用户名: 密码: 验证码:
一些基于联烯的氟化学和自由基加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
联烯是一类特殊的三碳单元,具有1,2-累积二烯官能团,其末端两个碳可以分别装载两个取代基。本课题组对联烯化合物参与的反应进行了一些初步研究,主要包括联烯的亲核、亲电、自由基加成、过渡金属催化环化以及酶催化反应五类。在此基础上,我的博士论文着重围绕基于联烯的氟化学以及自由基加成反应展开,可以分为以下两部分:
     第一部分,一些基于联烯的氟化学及其应用研究
     1.发展了多取代全氟烷基取代呋喃和全氟烷基呋喃基酮的有效合成方法。其中包括两部分内容:(a)对于全取代联烯基全氟烷基酮,可以通过控制TfOH的用量、反应温度以及是否加入H20调控反应生成单一的2-全氟烷基呋喃和全氟烷基呋喃基酮。(b)在AuCl催化下三取代联烯基全氟烷基酮发生高效的异构环化反应得到2-全氟烷基呋喃;向反应体系中继续投入TfOH和定量H20,在两步一锅法的合成策略下,联烯基酮可以发生串联的异构环化-水解脱氟反应产生全氟烷基呋喃基酮。根据机理实验和18O标记研究,酸催化下全氟烷基呋喃可以发生水解脱氟反应生成相应的全氟烷基呋喃基酮,酮羰基中的氧被证实来自于水分子。
     2.实现了基于单取代和1,1-双取代联烯的高效、高区域选择性的碘氟化反应。对联烯的碘氟化反应产物的应用研究表明,2-碘代烯丙基氟化物可以作为有用的有机合成砌块。
     第二部分,联烯参与的自由基加成反应研究
     发展了基于单联烯的高区域和立体选择性的硝化-氧胺化反应,该反应经历了自由基加成历程并且一步构筑了C-N键和C-O键。单联烯的硝化-氧胺化反应底物适用范围较广,可以兼容众多的的官能团和杂环;硝化-氧胺化产物可作为有用的合成子。这一反应转化为合成结构复杂的化合物提供了有效的合成策略。
     此外,在本组何广科博士发展的高效合成多取代联烯基全氟烷基酮的方法基础上,我们成功将此合成策略由联烯酸酯推广到α,β-不饱和羧酸酯、炔酸酯以及普通羧酸酯,通过和全氟烷基格氏试剂发生1,2-加成反应高效地制备得到相应的全氟烷基酮类化合物。
Allenes are a class of compounds with a cumulated three-carbon unit bearing a remarkable substituent-loading capability. Much effort has already been made towards the nucleophilic additions, electrophilic additions, free radical additions, transition metal-catalyzed cyclizations, and enzyme-catalyzed reactions of allenes in our group. Based on these studies, the main theme of my dissertation may be divided into the following two parts:
     Part Ⅰ:Studies on some fluorine chemistry of allenes
     1. We have developed an efficient methodology for preparation of multi-substituted2-perfluoroalkyl furans and furan-2-yl perfluoroalkyl ketones:(a)2-perfluoroalkyl furans or furan-2-yl perfluoroalkyl ketones could be obtained highly selectively by adjusting the reaction conditions, such as the dosage of TfOH and H2O, and reaction temperature, from fully-substituted allenyl perfluoroalkyl ketones.(b)2-perfluoroalkyl furans could be efficiently prepared from cycloisomerization of tri-substituted allenyl perfluoroalkyl ketones with AuCl as the catalyst; in the spirit of the two-steps in one pot synthetic strategy, addition of TfOH and water into the same vessel would generate corresponding furan-2-yl perfluoroalkyl ketones through the tandem cycloisomerization-hydrolytic defluorination of allenyl perfluoroalkyl ketones. The oxygen atom of the carbonyl group of the newly formed furan-2-yl perfluoroalkyl ketones originates from the water according to the18O isotopic study.
     2. We have developed a highly regioselective iodofluorination reaction of mono-substituted and geminally disubstituted allenes, affording2-iodoallylic fluorides which have been demonstrated to be very attractive building blocks in organic synthesis.
