface-enhanced infrared study of electrochemical reactions [J]. Applied spectroscopy,1997,51(4),512-518.
    [59]Bruckenstein S., Gadde R. R. Use of a porous electrode for in situ MS determination of volatile electrode reaction products [J]. J. Am. Chem. Soc.,1971,93,793
    [60]Bruckenstein S., Comeau J. Electrochemical mass spectrometry [J]. Faraday Discuss. Chem. Soc,1973,56,285
    [61]Wolter, O., Heitbaum, J. Differential electrochemical mass spectroscopy (DEMS)—a new method for the study of electrode processes [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1984,88(1),2-6.
    [62]Wolter, O., Heitbaum, J. The adsorption of CO on a porous Pt electrode in sulfuric acid studied by DEMS [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1984,88(1), 6-10.
    [63]Willsau, J., Heitbaum, J. Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS [J]. Electrochimica Acta,1986,31(8),943-948.
    [64]De Souza, J. P. I., Queiroz, S. L., Bergamaski, K., Gonzalez, E. R., Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. The Journal of Physical Chemistry B,2002,106(38),9825-9830.
    [65]Wang, H., Jusys, Z., Behm, R. J. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts:A quantitative DEMS study [J]. Journal of Power Sources,2006,154(2), 351-359.
    [66]Xue, X., Huo, S., Yan, Y., Wang, J., Yao, J., Cai, W. In situ surface-Enhanced vibrational spectroscopies on isonicotinic acid adsorbed on gold electrodes in alkaline solutions [J]. ACTA CHIMICA SINICA-CHINESE EDITION,2007,65(15),1437.
    [67]Li, Q. X., Xue, X. K., Xu, Q. J., Cai, W. B. Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes [J]. Applied spectroscopy,2007,61(12),1328-1333.
    [68]Yan, Y. G., Yang, Y. Y, Peng, B., Malkhandi, S., Bund, A., Stimming, U., Cai, W. B. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS [J]. The Journal of Physical Chemistry C,2011,115(33),16378-16388.
    [69]Wang, J. Y., Zhang, H. X., Jiang, K., Cai, W. B. From HCOOH to CO at Pd electrodes:a surface-enhanced infrared spectroscopy study [J]. Journal of the American Chemical Society,2011,133(38),14876-14879.
    [70]Iwasita, T., Nart, F. C. In situ infrared spectroscopy at electrochemical interfaces [J]. Progress in surface science,1997,55(4),271-340.
    [71]Bewick, A., Kunimatsu, K., Stanley Pons, B. Infrared spectroscopy of the electrode-electrolyte interphase [J]. Electrochimica Acta,1980,25(4),465-468.
    [72]Bewick, A. In-situ infrared spectroscopy of the electrode/electrolyte solution interphase [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,150(1), 481-493.
    [73]New techniques for the study of electrodes and their reactions [M]. Elsevier,1989.
    [74]Sun, S. G., Lin, Y. Kinetics of isopropanol oxidation onPt(111), Pt(110), Pt(100), Pt(610) and Pt(211) single crystal electrodes:studies of in situ time-resolved FTIR spectroscopy [J]. Electrochimica acta,1998,44(6),1153-1162.
    [75]Nichols, R. J., Bewick, A. SNUTIRS with a flow cell:the identification of the reaction intermediates in methanol oxidation at Pt anodes [J]. Electrochimica acta,1988,33(11), 1691-1694.
    [76]Roth, J. D., Weaver, M. J. Potential-difference surface infrared spectroscopy under forced hydrodynamic flow conditions:Control and elimination of adsorbate solution-phase interferences [J]. Analytical Chemistry,1991,63(15),1603-1606.
    [77]Hartstein, A., Kirtley, J. R., Tsang, J. C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers [J]. Physical Review Letters,1980,45(3), 201-204.
    [78]Osawa, M., Kuramitsu, M., Hatta, A., Suetaka, W., Seki, H. Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films [J]. Surface Science,1986,175(3), L787-L793.
    [79]Krauth, O., Fahsold, G., Pucci, A. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001) [J]. The Journal of chemical physics,1999,110(6),3113-3117.
    [80]Merklin, G. T., Griffiths, P. R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films [J]. Langmuir,1997,13(23),6159-6163.
    [81]Osawa, M., Ataka, K. I., Yoshii, K., Nishikawa, Y. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles [J]. Applied spectroscopy,1993,47(9), 1497-1502.
    [82]Yan, Y. G., Li, Q. X., Huo, S. J., Ma, M., Cai, W. B., Osawa, M. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. The Journal of Physical Chemistry B,2005,109(16),7900-7906.
    [83]Martin, H. B., Morrison, P. W. Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry [J]. Electrochemical and Solid-State Letters,2001, 4(4),E17-E20.
    [84]Shao, M. H., Liu, P., Adzic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes [J]. Journal of the American Chemical Society,2006,128(23),7408-7409.
    [85]Xue, X. K., Wang, J. Y., Li, Q. X., Yan, Y. G., Liu, J. H., Cai, W. B. Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes [J]. Analytical chemistry,2008, 80(1),166-171.
    [86]Chen, Y. X., Heinen, M., Jusys, Z., Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell [J]. Angewandte Chemie International Edition,2006,45(6),981-985.
    [87]氨[OL].百度百科. http://baike.baidu.com/view/19840.htm
    [88]Marincic, L., Leitz, F. B. Electro-oxidation of ammonia in waste water [J]. Journal of Applied Electrochemistry,1978,8(4),333-345.
    [89]Timmer, B. H., Van Delft, K. M., Otjes, R. P., Olthuis, W., Van Den Berg, A. Miniaturized measurement system for ammonia in air [J]. Analytica chimica acta,2004,507(1),137-143.
    [90]Chen, J., Shi, , Lu, J. Electrochemical treatment of ammonia in wastewater by RuO2-IrO2-TiO2/Ti electrodes [J]. Journal of Applied Electrochemistry,2007,37(10), 1137-1144.
    [91]Bonnin, E. P., Biddinger, E. J., Botte, G. G. Effect of catalyst on electrolysis of ammonia effluents [J]. Journal of Power Sources,2008,182(1),284-290.
    [92]Li, L., Liu, Y. Ammonia removal in electrochemical oxidation:mechanism and pseudo-kinetics [J]. Journal of Hazardous Materials,2009,161(2),1010-1016.
    [93]Strickland, G. Hydrogen derived from ammonia:small-scale costs [J]. International journal of hydrogen energy,1984,9(9),759-766.
    [94]Metkemeijer, R., Achard, P. Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behavior [J]. Journal of power sources,1994,49(1),271-282.
    [95]Halseid, R., Wainright, J. S., Savinell, R. F., Tunold, R. Oxidation of ammonium on platinum in acidic solutions [J]. Journal of the Electrochemical Society,2007,154(2), B263-B270.
    [96]Gerischer, H., Mauerer, A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1970,25(3),421-433.
    [97]De Vooys, A. C. A., Koper, M. T. M., Van Santen, R. A., Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes [J]. Journal of Electroanalytical Chemistry,2001,506(2),127-137.
    [98]De Vooys, A. C. A., Mrozek, M. F., Koper, M. T. M., Van Santen, R. A., Van Veen, J. A. R., Weaver, M. J. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy [J]. Electrochemistry communications,2001,3(6),293-298.