     Part II:Studies on the free radical addition reactions of allenes
     We have developed a highly regio-and stereoselective nitro-oxoamination reaction of mono-allenes via a radical process to form C-N and C-O bonds in one step, which could tolerate various functional groups and heterocycles affording a series of useful building blocks. This conversion would offer a practical strategy for the synthesis of intricate structure.
     In addition, we have realized the efficient preparation of perfluoroalkyl ketones via the1,2-addition reactions of alkenoates, alkynoates, and normal carboxylic acid esters with perfluoroalkyl Grignard reagents based on the synthetic methodology developed previously by Dr. He Guangke in our group.
引文
[1](a) The Chemistry of Ketenes, Allenes, and Related Compounds (Ed.:Patai, S.), Wiley, New York,1980. (b) The Chemistry of the Allenes, Vol.1 (Eds.:Landor, S. R.), Academic Press, London,1982. (c) Allenes in Organic Synthesis, (Eds.: Schuster, H. F.; Coppola, G. M.), Wiley, New York,1984. (d) Modern Allene Chemistry, Vols.1-2 (Eds.:Krause, N.; Hashmi, A. S. K.), Wiley-VCH, Weinheim,2004. (e) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev.2000,100,3067. (f) Hoffmann-Roder, A.; Krause, N. Angew. Chem. Int. Ed. 2004,43,1196. (g) Ma, S. Acc. Chem. Res.2003,36,701. (h) Ma, S. Chem. Rev. 2005,105,2829. (i) Ma, S. Aldrichimica Acta 2007,40,91. (j) Ma, S. Acc. Chem. Res.2009,42,1679.
    [2]Burton, B. S.; Pechmann, H. V. Chem. Ber.1887,20,145.
    [3]Jones, E. R. H.; Mansfield, G. H.; Whiting, M. L. H. J. Chem. Soc.1954,3208.
    [4]Staudinger, H.; Ruzicka, L. Helv. Chim. Acta.1924,7,177.
    [5](a) Schreiber, S. L.; Santini, C. Tetrahedron Lett.1981,22,4651. (b) Schreiber, S. L.; Santini, C. J. Am. Chem. Soc.1984,106,4038. (c) Schreiber, S. L.; Kiessling, L. L. J. Am. Chem. Soc.1988,53,1623. (d) Cauwberghs, S. G.; De Clerq, P. J. Tetrahedron Lett.1988,29,6501. (e) Brummond, K. M.; Gao, D. Org. Lett.2003, 5,3491.
    [6](a) Ma, S.; Yin, S.; Li, L.; Tao, F. Org. Lett.2002,4,505. (b) Ma, S.; Yu, S.; Yin, S. J. Org. Chem.2003,68,8996. (c) Ma, S.; Yu, S.; Qian, W. Tetrahedron 2005, 61,4157.
    [7]Ma, S.; Yu, S. Org. Lett.2005,7,5063.
    [8](a) Lu, Z.; Chai, G.; Ma, S. J. Am. Chem. Soc.2007,129,14546. (b) Chai, G.; Lu, Z.; Fu, C.; Ma, S. Adv. Synth. Catal.2009,351,1946. (b) Chen, B.; Lu, Z.; Chai, G.; Fu, C.; Ma, S. J. Org. Chem.2008,73,9486. (c) He, G.; Xue, C.; Fu, C.; Ma, S. Synlett 2010,281. (d) Lu, Z.; Chai, G.; Ma, S. Angew. Chem. Int. Ed.2008,47, 6045. (e) Chai, G.; Lu, Z.; Fu, C.; Ma, S. Chem. Eur. J.2009,15,11083. (f) Chai, G.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc.2011,133,3740.
    [9](a) Traylor, T. G. Acc. Chem. Res.1969,2,152. (b) Mehta, C.; Chandrasekhar, J. Chem. Rev.1999,99,1437. (c) Li, C.-J. Chem. Rev.2005,105,3095.
    [10]Waters, W. L.; Linn. W. S.; Caserio, M. C. J. Am. Chem. Soc.1968,90,6741.
    [11](a) Chen, G.; Fu, C.; Ma, S. J. Org. Chem.2006,71,9877. (b) Lu, B.; Fu, C.; Ma, S. Org. Biomol. Chem.2010,8,274.
    [12](a) Guo, H.; Qian, R.; Guo, Y.; Ma, S. J. Org. Chem.2008,73,7934. (b) He, G.; Guo, H.; Qian, R.; Guo, Y.; Fu, C.; Ma, S. Tetrahedron 2009,65,4877. (c) He, G.; Fu, C.; Ma, S. Tetrahedron 2009,65,8035. (d) He, G.; Yu, Y.; Fu, C.; Ma, S. Eur. J. Org. Chem.2010,101.
    [13](a) Wang, M.; Fu, C.; Ma, S. Adv. Synth. Catal.2011,353,1775. (b) Zhou, C.; Fang, Z.; Fu, C.; Ma, S. J. Org. Chem.2009,74,2887. (c) Fang, Z.; Zhou, C.; Fu, C.; Ma, S. Org. Biomol. Chem.2010,8,4554. (d) He, G.; Zhou, C.; Fu, C.; Ma, S. Tetrahedron 2007,63,3800. (e) Fu, C.; Huang, X.; Ma, S. Tetrahedron Lett.2004, 45,6063. (f) Ma, S.; Ren, H.; Wei, Q.J. Am. Chem. Soc.2003,125,4817. (g) Ma, S.; Wei, Q.; Wang, H. Org. Lett.2000,2,3893. (h) Zhou, C.; Fang, Z.; Fu, C.; Ma, S. J. Org. Chem.2009,74,2887.
    [14](a) Zhou, C.; Fu, C.; Ma, S. Angew. Chem. Int. Ed.2007,46,4379. (b) Zhou, C.; Fu, C.; Ma, S. Tetrahedron 2007,63,7612.
    [15](a) Fu, C.; Chen, G.; Liu, X.; Ma, S. Tetrahedron,2005,61,7768. (b) Ma, S.; Hao, X.; Meng, X.; Huang, X. J. Org. Chem.2004,69,5720. (c) Ma, S.; Hao, X.; Huang, X. Org. Lett.2003,5,1217.
    [16]Gu, Z.; Deng, Y.; Shu, W.; Ma, S. Adv. Synth. Catal.2007,349,1653.
    [17]Zhou, C.; Li, J.; Lu, B.; Fu, C.; Ma, S. Org. Lett.2008,10,581.
    [18]Kong, W., Guo, B.; Fu, C.; Ma, S. Eur. J. Org. Chem.,2011,2278.
    [19]Wang, M.; Fu, C.; Ma, S. Adv. Synth. Catal.2011,353,1775.
    [20]Wang, M.; Fu, C.; Ma, S. Chem. Sci.,2013,4,1016.
    [21](a) Beaulieu, P. L.; Morisset, V. M.; Garratt, D. G. Tetrahedron Lett.1980,21, 129. (b) Bridges, A. J.; Thomas, R. D. J. Chem. Soc. Chem. Cummun.1984,694. (c) Marshall, J. A.; Wang, X. J. Org. Chem. 1990, 55, 2995. (d) Marshall, J. A.; Wang, X. J. Org. Chem. 1990, 56, 4913. (e) Friesen, R. W.; Blouin, M. J. Org. Chem. 1993, 58, 1653. (f) Fu, C; Li, J.; Ma, S. Chem. Commun. 2005, 4119. (g) Li, J.; Fu, C; Chen, G.; Chai, G.; Ma, S. Adv. Synth. Catal. 2008, 350, 1376. (h) Li, J.; Kong, W.; Yu, Y.; Fu, C; Ma, S. J. Org. Chem. 2009, 74, 8733. (i) He, J.-Q.; Shibata, D.; Ohno, C; Okamoto, S. Tetrahedron Lett. 2008, 49, 6724.
    [22]Lii, B.; Jiang, X.; Fu, C.; Ma, S. J. Org. Chem. 2009, 74, 438.
    [23]Chen, G.; He, G.; Xue, C; Fu, C.; Ma, S. Tetrahedron Lett. 2011, 52,196.