    [99]Offermans, W. K., Jansen, A. P. J., Van Santen, R. A., Novell-Leruth, G., Ricart, J. M., Perez-Ramirez, J. Ammonia dissociation on Pt{ 100}, Pt{ 111}, and Pt{211}:A comparative density functional theory study [J]. The Journal of Physical Chemistry C,2007,111(47), 17551-17557.
    [100]周卫江,周振华,李文震,孙公权,辛勤.直接甲醇燃料电池阳极催化剂研究进展[J].化学通报,2003,4,228-234.
    [101]Lee, S. A., Park, K. W., Choi, J. H., Kwon, B. K., Sung, Y. E. Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells [J]. Journal of the Electrochemical Society,2002,149(10), A1299-A1304.
    [102]Arico, A. S., Antonucci, V, Giordano, N. Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid [J]. Journal of power sources,1994,50(3),295-309.
    [103]Gotz, M., Wendt, H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas [J]. Electrochimica Acta,1998,43(24),3637-3644.
    [104]Haner, A. N., Ross, P. N. Electrochemical oxidation of methanol on tin-modified platinum single-crystal surfaces [J]. The Journal of Physical Chemistry,1991,95(9),3740-3746.
    [105]Shukla, A. K., Ravikumar, M. K., Arico, S., Candiano, G., Antonucci, V, Giordano, N., Hamnett, A. Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte [J]. Journal of applied electrochemistry,1995,25(6),528-532.
    [106]Iwasita, T. Electrocatalysis of methanol oxidation [J]. Electrochimica Acta,2002,47(22), 3663-3674.
    [107]Housmans, T. H., Wonders, A. H., Koper, M. T. Structure sensitivity of methanol electrooxidation pathways on platinum:An on-line electrochemical mass spectrometry study [J]. The Journal of Physical Chemistry B,2006,110(20),10021-10031.
    [108]Breiter, M. W. Nature of strongly adsorbed species formed on platinized-platinum after the addition of methanol, formic acid, and formaldehyde [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1967,15,221-226.
    [109]Breiter, M. W. A study of intermediates adsorbed on platinized-platinum during the steady-state oxidation of methanol, formic acid and formaldehyde [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1967,14(4),407-413.
    [110]Breiter, M. W., Gilman, S. Anodic oxidation of methanol on platinum:adsorption of methanol, oxygen, and hydrogen on platinum in acidic solution [J]. Journal of The Electrochemical Society,1962,109(7),622-627.
    [111]Neurock, M., Janik, M., Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday discussions,2009,140,363-378.
    [112]Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum [J]. Journal of the American Chemical Society,2006,128(41), 13332-13333.
    [113]Luo, J., Njoki, P. N., Lin, Y., Mott, D., Wang, L., Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction [J]. Langmuir,2006,22(6),2892-2898.
    [114]Chen, Y. X., Miki, A., Ye, S., Sakai, H., Osawa, M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. Journal of the American Chemical Society,2003, 125(13),3680-3681.
    [115]Yin, M., Huang, Y., Liang, L., Liao, J., Liu, C.,Xing, W. Inhibiting CO formation by adjusting surface composition in PtAu alloys for methanol electrooxidation [J]. Chemical Communications,2011,47(28),8172-8174.
    [116]Sriramulu, S., Jarvi, T. D., Stuve, E. M. A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(111)[J].Electrochimicaacta,1998,44(6),1127-1134.
    [117]Yajima, T., Uchida, H., Watanabe, M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. The Journal of Physical Chemistry B,2004,108(8),2654-2659.
    [118]Lai, S. C. S., Lebedeva, N. P., Housmans, T. H. M., Koper, M. T. M. Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes [J]. Topics in Catalysis,2007, 46(3-4),320-333.
    [119]Morallon, E., Rodes, A., Vazquez, J. L., Perez, J. M. Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media [J]. Journal of Electroanalytical Chemistry,1995,391(1),149-157.
    [120]Beden, B., Lamy, C., Bewick, A., Kunimatsu, K. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981,121,343-347.
    [121]Markovic, N. M., Ross Jr, P. N. Surface science studies of model fuel cell electrocatalysts [J]. Surface Science Reports,2002,45(4),117-229.
    [122]Sen, S., Sen, F., Gokagac, G. Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation [J]. Physical Chemistry Chemical Physics,2011,13(15),6784-6792.
    [123]Lee, K. S., Jeon, T. Y., Yoo, S. J., Park, I. S., Cho, Y. H., Kang, S. H., Choi, K. H., Sung, Y. E. Effect of PtRu alloying degree on electrocatalytic activities and stabilities [J]. Applied Catalysis B:Environmental,2011,102(1),334-342.
    [124]Frelink, T., Visscher, W., Van Veen, J. A. R. On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt [J]. Surface Science,1995,335,353-360.
    [125]Kristian, N., Yan, Y., Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation [J]. Chemical communications,2008, (3),353-355.
    [126]Zhao, D., Wang, Y. H., Xu, B. Q. Pt flecks on colloidal Au (PtΔAu) as nanostructured anode catalysts for electrooxidation of formic acid [J]. The Journal of Physical Chemistry C,2009, 113(49),20903-20911.
    [127]Parsons, R., VanderNoot, T. The oxidation of small organic molecules:a survey of recent fuel cell related research [J]. Journal of electroanalytical chemistry and interfacial electrochemistry,1988,257(1),9-45.
    [128]Herrero, E., Chrzanowski, W., Wieckowski, A. Dual path mechanism in methanol electrooxidation on a platinum electrode [J]. The Journal of Physical Chemistry,1995,99(25), 10423-10424.
    [129]Xia, X. H., Iwasita, T., Ge, F., Vielstich, W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum [J]. Electrochimica acta,1996,41(5), 711-718.
    [130]Beden, B., Leger, J. M., Lamy, C. Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes [J]. In Modern aspects of electrochemistry (pp.97-264). 1992. Springer US.
    [131]Zhu, Y., Uchida, H., Yajima, T., Watanabe, M. Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode [J]. Langmuir,2001, 17(1),146-154.
    [132]Batista, E. A., Malpass, G. R. P., Motheo, A. J., Iwasita, T. New insight into the pathways of methanol oxidation [J]. Electrochemistry communications,2003,5(10),843-846.
    [133]Batista, E. A., Malpass, G. R. P., Motheo, A. J., Iwasita, T. New mechanistic aspects of methanol oxidation [J]. Journal of Electroanalytical Chemistry,2004,571(2),273-282.
    [134]Wang, J., Wasmus, S., Savinell, R. F. Evaluation of ethanol,1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell a real-time mass spectrometry study [J]. Journal of the Electrochemical Society,1995,142(12),4218-4224.
    [135]Lamy, C., Belgsir, E. M., Leger, J. M. Electrocatalytic oxidation of aliphatic alcohols:application to the direct alcohol fuel cell (DAFC) [J]. Journal of Applied Electrochemistry,2001,31(7),799-809.
    [136]Lamy, C., Lima, A., LeRhun, V, Delime, F., Coutanceau, C., Leger, J. M. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. Journal of Power Sources,2002, 105(2),283-296.