    [24](a) Zhou, C; Ma, Z.; Gu, Z.; Fu, C; Ma, S. J. Org. Chem. 2008, 73, 772. (b) Shingu, K.; Hagishita, S.; Nakagawa, M. Tetrahedron Lett. 1967, 5, 4371. (c) Kresze, G. B.; Idris, M. S. H. Tetrahedron Lett. 1985,26,4811. (e) Ma, S.; Shi, Z.; Tetrahedron Lett. 1999, 40, 2393.
    [25](a) Jiang, X.; Fu, C; Ma, S. Chem. Eur. J. 2008, 14, 9656. (b) Jiang, X.; Fu, C; Ma, S. Eur. J. Org. Chem. 2010, 687.
    [26](a) Fu, C; Ma, S. Eur. J. Org. Chem. 2005, 3942. (b) Lu, B.; Fu, C.; Ma, S. Org. Biomol. Chem. 2010, 8, 274. (c) Gill, G. B.; Idris, M. S. H. Tetrahedron Lett. 1985, 26, 4811. (d) Font, J.; Gracia, A.; March, P. Tetrahedron Lett. 1990, 31, 5517. (e) March, P.; Font, J.; Gracia, A.; Zhang, Q. J. Org. Chem. 1995, 60, 1814. (f) Chen, G.; Fu, C; Ma, S. Tetrahedron 2006, 62,4444.
    [27]Sosnovsky, V. Free Radical Reaction in preparative Organic Chemistry, Macmillan, London, 1964.
    [28](a)Pan, F.; Fu, C.; Ma, S. Chin. J. Org. Chem. 2004,24,1168. (b) Meunier, H. G.; Abell, P. I. J. Phy. Chem. 1967, 71, 1430. (c) Byrd, L. R.; Caserio, M. C. J. Org. Chem. 1972, 37, 3881. (d) Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Tetrahedron Lett. 2001, 42, 2489. (e) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org. Chem. 2004, 69, 6658.
    [29](a) Haszeldine, R. N.JChem. Soc, 1950, 3037. (b) Habibi, M. H.; Mallouk, T. E. J. Fluorine Chem. 1991, 53, 53. (c) Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Tetrahedron Lett. 2001, 42, 2489. (d) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org. Chem.2004,69,6658.
    [30]Tiers, G. V. D. J. Am. Chem. Soc. 1960,82,5513.
    [31](a) Brace, N. O.; van Elswyk, J. E. J. Org. Chem.1976,41,766. (b) Kang, S.; Ha, Y.; Kim, D.; Lim, Y.; Jung, J. Chem. Commun.2001,1306.
    [32]Takeyama, Y.; Ichinose, Y.; Oshima, K.; Utimoto, K. Tetrahedron Lett.1989,30, 3159.
    [33]Chen, Q. Y.; Qiu, Z. M.; Yang, Z. Y. J. Fluorine Chem.,1987,36,149.
    [34](a) Chen, Q. Y.; Yang, Z. Y. J. Fluorine Chem.1985,28,399; (b) Chen, Q. Y.; Yang, Z. Y. Acta Chim. Snica,1986,44,265 (Chem. Abst.,1986,106,8479F); ibid.1986,44,806 (Chem.Abst,1986,106,176473c), see also Coe, P. L.; Milner, N. E. J. Organomet. Chem.,1972,39,395.
    [35]Chen, Q. Y.; He, Y. B.; Yang, Z. Y. J. Fluorine. Chem.,1986,34,255.
    [36](a) Chen, Q. Y.; Yang, Z. Y.; Qiu, Z. M. Kexue Tongbao,1987,593. (b) Abou-Ghazaleh, B.; Laurent, Ph.; Blancou, H.; Commeyras, A. J. Flourine Chem.,1994,68,21. (c) Jennings, M. P.; Cork, E. A.; Ramachandran, P. V. J. Org. Chem.,2000,65,8763.
    [37]Chen, Q. Y.; Yang, Z. Y.J. Chem. Soc., Chem. Commun.,1986,498.
    [38](a) Chen, Q. Y.; Yang, Z. Y. Acta Chim. Sinica.,1985,44,1118(Chem. Abstr., 1985,105,152495q); (b) Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin Trans. I,1988,563.
    [39]Chen, Q. Y.; Yang, Z. Y. Youji Huaxue,1986,41(Chem. Abstr.,1985,105, 171770s).