    [137]Peled, E., Duvdevani, T., Aharon, A., Melman, A. New fuels as alternatives to methanol for direct oxidation fuel cells [J]. Electrochemical and Solid-State Letters,2001,4(4), A38-A41.
    [138]Lamy, C., Rousseau, S., Belgsir, E. M., Coutanceau, C., Leger, J. M. Recent progress in the direct ethanol fuel cell:development of new platinum-tin electrocatalysts [J]. Electrochimica Acta,2004,49(22),3901-3908.
    [139]Colmati, F., Tremiliosi-Filho, G., Gonzalez, E. R., Berna, A., Herrero, E., Feliu, J. M. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes [J]. Faraday discussions,2009,140,379-397.
    [140]Hitmi, H., Belgsir, E. M., Leger, J. M., Lamy, C., Lezna, R. O. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium [J]. Electrochimica Acta,1994,39(3),407-415.
    [141]Iwasita, T., Pastor, E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum [J]. Electrochimica Acta,1994,39(4),531-537.
    [142]Xia, X. H., Liess, H. D., Iwasita, T. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes [J]. Journal of Electroanalytical Chemistry,1997,437(1), 233-240.
    [143]Chang, S. C., Leung, L. W. H., Weaver, M. J. Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy:electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces [J]. Journal of Physical Chemistry,1990, 94(15),6013-6021.
    [144]Lamy, C., Leger, J. M., Srinivasan, S. Direct methanol fuel cells:from a twentieth century electrochemist's dream to a twenty-first century emerging technology [J]. Modern aspects of electrochemistry,2002,53-118.
    [145]Hable, C. T., Wrighton, M. S. Electrocatalytic oxidation of methanol and ethanol:a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix [J]. Langmuir,1993,9(11),3284-3290.
    [146]Fujiwara, N., Friedrich, K. A., Stimming, U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry [J]. Journal of Electroanalytical Chemistry,1999,472(2),120-125.
    [147]Neto, A. O., Giz, M. J., Perez, J., Ticianelli, E. A., Gonzalez, E. R. The electro-oxidation of ethanol on Pt-Ru and Pt-Mo particles supported on high-surface-area carbon [J]. Journal of the Electrochemical Society,2002,149(3), A272-A279.
    [148]Leger, J. M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts [J]. Journal of Applied Electrochemistry,2001,31(7),767-771.
    [149]Souza, J. P., Botelho Rabelo, F. J., de Moraes, I. R., Nart, F. C. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy [J]. Journal of Electroanalytical Chemistry,1997,420(1),17-20.
    [150]Pacheco Santos, V., Tremiliosi-Filho, G. Effect of osmium coverage on platinum single crystals in the ethanol electrooxidation [J]. Journal of Electroanalytical Chemistry,2003,554, 395-405.
    [151]Pacheco Santos, V., Del Colle, V., Batista de Lima, R., Tremiliosi-Filho, G. FTIR study of the ethanol electrooxidation on Pt(100) modified by osmium nanodeposits [J]. Langmuir,2004, 20(25),11064-11072.
    [152]Pacheco Santos, V., Del Colle, V., de Lima, R. B., Tremiliosi-Filho, G. In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands [J]. Electrochimica acta,2007,52(7),2376-2385.
    [153]Bergamaski, K., Gonzalez, E. R., Nart, F. C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts [J]. Electrochimica Acta,2008,53(13),4396-4406.
    [154]Souza-Garcia, J., Herrero, E., Feliu, J. M. Breaking the C-C Bond in the Ethanol Oxidation Reaction on Platinum Electrodes:Effect of Steps and Ruthenium Adatoms [J]. ChemPhysChem,2010,11(7),1391-1394.
    [155]Wang, H. F., Liu, Z. P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum:new transition-state searching method for resolving the complex reaction network [J]. Journal of the American Chemical Society,2008,130(33), 10996-11004.
    [156]Lai, S. C., Koper, M. T. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes [J]. Faraday discussions,2009,140,399-416.
    [157]Melke, J., Schoekel, A., Gerteisen, D., Dixon, D., Ettingshausen, F., Cremers, C., Roth, C., Ramaker, D. E. Electrooxidation of ethanol on Pt. An in Situ and time-resolved XANES study [J]. The Journal of Physical Chemistry C,2012,116(4),2838-2849.
    [158]Del Colle, V., Berna, A., Tremiliosi-Filho, G., Herrero, E., Feliu, J. M. Ethanol electrooxidation onto stepped surfaces modified by Ru deposition:electrochemical and spectroscopic studies [J]. Physical Chemistry Chemical Physics,2008,10(25),3766-3773.
    [159]Zhou, Z. Y., Huang, Z. Z., Chen, D. J., Wang, Q., Tian, N., Sun, S. G. High-Index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation [J]. Angewandte Chemie International Edition,2010,49(2),411-414.
    [160]Lai, S. C., Koper, M. T. The influence of surface structure on selectivity in the ethanol electro-oxidation reaction on platinum [J]. The Journal of Physical Chemistry Letters,2010, 1(7),1122-1125.
    [161]Colmati, F., Tremiliosi-Filho, G., Gonzalez, E. R., Berna, A., Herrero, E., Feliu, J. M. The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes [J]. Physical Chemistry Chemical Physics,2009,11(40),9114-9123.
    [162]Wang, H., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields [J]. The Journal of Physical Chemistry B,2004,108(50), 19413-19424.
    [163]Rao, V., Cremers, C., Stimming, U., Cao, L., Sun, S., Yan, S, Sun, G., Xin, Q. Electro-oxidation of ethanol at gas diffusion electrodes a DEMS study [J]. Journal of the Electrochemical Society,2007,154(11), B1138-B1147.
    [164]Hitmi, H., Belgsir, E. M., Leger, J. M., Lamy, C., Lezna, R. O. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium [J]. Electrochimica Acta,1994,39(3),407-415.
    [165]Camara, G. A., Iwasita, T. Parallel pathways of ethanol oxidation:the effect of ethanol concentration [J]. Journal of Electroanalytical Chemistry,2005,578(2),315-321.
    [166]Rao, V., Cremers, C., Stimming, U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry [J]. Fuel Cells,2007,7(5),417-423.
    [167]Sun, S., Heinen, M., Jusys, Z., Behm, R. J. Electrooxidation of acetaldehyde on a carbon supported Pt catalyst at elevated temperature/pressure:an on-line differential electrochemical mass spectrometry study [J]. Journal of Power Sources,2012,204,1-13.
    [1]季欧.质谱分析法[M].第一版.北京:原子能出版社,1978
    [2]吴谨光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994
    [3]迈克尔逊干涉仪[OL].百度百科.1http://baike.baidu.com/view/321080.htm
    [4]DTGS检测器[OL].百度百科http://baike.baidu.com/view/10031875.htm
    [5]MCT检测器[OL].百度百科.1http://baike.baidu.com/view/1268962.htm
    [6]Xiao, L., Zhuang, L., Liu, Y., Lu, J. Activating Pd by morphology tailoring for oxygen reduction [J]. Journal of the American Chemical Society,2008,131(2),602-608.
    [7]Brenner, A. Electrodeposition of alloys. Principles and practice Volume 2 (No. EPFL-BOOK-107198) [M]. Academic press,1963.
    [8]Hurley, F. H., WIer, T. P. The electrodeposition of aluminum from nonaqueous solutions at room temperature [J]. Journal of the Electrochemical Society,1951,98(5),207-212.
    [9]查全性.电极过程动力学导论[M].科学出版社,1976.
    [10]Hara, M., Linke, U., Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4:Part I. Low-index phases [J]. Electrochimica acta,2007,52(18),5733-5748.
    [11]Cuesta, A., Couto, A., Rincen, A., Perez, M. C., Lopez-Cudero, A., Gutierrez, C. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 3:Pt (poly) [J]. Journal of Electroanalytical Chemistry,2006,586(2),184-195.
    [I]Bruckenstein S., Gadde R. R. Use of a porous electrode for in situ MS determination of volatile electrode reaction products [J]. Journal of the American Chemical Society.,1971,93: 793
    [2]Bruckenstein S., Comeau J. Electrochemical mass spectrometry [J]. Faraday Discuss. Chem. Soc.,1973,56:285
    [3]Tegtmeyer, D., Heitbaum, J., Heindrichs, A. Electrochemical on line mass spectrometry on a rotating electrode inlet system [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1989,93(2),201-206.
    [4]Helmut Baltruschat. Differential electrochemical mass spectrometry [J]. Journal of the American Society for Mass Spectrometry,2004,15:1693-1706
    [5]Wonders, A. H., Housmans, T. H. M., Rosca, V., Koper, M. T. M. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration [J]. Journal of applied electrochemistry,2006,36(11),1215-1221.
    [6]Hartung, T., Schmiemann, U., Kamphausen, I., Baltruschat, H. Electrodesorption from single-crystal electrodes:analysis by differential electrochemical mass spectrometry [J]. Analytical chemistry,1991,63(1),44-48.
    [7]Pastor, E., Schmidt, V. M., Iwasita, T., Arevalo, M. C, Gonzalez, S., Arvia, A. J. The reactivity of primary C3-alcohols on gold electrodes in acid media. A comparative study based on DEMS data [J].Electrochimica acta,1993,38(10),1337-1344.
    [8]Wolter, O., Willsau, J., Heitbaum, J. Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling—A DEMS study [J]. Journal of The Electrochemical Society,1985,132(7),1635-1638.
    [9]Silva-Chong, J. A., Guillen-Villafuerte, O., Rodriguez, J. L., Pastor, E. DEMS study on the nature of acetaldehyde adsorbates at Pt and Pd by isotopic labeling [J]. Journal of Solid State Electrochemistry,2008,12(5),517-522.
    [10]Sanabria-Chinchilla, J., Soriaga, M. P., Bussar, R., Baltruschat, H. A DEMS study of the electrocatalytic hydrogenation and oxidation of p-dihydroxybenzene at polycrystalline and monocrystalline platinum electrodes [J]. Journal of applied electrochemistry,2006,36(11), 1253-1260.
    [II]Bansch, B., Hartung, T., Baltruschat, H., Heitbaum, J. Reduction and oxidation of adsorbed acetone at platinum electrodes studied by DEMS [J]. Journal of electroanalytical chemistry and interfecial electrochemistry,1989,259(1),207-215.
    [12]Kita, H., Lei, H. W. Oxidation of formic acid in acid solution on Pt single-crystal electrodes [J]. Journal of Electroanalytical Chemistry,1995,388(1),167-177.
    [13]Cuesta, A., Escudero, M., Lanova, B., Baltruschat, H. Cyclic voltammetry, FTERS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt (111) electrodes [J]. Langmuir,2009,25(11),6500-6507.
    [14]Sun, S., Halseid, M. C., Heinen, M., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure:a high-temperature/high-pressure DEMS study [J]. Journal of Power Sources,2009,190(1), 2-13.
    [15]Vidal-Iglesias, F. J., Solla-Gullon, J., Montiel, V., Feliu, J. M., Aldaz, A. Ammonia selective oxidation on Pt (100) sites in an alkaline medium [J]. The Journal of Physical Chemistry B,2005,109(26),12914-12919.
    [16]Gootzen, J. F. E., Wonders, A. H., Visscher, W., Van Santen, R. A., Van Veen, J. A. R. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum [J]. Electrochimica acta,1998,43(12),1851-1861.
    [17]De Vooys, A. C. A., Koper, M. T. M., Van Santen, R. A., Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes [J]. Journal of Electroanalytical Chemistry,2001,506(2),127-137.
    [18]Vidal-Iglesias, F. J., Solla-Gullon, J., Feliu, J. M., Baltruschat, H., Aldaz, A. DEMS study of ammonia oxidation on platinum basal planes [J]. Journal of Electroanalytical Chemistry,2006,588(2),331-338.
    [19]Rosca, V, Koper, M. T. Electrocatalytic oxidation of ammonia on Pt (111) and Pt (100) surfaces [J]. Physical Chemistry Chemical Physics,2006,8(21),2513-2524.
    [20]Hartung, T., Baltruschat, H. Differential electrochemical mass spectrometry using smooth electrodes:adsorption and hydrogen/deuterium exchange reactions of benzene on platinum [J]. Langmuir,1990,6(5),953-957.
    [21]Wonders, A. H., Housmans, T. H. M., Rosca, V., Koper, M. T. M. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration [J]. Journal of applied electrochemistry,2006,36(11),1215-1221.
    [22]Jambunathan, K, Jayaraman, S., Hillier, A. C. Amultielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited PtxRuy [J].Langmuir,2004,20(5),1856-1863.
    [23]Bittins-Cattaneo, B., Cattaneo, E., Konigshoven, P., Vielstich, W., Bard, A. J. Electroanalytical chemistry [J]. Electroanalytical Chemistry,1991,17.
    [24]Souza-Garcia, J., Herrero, E., Feliu, J. M. Breaking the C-C bond in the ethanol oxidation reaction on platinum electrodes:effect of steps and ruthenium adatoms [J]. ChemPhysChem,2010,11(7),1391-1394.
    [25]Lai, S. C, Koper, M. T. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes [J]. Faraday discussions,2009,140,399-416.
    [26]De Souza, J. P. I., Queiroz, S. L., Bergamaski, K., Gonzalez, E. R., Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. The Journal of Physical Chemistry B,2002,106(38),9825-9830.
    [27]Cremers, C, Bayer, D., Kintzel, B., Joos, M.. Jung, F., Krausa, M., Tubke, J. Oxidation of alcohols in acidic and alkaline environments [J]. ECS transactions,2008,16(2),1263-1273.
    [28]Bayer, D., Berenger, S., Cremers, C, Tubke, J. Concentration dependence of the electro-oxidation of ethanol and ethylene glycol at platinum in alkaline medium [J]. ECS Transactions,2010,25(13),95-103.
    [29]Bayer, D., Cremers, C., Baltruschat, H., Tiibke, J. The electro-oxidation of ethanol in alkaline medium at different catalyst metals [J]. ECS Transactions,2011,41(1),1669-1680.
    [30]Bayer, D., Cremers, C., Baltruschat, H., Tubke, J. Ethanol stripping in alkaline medium:a DEMS study [J]. ECS Transactions,2010,25(13),85-93.