    [40]Chen, Q. Y.; He, Y. B.; Yang, Z. Y. Acta Chim. Sinica,1988,46,779.
    [41](a) Lu, X.; Ma, S.; Zhu, J. Tetrahedron Lett.1988,29,5129. (b) Ma, S.; Lu, X. Tetrahedron 1990,29,357.
    [42]For a review, see:(a) Huang, W.-Y. J. Fluorine Chem.1992,58,1. (b) Huang, W.-Y.; Wang, W.; Huang, B.-N.Acta Chim. Sinica 1985,43,409. (c) Huang, W.-Y.;Wang, W.; Huang, B.-N. Acta Chim. Sinica 1986,44,488. (d) Huang, W.-Y.; Wang, W. Acta Chim. Sinica 1986,44,940. (e) Huang, W.-Y.; Lu, L.; Zhang, Y.-F. Chin. J. Chem.1990,8,350.
    [43]Meunier, H. G.; Abell, P. I. J. Phy. Chem.1967,71,1430.
    [44]Byrd, L. R.; Caserio, M. C. J. Org. Chem.1972,37,3881.
    [45](a) Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Tetrahedron Lett.2001,42, 2489. (b) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org.Chem. 2004,69,6658.
    [46](a) Ma, S.; Ma, Z. Synlett 2006,1263. (b) Ma, Z.; Ma, S. Tetrahedron,2008,64, 6500. (c) Ma, Z.; Zeng, R.; Fu, C.; Ma, S. Tetrahedron,2011,67,8808.
    [47]Gueddari, F. E.; Grimaldi, J. R.; Hatem, J. M. Tetrahedron Lett.1995,36,6685.
    [48]Hayashi, N.; Hirokawa, Y.; Shibata, I.; Yasuda, M.; Baba, A. Org. Biomol. Chem. 2008,6,1949.
    [49]Zeng, R.; Fu, C.; Ma, S. Angew. Chem. Int. Ed.2012,51,3888.
    [50](a) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev.2002,31,12. (b) Ma, S. In Topics in Organometallic Chemistry; Tsuji, J., Ed.; Springer-Verlag:Heidelberg, 2005; pp 183-210.
    [51](a) Ma, S.; Gu, Z.; Deng, Y. Chem. Commun.2004,94. (b) Ma, S.; Gu, Z.J. Am. Chem. Soc.2005,127,6182. (c) Ma, S.; Gu, Z.; Yu, Z. J. Org. Chem.2005,70, 6291. (d) Yu, F.; Lian, X.; Ma, S. Org. Lett.2007,9,1703. (e) Ma, S.; Yu, Z. Angew. Chem. Int. Ed.2002,41,1775. (f) Ma, S.; Yu, Z.; Gu, Z. Chem. Eur. J. 2005,11,2351. (g) Ma, S.; Yu, Z. Chem. Eur. J.2004,10,2078. (h) Ma, S.; Yu, Z. Org. Lett.2003,5,1507. (i) Gu, Z.; Ma, S. Angew. Chem. Int. Ed.2006,45,6002.
    [52](a) Lian, X.; Ma, S. Angew. Chem. Int. Ed.2008,47,8255; (b) Shu, W.; Jia, G.; Ma, S. Org. Lett.2009,11,117. (c) Ma, S.; Gu, Z.; Deng, Y. Chem. Commun. 2006,94. (d) Shu, W.; Jia, G.; Ma, S. Angew. Chem. Int. Ed.2009,48,2788.
    [53](a) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc.2012,134,9597. (b) Zeng, R.; Ye, J.; Fu, C.; Ma, S. Adv. Synth. Catal.2013,355,1963. (c) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc.2013,135,18284.
    [54]Bestmann, H.-J.; Hartung, H. Chem. Ber.1966,99,1198.
    [55]Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem.1997,62,367.
    [56](a)俞瞻前博士学位论文,中科院上海有机化学研究所博士论文,2003;(b)陈国飞博士学位论文,浙江大学理学博士论文,2010.
    [57]柴国璧博士学位论文,浙江大学理学博士论文,2012.
    [58](a) Zweifel, G.; Homg, A.; Snow, J. T. J. Am. Chem. Soc.1970,92,1427. (b) Balme, G.; Doutheau, A.; Gore, J.; Malacria, M. Synthesis 1979,508.