    [31]Xiao, L., Zhuang, L., Liu, Y., Lu, J. Activating Pd by morphology tailoring for oxygen reduction [J]. Journal of the American Chemical Society,2008,131(2),602-608.
    [32]Yang, C., Huang, B., Xiao, L., Ren, Z., Liu, Z., Lu, J., Zhuang, L. Activating Ag by even more inert Au:a peculiar effect on electrocatalysis toward oxygen reduction in alkaline media [J]. Chemical Communications,2013,49(94),11023-11025.
    [33]Chen, X., Ren, X., Liu, Z., Zhuang, L., Lu, J. Promoting the photoanode efficiency for water splitting by combining hematite and molecular Ru catalysts [J]. Electrochemistry Communications,2013,27,148-151.
    [34]Sun, Y, Lu, J., Zhuang, L. Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts [J]. Electrochimica Acta,2010,55(3), 844-850.
    [1]Marincic, L., Leitz, F. B. Electro-oxidation of ammonia in waste water [J]. Journal of Applied Electrochemistry,1978,8(4),333-345.
    [2]Timmer, B. H., Van Delft, K. M., Otjes, R. P., Olthuis, W., Van Den Berg, A. Miniaturized measurement system for ammonia in air [J]. Analytica chimica acta,2004,507(1),137-143.
    [3]Chen, J., Shi, H., Lu, J. Electrochemical treatment of ammonia in wastewater by RuO2-IrO2-TiO2/Ti electrodes [J]. Journal of Applied Electrochemistry,2007,37(10), 1137-1144.
    [4]Bonnin, E. P., Biddinger, E. J., Botte, G. G. Effect of catalyst on electrolysis of ammonia effluents [J]. Journal of Power Sources,2008,182(1),284-290.
    [5]Li, L., Liu, Y. Ammonia removal in electrochemical oxidation:mechanism and pseudo-kinetics [J]. Journal of Hazardous Materials,2009,161(2),1010-1016.
    [6]Simons, E. L., Cairns, E. J., Surd, D. J. The performance of direct ammonia fuel cells [J]. Journal of The Electrochemical Society,1969,116(5),556-561.
    [7]Strickland, G. Hydrogen derived from ammonia:small-scale costs [J]. International journal of hydrogen energy,1984,9(9),759-766.
    [8]Metkemeijer, R., Achard, P. Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behavior [J]. Journal of power sources,1994,49(1),271-282.
    [9]Kordesch, K., Gsellmann, J., Cifrain, M., Voss, S., Hacker, V, Aronson, R. R., Daniel-Ivad, J. Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles [J]. Journal of Power Sources,1999,80(1),190-197.
    [10]Choudhary, T. V, Sivadinarayana, C., Goodman, D. W. Production of CO-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia [J]. Chemical Engineering Journal,2003,93(1),69-80.
    [II]Wojcik, A., Middleton, H., Damopoulos, I. Ammonia as a fuel in solid oxide fuel cells [J]. Journal of Power Sources,2003,118(1),342-348.
    [12]Vitse, F., Cooper, M., Botte, G. G. On the use of ammonia electrolysis for hydrogen production [J]. Journal of Power Sources,2005,142(1),18-26.
    [13]Oswin, H. G., Salomon, M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte [J]. Canadian Journal of Chemistry,1963,41(7),1686-1694.
    [14]Wasmus, S., Vasini, E. J., Krausa, M., Mishima, H. T., Vielstich, W. DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide [J]. Electrochimica acta,1994,39(1),23-31.
    [15]Endo, K., Katayama, Y., Miura, T. A rotating disk electrode study on the ammonia oxidation [J]. Electrochimica acta,2005,50(11),2181-2185.
    [16]Cooper, M., Botte, G. G. Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate [J]. Journal of the Electrochemical Society,2006,153(10), A1894-A1901.
    [17]Offermans, W. K., Jansen, A. P. J., Van Santen, R. A. Ammonia activation on platinum{111}: A density functional theory study [J]. Surface science,2006,600(9),1714-1734.
    [18]Vidal-Iglesias, F. J., Solla-Gullon, J., Perez, J. M., Aldaz, A. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes [J]. Electrochemistry communications,2006,8(1),102-106.
    [19]Zhou, L., Cheng, Y. F., Amrein, M. Fabrication by electrolytic deposition of platinum black electrocatalyst for oxidation of ammonia in alkaline solution [J]. Journal of Power Sources,2008,177(1),50-55.
    [20]Rosca, V., Duca, M., de Groot, M. T., Koper, M. T. Nitrogen cycle electrocatalysis [J]. Chemical reviews,2009,109(6),2209-2244.
    [21]Vidal-Iglesias, F. J., Garcia-Araez, N., Montiel, V., Feliu, J. M., Aldaz, A. Selective electrocatalysis of ammonia oxidation on Pt (100) sites in alkaline medium [J]. Electrochemistry communications,2003,5(1),22-26.
    [22]Endo, K., Katayama, Y., Miura, T. Pt-Ir and Pt-Cu binary alloys as the electrocatalyst for ammonia oxidation [J]. Electrochimica acta,2004,49(9),1635-1638.
    [23]Endo, K., Nakamura, K., Katayama, Y, Miura, T. Pt-Me (Me= Ir, Ru, Ni) binary alloys as an ammonia oxidation anode [J]. Electrochimica acta,2004,49(15),2503-2509.
    [24]Vidal-Iglesias, F. J., Solla-Gullon, J., Rodriguez, P., Herrero, E., Montiel, V, Feliu, J. M., Aldaz, A. Shape-dependent electrocatalysis:ammonia oxidation on platinum nanoparticles with preferential (100) surfaces [J]. Electrochemistry Communications,2004,6(10), 1080-1084.
    [25]Vidal-Iglesias, F. J., Solla-Gullon, J., Montiel, V, Feliu, J. M., Aldaz, A. Ammonia selective oxidation on Pt (100) sites in an alkaline medium [J]. The Journal of Physical Chemistry B,2005,109(26),12914-12919.
    [26]Rosca, V, Koper, M. T. Electrocatalytic oxidation of ammonia on Pt (111) and Pt (100) surfaces [J]. Physical Chemistry Chemical Physics,2006,8(21),2513-2524.
    [27]Vidal-Iglesias, F. J., Solla-Gullon, J., Feliu, J. M., Baltruschat, H., Aldaz, A. DEMS study of ammonia oxidation on platinum basal planes [J]. Journal of Electroanalytical Chemistry,2006,588(2),331-338.
    [28]Vidal-Iglesias, F. J., Solla-Gullon, J., Montiel, V, Feliu, J. M., Aldaz, A. Screening of electrocatalysts for direct ammonia fuel cell:Ammonia oxidation on PtMe (Me:Ir, Rh, Pd, Ru) and preferentially oriented Pt (100) nanoparticles [J]. Journal of Power Sources,2007, 171(2),448-456.
    [29]Yao, K., Cheng, Y. F. Electrodeposited Ni-Pt binary alloys as electrocatalysts for oxidation of ammonia [J]. Journal of Power Sources,2007,173(1),96-101.
    [30]Moran, E., Cattaneo, C., Mishima, H., De Mishima, B. L., Silvetti, S. P., Rodriguez, J. L., Pastor, E. Ammonia oxidation on electrodeposited Pt-Ir alloys [J]. Journal of Solid State Electrochemistry,2008,12(5),583-589.
    [31]Yao, K., Cheng, Y. F. Fabrication by electrolytic deposition of Pt-Ni electrocatalyst for oxidation of ammonia in alkaline solution [J]. International Journal of Hydrogen Energy,2008,33(22),6681-6686.
    [32]Zeng, Y. F., Imbihl, R. Structure sensitivity of ammonia oxidation over platinum [J]. Journal of Catalysis,2009,261(2),129-136.
    [33]Boggs, B. K., Botte, G. G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media [J]. Electrochimica Acta,2010,55(19), 5287-5293.
    [34]Gootzen, J. F. E., Wonders, A. H., Visscher, W., Van Santen, R. A., Van Veen, J. A. R. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum [J]. Electrochimica acta,1998,43(12),1851-1861.
    [35]De Vooys, A. C. A., Koper, M. T. M., Van Santen, R. A., Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes [J]. Journal of Electroanalytical Chemistry,2001,506(2),127-137.
    [36]Halseid, R., Wainright, J. S., Savinell, R. F., Tunold, R. Oxidation of ammonium on platinum in acidic solutions [J]. Journal of the Electrochemical Society,2007,154(2), B263-B270.
    [37]Hara, M., Linke, U., Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HC1O4:Part I. Low-index phases [J]. Electrochimica acta,2007,52(18),5733-5748.
    [38]Cuesta, A., Couto, A., Rincon, A., Perez, M. C., Lopez-Cudero, A., Gutierrez, C. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 3:Pt (poly) [J]. Journal of Electroanalytical Chemistry,2006,586(2),184-195.
    [39]De Vooys, A. C. A., Mrozek, M. F., Koper, M. T. M., Van Santen, R. A., Van Veen, J. A. R., Weaver, M. J. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy [J]. Electrochemistry communications,2001,3(6),293-298.
    [40]Bockris, J. M., Potter, E. C. The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions [J]. The Journal of Chemical Physics,2004,20(4),614-628.
    [41]Rahim, A., Abdel Hameed, R. M., Khalil, M. W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium [J]. Journal of Power Sources,2004,134(2),160-169.
    [42]Ji, X., Silvester, D. S., Aldous, L., Hardacre, C., Compton, R. G. Mechanistic studies of the electro-oxidation pathway of ammonia in several room-temperature ionic liquids [J]. The Journal of Physical Chemistry C,2007,111(26),9562-9572.
    [43]Buzzeo, M. C., Giovanelli, D., Lawrence, N. S., Hardacre, C., Seddon, K. R., Compton, R. G. Elucidation of the electrochemical oxidation pathway of ammonia in dimethylformamide and the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [J]. Electroanalysis,2004,16(11),888-896.
    [44]Xiao, L., Zhuang, L., Liu, Y., Lu, J. Activating Pd by morphology tailoring for oxygen reduction [J]. Journal of the American Chemical Society,2008,131(2),602-608.
    [1]Xue, X., Huo, S., Yan, Y., Wang, J., Yao, J., Cai, W. In situ surface-Enhanced vibrational spectroscopies on isonicotinic acid adsorbed on gold electrodes in alkaline solutions [J]. ACTA CHIMCA SINICA-CHINESE EDITION,2007,65(15),1437.
    [2]Li, Q. X., Xue, X. K., Xu, Q. J., Cai, W. B. Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes [J]. Applied spectroscopy,2007,61(12),1328-1333.
    [3]Yan, Y. G., Yang, Y. Y, Peng, B., Malkhandi, S., Bund, A., Stimming, U., Cai, W. B. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS [J]. The Journal of Physical Chemistry C,2011,115(33),16378-16388.
    [4]Wang, J. Y, Zhang, H. X., Jiang, K., Cai, W. B. From HCOOH to CO at Pd electrodes:a surface-enhanced infrared spectroscopy study [J]. Journal of the American Chemical Society,2011,133(38),14876-14879.
    [5]Fang, X., Wang, L., Shen, P. K., Cui, G., Bianchini, C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution [J]. Journal of Power Sources,2010,195(5),1375-1378.
    [6]Yajima, T., Uchida, H., Watanabe, M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. The Journal of Physical Chemistry B,2004,108(8),2654-2659.
    [7]Tremiliosi-Filho, G., Gonzalez, E. R., Motheo, A. J., Belgsir, E. M., Leger, J. M., Lamy, C. Electro-oxidation of ethanol on gold:analysis of the reaction products and mechanism [J]. Journal of Electroanalytical Chemistry,1998,444(1),31-39.
    [8]Samjeske, G., Osawa, M. Current oscillations during formic acid oxidation on a Pt electrode: insight into the mechanism by time-resolved IR spectroscopy [J]. Angewandte Chemie,2005,117(35),5840-5844.
    [9]Osawa, M., Yoshii, K. In situ and real-time surface-enhanced infrared study of electrochemical reactions [J]. Applied spectroscopy,1997,51(4),512-518.
    [10]Zhu, Y, Uchida, H., Yajima, T, Watanabe, M. Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode [J]. Langmuir,2001, 17(1),146-154.
    [11]Zhou, Z. Y, Wang, Q., Lin, J. L., Tian, N., Sun, S. G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media [J]. Electrochimica Acta,2010, 55(27),7995-7999.
    [12]Sun, S. G., Lin, Y. Kinetics of isopropanol oxidation on Pt (111), Pt (110), Pt (100), Pt (610) and Pt (211) single crystal electrodes:studies of in situ time-resolved FTIR spectroscopy [J]. Electrochimica acta,1998,44(6),1153-1162.
    [13]Lai, S. C., Koper, M. T. Ethanol electro-oxidation on platinum in alkaline media [J]. Physical Chemistry Chemical Physics,2009,11(44),10446-10456.
    [14]Liang, Z. X., Zhao, T. S., Xu, J. B., Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochimica Acta,2009,54(8),2203-2208.
    [15]Tang, Y., Wu, Y., Wang, Z. Spectroelectrochemistry for electroreduction of p-benzoquinone in unbuffered aqueous solution [J]. Journal of the Electrochemical Society,2001,148(4), E133-E138.
    [16]Shim, Y. B., Park, S. M. Spectroelectrochemical studies of p-benzoquinone reduction in aqueous media [J]. Journal of Electroanalytical Chemistry,1997,425(1),201-207.
    [17]Liu, F., Yan, M., Zhou, W., Jiang, Z. In situ transmission difference FTIR spectroscopic investigation on anodic oxidation of methanol in aqueous solution [J]. Electrochemistry communications,2003,5(3),276-282.
    [18]Venyaminov, S. Y, Prendergast, F. G. Water (H2O and D2O) molar absorptivity in the 1000-4000 cm'1 range and quantitative infrared spectroscopy of aqueous solutions [J]. Analytical biochemistry,1997,248(2),234-245.
    [19]Shin, J., Tornquist, W. J., Korzeniewski, C., Hoaglund, C. S. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes [J]. Surface science,1996,364(2),122-130.
    [20]Sun, S., Halseid, M. C., Heinen, M., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure:a high-temperature/high-pressure DEMS study [J]. Journal of Power Sources,2009,190(1), 2-13.