    [59]Kuang, J.-Q.; Ma, S.-M. J. Org. Chem.2009,74,1763-1765.
    [60]Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc.2003,125,4817.
    [61]周超博士学位论文,浙江大学理学博士论文,2008.
    [62]成佳佳博士学位论文,中科院上海有机化学研究所博士论文,2012.
    [63](a) Welch, J. T. Tetrahedron 1987,43,3123. (b) Mann, J. Chem. Soc. Rev.1987, 16,381. (c) Begue, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-Interscience,2008. (d) O'Hagan, D. Chem. Soc. Rev.2008,37, 308.
    [64](a) Jeschke, P. ChemBioChem 2004,5,570. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.2008,37,320. (c) Hagmann, W. K. J. Med. Chem.2008,51,43599. (d) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim,2004.
    [65]Thayer, A. M. Chem. Eng. News 2006,84,15.
    [66]Ainsworth, S. J. Chem. Eng. News 2008,86,5.
    [67]For some recent reviews on Pd-catalyzed fluorination reactions, see:(a) Brown, J. M.; Gouverneur, V. Angew. Chem. Int. Ed.2009,48,8610. (b) Grushin, V. V. Acc. Chem. Res.2010,43,160. (c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473,470. (d) Hollingworth, C.; Gouverneur,V. Chem. Commun.2012,48,2929.
    [68]Fraser, S. L.; Antipin, M. Y.; Khroustalyov, V. N.; Grushin, V. V. J. Am. Chem. Soc.1997,119,4769.
    [69](a) Grushin, V. V. Organometallics 2000,19,1888. (b) Grushin, V. V.; Chem. Eur. J.2002,8,1006. (c) Grushin, V. V.;. Marshall, W. J. Organometallics 2007, 26,4997.
    [70]Yandulov, D. V.; Tran, N. T. J. Am. Chem. Soc.2007,129,1342.
    [71]Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
    [72]Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,128, 7134.
    [73]Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009,131, 3796.
    [74]Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008,130,10060.
    [75](a) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem. Int. Ed. 2008, 47, 5993. (b) Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard Ⅲ, W. A. and Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793; (c) Lee, E.; Kamlet, A. S.; Powers, D. C; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C; Hooker, J. M.; Ritter, T. Science 2011, 334, 639.
    [76]Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2009,131, 7520.
    [77]Furuya, T.; Ritter, T. Org. Lett. 2009,11, 2860.
    [78]Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662.
    [79]Tang, P. P.; Ritter, T. Tetrahedron 2011, 67, 4449.
    [80]Casitas, A.; Canta, M.; Sola, M.; Costas, M.; Ribas, X. J. Am. Chem. Soc. 2011, 133,19386.
    [81]Wu,T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009,131, 16354.
    [82]Qiu, S.; Xu, T; Zhou, J.; Guo, Y; Liu, G. J. Am. Chem. Soc. 2010,132,2856.
    [83]Peng, H.; Liu, G. Org. Lett. 2011,13, 772.
    [84]Xu, T.; Mu, X.; Peng, H.; Liu, G. Angew. Chem. Int. Ed. 2011, 50, 8176.
    [85](a) Katcher, M. H.; Doyle, A. G. J. Am. Chem. Soc. 2010,132, 17402. (b) Katcher, M. H.; Sha, A.; Doyle, A. G.; J. Am. Chem. Soc, 2011,133,15902.
    [86]Hollingworth, C; Hazari, A.; Hopkinson, M. N.; Tredwell, M.; Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V. Angew. Chem. Int. Ed. 2011,50,2613.
    [87]Benedetto, E.; Tredwell, M.; Hollingworth, C; Khotavivattana, T.; Brown, J. M.; Gouverneur, V. Chem. Sci. 2013, 4, 89.
    [88]Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.
    [89]Akana, J. A.; Bhattacharyya, K. X.; Miiller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007,129,7736.
    [90]Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org. Lett.2009,11,4318.
    [91]Balz, G.; Schiemann, G. Ber. Dtsch. Chem. Ges.1927,60,1186.
    [92]Zhou,C.; Li, J.; Lu, B.; Fu, C.; Ma, S. Org. Lett.2008,10,581.