    [1]A. S. Arico, S. Srinivasan, V. Antonucci, DMFCs:from fundamental aspects to technology development [J], Fuel Cells,2001,1,1-29.
    [2]周卫江,周振华,李文震,孙公权,辛勤.直接甲醇燃料电池阳极催化剂研究进展[J].化学通报,20D3,4,228-234.
    [3]Watanabe, M., Motoo, S. Electrocatalysis by ad-atoms:Part I. Enhancement of the oxidation of methanol on platinum and palladium by gold ad-atoms [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60(3),259-266.
    [4]Kumar, K. S., Haridoss, P., Seshadri, S. K. Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation [J]. Surface and Coatings Technology,2008, 202(9),1764-1770.
    [5]Arico, A. S., Antonucci, V, Giordano, N. Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid [J]. Journal of power sources,1994,50(3),295-309.
    [6]Shukla, A. K., Ravikumar, M. K., Arico, S., Candiano, G., Antonucci, V., Giordano, N., Hamnett, A. Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte [J]. Journal of applied electrochemistry,1995,25(6),528-532.
    [7]Neurock, M., Janik, M., Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday discussions,2009,140,363-378.
    [8]Cuesta, A. At least three contiguous atoms are necessary for CO formation during, methanol electrooxidation on platinum [J]. Journal of the American Chemical Society,2006,128(41), 13332-13333.
    [9]Luo, J., Njoki, P. N., Lin, Y., Mott, D., Wang, L., Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction [J]. Langmuir,2006,22(6),2892-2898.
    [10]Chen, Y. X., Miki, A., Ye, S., Sakai, H., Osawa, M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. Journal of the American Chemical Society,2003, 125(13),3680-3681.
    [11]Yin, M., Huang, Y, Liang, L., Liao, J., Liu, C., Xing, W. Inhibiting CO formation by adjusting surface composition in PtAu alloys for methanol electrooxidation [J]. Chemical Communications,2011,47(28),8172-8174.
    [12]Sriramulu, S., Jarvi, T. D., Stuve, E. M. A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(111) [J]. Electrochimica acta,1998,44(6),1127-1134.
    [13]Yajima, T., Uchida, H., Watanabe, M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. The Journal of Physical Chemistry B,2004,108(8),2654-2659.
    [14]Lai, S. C. S., Lebedeva, N. P., Housmans, T. H. M., Koper, M. T. M. Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes [J]. Topics in Catalysis,2007, 46(3-4),320-333.
    [15]Morallon, E., Rodes, A., Vazquez, J. L., Perez, J. M. Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media [J]. Journal of ElectroanaLytical Chemistry,1995,391(1),149-157.
    [16]Iwasita, T. Electrocatalysis of methanol oxidation [J]. Electrochimica Acta,2002,47(22), 3663-3674.
    [17]Housmans, T. H., Wonders, A. H., Koper, M. T. Structure sensitivity of methanol electrooxidation pathways on platinum:An on-line electrochemical mass spectrometry study [J]. The Journal of Physical Chemistry B,2006,110(20),10021-10031.
    [18]Batista, E. A., Malpass, G. R. P., Motheo, A. J., Iwasita, T. New insight into the pathways of methanol oxidation [J]. Electrochemistry communications,2003,5(10),843-846.
    [19]Beden, B., Lamy, C., Bewick, A., Kunimatsu, K. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species [J]. Journal of Electroanarytical Chemistry and Interfacial Electrochemistry,1981,121,343-347.
    [20]Zhao, X., Yin, M., Ma, L., Liang, L., Liu, C., Liao, J., Lu, T., Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science,2001,4(8), 2736-2753.
    [21]Yu, E. H., Scott, K. Development of direct methanol alkaline fuel cells using anion exchange membranes [J]. Journal of power sources,2004,137(2),248-256.
    [22]Scott, K., Yu, E., Vlachogiannopoulos, G., Shivare, M., Duteanu, N. Performance of a direct methanol alkaline membrane fuel cell [J]. Journal of Power Sources,2008,175(1),452-457.
    [23]Coutanceau, C., Demarconnay, L., Lamy, C., Leger, J. M. Development of electrocatalysts for solid alkaline fuel cell (SAFC) [J]. Journal of Power Sources,2006,156(1),14-19.
    [24]Yu, E. H., Wang, X., Krewer, U., Li, L., Scott, K. Direct oxidation alkaline fuel cells:from materials to systems [J]. Energy & Environmental Science,2012,5(2),5668-5680.
    [25]Spendelow, J. S., Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media [J]. Physical Chemistry Chemical Physics,2007,9(21), 2654-2675.
    [26]Morallon, E., Rodes, A., Vazquez, J. L., Perez, J. M. Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media [J]. Journal of Electroanalytical Chemistry,1995,391(1),149-157.
    [27]Beden, B., Kadirgan, F., Lamy, C., Leger, J. M. Oxidation of methanol on a platinum electrode in alkaline medium:Effect of metal ad-atoms on the electrocatalytic activity [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,142(1), 171-190.
    [28]Cuesta, A., Couto, A., Rincon, A., Perez, M. C., Lopez-Cudero, A., Gutierrez, C. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 3:Pt (poly) [J]. Journal of Electroanalytical Chemistry,2006,586(2),184-195.
    [29]Kwon, Y., Lai, S. C., Rodriguez, P., Koper, M. T. Electrocatalytic oxidation of alcohols on gold in alkaline media:base or gold catalysis? [J]. Journal of the American Chemical Society,2011,133(18),6914-6917.
    [30]Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y, Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007, 316(5825),732-735.
    [31]Furuya, N., Shibata, M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions [J]. Journal of Electroanalytical Chemistry,1999, 467(1),85-91.
    [32]Lopez-Cudero, A., Cuesta, A., Gutierrez, C. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt (111) [J]. Journal of Electroanalytical Chemistry,2005,579(1),1-12.
    [33]Markovic, N., Ross, P. N. Effect of anions on the underpotential deposition of copper on platinum (111) and platinum (100) surfaces [J]. Langmuir,1993,9(2),580-590.
    [34]Markovic, N. M., Gasteiger, H. A., Ross, P. N. J. Copper electrodeposition on Pt (111) in the presence of chloride and (Bi) sulfate:rotating ring-Pt (111) disk electrode studies [J]. Langmuir,1995,11(10),4098-4108.
    [35]Herrero, E., Buller, L. J., Abruna, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials [J]. Chemical Reviews,2001,101(7),1897-1930.
    [36]Endo, O., Ikemiya, N., Ito, M. The structural transformation of the Pt (110) electrode during the Cu underpotential deposition process [J]. Surface science,2002,514(1),234-240.
    [37]Vigier, F., Gloaguen, F., Leger, J. M., Lamy, C. Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation:an electrochemical quartz crystal microbalance study [J]. Electrochimica acta,2001,46(28),4331-4337.
    [38]Maillard, F., Gloaguen, F., Leger, J. M. Preparation of methanol oxidation electrocatalysts: ruthenium deposition on carbon-supported platinum nanoparticles [J]. Journal of applied electrochemistry,2003,33(1),1-8.