    [93]He, G.; Fu, C.; Ma, S. Tetrahedron 2009,65,8035.
    [94]Zhou, C.; Ma, Z.; Gu, Z.; Fu, C.; Ma, S. J. Org. Chem.2008,73,772.
    [95]Cui, H.; Chai, Z.; Zhao, G.; Zhu, S. Chin. J. Chem.2009,27,189.
    [96]Lii, B.; Fu, C.; Ma, S. Org. Biomol. Chem.2010,8,274.
    [97]For the nucleophilic fluorination of allylic alcohols by using Deoxo-Fluor, Et3N·3HF or KF/CsF, see:(a) Hunter, L.; Kirsch, P.; Slawin, A. M. Z.; O'Hagan, D. Angew. Chem., Int. Ed.2009,48,5457. (b) L'Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J. Org. Chem.2010,75,3401. (c) Walkowiak, J.; Campo, T. M.; Ameduri, B.; Gouverneur, V. Synthesis 2010,1883. (d) Bhadury, P. S.; Pandey, M.; Jaiswal, D. K. J. Fluorine Chem.1995,73,185.
    [98]For the nucleophilic fluorination of allylic alcohols by using TBAF, see:Lalic, G.; Krinsky, J. L.; Bergman, R. G. J. Am. Chem. Soc.2008,130,4459.
    [99]For the electrophilic fluorodesilylation reactions, see:(a) Thibaudeau, S.; Gouverneur, V. Org. Lett.2003,5,4891. (b) Tredwell, M.; Luft, J. A. R.; Schuler, M.; Tenza, K.; Houk, K. N.; Gouverneur, V. Angew. Chem. Int. Ed.2008,47,357.
    [100]For the ring opening reactions to form allylic fluorides, see:(a) Kirihara, M.; Kakuda, H.; Tsunooka, M.; Shimajiri, A.; Takuwa, T.; Hatano, A. Tetrahedron Lett.2003,44,8513. (b) Hedhli, A.; Baklouti, A. J. Fluorine Chem.1995,70,141. (c) Hunter, L.; O'Hagan, D.; Slawin, A. M. Z. J. Am, Chem. Soc.2006,128, 16422.
    [101]Kokotos, C. G.; Baskakis, C.; Kokotos, G. J. Org. Chem.2008,73,8623.
    [102]Gassman, P. G.; O'Reilly, N. J. J. Org. Chem.1982,52,2481.
    [103]Rong, G. Huadong Ligong Daxue Xuebao 1996,22,356.
    [104](a) Uno, H.; Shiraishi, Y.; Simokawa, K.; Suzuki, H. Chem. Lett.1987,6, 1153. (b) Uno, H.; Shiraishi, Y.; Suzuki, H. Bull. Chem. Soc. Jpn.1989,62, 2636.
    [105]Haszeldine, R. N.; J. Chem. Soc.1953,1748.
    [106](a) Omote, M.; Eto, Y.; Tarui, A.; Sato, K.; Ando, A. Tetrahedron: Asymmetry.2007,18,2768. (b) Sokeirik, Y. S.; Hoshina, A.; Omote, M.; Sato, K.; Tarui, A.; Kumadaki, I.; Ando, A. Chem. Asian. J.2008,3,1850.
    [107]Coe, P. L.; Whittingham, A.J. Chem. Soc. Perkin Transactions 1:Organic and Bio-Organic Chemistry 1974,8,917.
    [108]Patrice, M.; Naima, N.; Auguste, C. J. Fluorine Chem.1987,34,421.
    [109]Haszeldine, R. N.; Walaschewski, E. G. J. Chem. Soc.1953,3607.
    [110]See for example:(a) Bellina, F.; Rossi, R. Tetrahedron 2006,62,7213. (b) Hou, X. L.; Yang, Z.; Wong, H. N. C. In Progress in Heterocyclic Chemistry; Gribble, G. W., Gilcrist, T. L., Eds.; Pergamon:Oxford,2003; Vol.15, p 167. (c) Keay, B. A.; Dibble, P. W. In Comprehensive Heterocyclic Chemistry Ⅱ; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier:Oxford,1997; Vol.2, p 395. (d) Donnelly, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon:Oxford,1984; Vol.4, p 657. (e) Dean, F. M. Naturally Occurring Oxygen Ring Compounds; Butterworths: London,1963; Chapter 1, p1.