    [39]Tremiliosi-Filho, G., Kim, H., Chrzanowski, W., Wieckowski, A., Grzybowska, B., Kulesza, P. Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes'decorated'by ruthenium adlayers [J]. Journal of Electroanalytical Chemistry,1999,467(1),143-156.
    [40]Maillard, F., Lu, G. Q., Wieckowski, A., Stimming, U. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation [J]. The Journal of Physical Chemistry B,2005,109(34),16230-16243.
    [41]Miyake, H., Okada, T., Samjeske, G., Osawa, M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy [J]. Physical Chemistry Chemical Physics,2008,10(25),3662-3669.
    [42]Pandey, R. K., Lakshminarayanan, V. Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium [J]. The Journal of Physical Chemistry C,2009,113(52),21596-21603.
    [43]Xu, C., Cheng, L., Shen, P., Liu, Y. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochemistry Communications,2007,9(5),997-1001.
    [44]Xiao, L., Zhuang, L., Liu, Y., Lu, J. Activating Pd by morphology tailoring for oxygen reduction [J]. Journal of the American Chemical Society,2008,131(2),602-608.
    [45]Hara, M., Linke, U., Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HC1O4:Part I. Low-index phases [J]. Electrochimica acta,2007,52(18),5733-5748.
    [46]Tian, N., Zhou, Z. Y., Yu, N. F., Wang, L. Y, Sun, S. G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation [J]. Journal of the American Chemical Society,2010,132(22),7580-7581.
    [47]Green, C. L., Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper.1. Unsupported catalysts [J]. The Journal of Physical Chemistry B,2002,106(5),1036-1047.
    [48]Green, C. L., Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium electrocatalysts by underpotential deposition of copper.2. Effect of surface composition on activity [J]. The Journal of Physical Chemistry B,2002,106(44), 11446-11456.
    [1]罗彬,周德璧,赵大鹏,刘军,王珏,王俊杰.直接乙醇燃料电池阳极催化材料的研究进展[J].材料导报,2008,21(F11),288-291.
    [2]Colmati, F., Tremiliosi-Filho, G., Gonzalez, E. R., Berma, A., Herrero, E., Feliu, J. M. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes [J]. Faraday discussions,2009,140,379-397.
    [3]Iwasita, T., Pastor, E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum [J]. Electrochimica Acta,1994,39(4),531-537.
    [4]Hable, C. T., Wrighton, M. S. Electrocatalytic oxidation of methanol and ethanol:a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix [J]. Langmuir,1993,9(11),3284-3290.
    [5]Hu, F., Chen, C., Wang, Z., Wei, G., Shen, P. K. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocataryst [J]. Electrochimica acta,2006,52(3),1087-1091.
    [6]Xu, C., Liu, Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide [J]. Journal of Power Sources,2007,164(2),527-531.
    [7]Shen, P. K., Xu, C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochemistry Communications,2006,8(1),184-188.
    [8]Becerik, I., Kadirgan, F. The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium [J]. Electrochimica acta,1992,37(14),2651-2657.
    [9]Rousseau, S., Coutanceau, C., Lamy, C., Leger, J. M. Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes [J]. Journal of Power Sources,2006,158(1),18-24.
    [10]Wang, H., Jusys, Z., Behm, R. J. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts:A quantitative DEMS study [J]. Journal of Power Sources,2006,154(2), 351-359.
    [11]Souza, J. P., Botelho Rabelo, F. J., de Moraes, I. R., Nart, F. C. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy [J]. Journal of Electroanalytical Chemistry,1997,420(1),17-20.
    [12]Pacheco Santos, V., Tremiliosi-Filho, G. Effect of osmium coverage on platinum single crystals in the ethanol electrooxidation [J]. Journal of Electroanalytical Chemistry,2003,554, 395-405.
    [13]Pacheco Santos, V, Del Colle, V., Batista de Lima, R., Tremiliosi-Filho, G. FTIR study of the ethanol electrooxidation on Pt(100) modified by osmium nanodeposits [J]. Langmuir,2004, 20(25),11064-11072.
    [14]Pacheco Santos, V, Del Colle, V., de Lima, R. B., Tremiliosi-Filho, G. In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands [J]. Electrochimica acta,2007,52(7),2376-2385.
    [15]Bergamaski, K., Gonzalez, E. R., Nart, F. C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts [J]. Electrochimica Acta,2008,53(13),4396-4406.
    [16]Sun, S., Halseid, M. C., Heinen, M., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure:a high-temperature/high-pressure DEMS study [J]. Journal of Power Sources,2009,190(1), 2-13.
    [17]Wang, H., Jusys, Z., Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields [J]. The Journal of Physical Chemistry B,2004,108(50), 19413-19424.
    [18]Rao, V., Cremers, C., Stimming, U., Cao, L., Sun, S., Yan, S, Sun, G., Xin, Q. Electro-oxidation of ethanol at gas diffusion electrodes a DEMS study [J]. Journal of the Electrochemical Society,2007,154(11), B1138-B1147.
    [19]Hitmi, H., Belgsir, E. M., Leger, J. M., Lamy, C., Lezna, R. O. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium [J]. Electrochimica Acta,1994,39(3),407-415.
    [20]Camara, G. A., Iwasita, T. Parallel pathways of ethanol oxidation:the effect of ethanol concentration [J]. Journal of Electroanalytical Chemistry,2005,578(2),315-321.
    [21]Rao, V., Cremers, C., Stimming, U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry [J]. Fuel Cells,2007,7(5),417-423.
    [22]Kwon, Y., Lai, S. C., Rodriguez, P., Koper, M. T. Electrocatalytic oxidation of alcohols on gold in alkaline media:base or gold catalysis? [J]. Journal of the American Chemical Society,2011,133(18),6914-6917.
    [23]Lai, S. C., Koper, M. T. Ethanol electro-oxidation on platinum in alkaline media [J]. Physical Chemistry Chemical Physics,2009,11(44),10446-10456.
    [24]Cohnati, F., Tremiliosi-Filho, G., Gonzalez, E. R., Berna, A., Herrero, E., Feliu, J. M. The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes [J]. Physical Chemistry Chemical Physics,2009,11(40),9114-9123.
    [25]Hara, M., Linke, U., Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4:Part I. Low-index phases [J]. Electrochimica acta,2007,52(18),5733-5748.
    [26]Sun, S., Heinen, M., Jusys, Z., Behm, R. J. Electrooxidation of acetaldehyde on a carbon supported Pt catalyst at elevated temperature/pressure:an on-line differential electrochemical mass spectrometry study [J]. Journal of Power Sources,2012,204,1-13.
    [27]Bittins-Cattaneo, B., Wilhelm, S., Cattaneo, E., Buschmann, H. W., Vielstich, W. Intermediates and products of ethanol oxidation on platinum in acid solution [J]. Berichte der Bunsengesellschaft fiir physikalische Chemie,1988,92(11),1210-1218.
    [28]De Souza, J. P. I., Queiroz, S. L., Bergamaski, K., Gonzalez, E. R., Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. The Journal of Physical Chemistry B,2002,106(38),9825-9830.
    [29]Zhou, Z. Y., Wang, Q., Lin, J. L., Tian, N., Sun, S. G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media [J]. Electrochimica Acta,2010, 55(27),7995-7999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700