    [111]For most important examples, see:(a) Furstner, A.; Weintritt, H.J. Am. Chem. Soc.1998,120,2817. (b) Furstner, A. Angew. Chem., Int. Ed.2003,42,3582. (c) Furstner, A.; Reinecke, K.; Prinz, H.; Waldmann, H. ChemBioChem 2004,5, 1575. (d) Furstner, A.; Grabowski, E. J. ChemBioChem 2001,2,706. (e) Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J.-C.; Schmidt, J. M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod.1997,60,180.
    [112](a) Miyata, Y.; Nishinaga, T.; Komatsu, K. J. Org. Chem.2005,70,1147. (b) Heylen, M.; Van den Broeck, K.; Boutton, C.; van Beylen, M.; Persoons, A.; Samyn, C. Eur. Polym. J.1998,34,1453. (c) Ferrero, F.; Napoli, L.; Tonin, C.; Varesano, A. J. Appl. Polym. Sci.2006,102,4121. (d) Venkatatraman, S.; Kumar, R.; Sankar, J.; Chandrashekar, T. K.; Senhil, K.; Vijayan, C.; Kelling, A.; Senge, M.O. Chem.-Eur. J.2004,10,1423. (e) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.; Dutta, P.; Evmenenko, G.; Pagani, G. A.; Marks, T. J. Chem. Mater.2003,15,1064. (f) Zhang, L.-Z.; Chen, C.-W.; Lee, C.-F.; Wu, C.-C.; Luh, T.-Y. Chem. Commun.2002,2336. (g) Novak, P.; Muller, K.; Santhanum, K. S. V.; Haas, O. Chem. Rev.1997,97,207.
    [113](a) Lee, H.-K.; Chan, K.-F.; Hui, C.-W.; Yim, H.-K.; Wu, X.-W.; Wong, H. N. C. Pure Appl. Chem.2005,77,139. (b) Wong, H. N. C.; Yu, P.; Yick, C.-Y. Pure Appl. Chem.1999,71,1041. (c) Lipshutz, B. H. Chem. Rev.1986,86,795.
    [114](a) Ennis, D. S.; Gilchrist, T. L. Tetrahedron 1990,46,2623. (b) Bailey, T. R. Synthesis 1991,242. (c) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993,266,529. (d) Weyerstahl, P.; Schenk, A.; Marschall, H. liebigs Ann. Chem.1995,1849.
    [115]For recent reviews, see:(a) Konig, B. Product Class 9:Furans, in Science of Synthesis:Houben-Weyl Methods of Molecular Transformations; Maas, G., Ed.; Georg Thieme:Stuttgart,2001; pp 183-285. (b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007,10, 121. (c) Kirsch, S. F. Org. Biomol. Chem.2006,4,2076. (d) Brown, R. C. D. Angew. Chem., Int. Ed.2005,44,850. (e) Jeevanandam, A.; Ghule, A.; Ling, Y.-C. Curr. Org. Chem.2002,6,841. (f) Keay, B. A. Chem. Soc. Rev.1999,28,209. (g) Hou, X. L.; Cheung, H. Y.; Hon, T. Y; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998,54,1955. (h) Schro'ter, S.; Stock, C.; Bach, T. Tetrahedron 2005,61,2245. (i) Schmuck, C.; Rupprecht, D. Synthesis 2007,3095.
    [116](a) Marshall, J. A.; Robinson, E. D. J. Org. Chem.1990,55,3450. (b) Marshall, J. A.; Wang, X.-J. J. Org. Chem.1991,56,960. (c) Marshall, J. A.; Gartley, G. S. J. Org. Chem.1994,59,7169. (d) Marshall, J. A.; Sehon, C. A. J. Org. Chem.1995,60,5966.
    [117](a) Hashmi, A. S. K. Angew. Chem. Int. Ed.1995,34,1581. (b) Hashmi, A. S. K.; Ruppert, T. L.; Knofel, T.; Bats, J. W. J. Org, Chem.1997,62,7295.
    [118]Alcaide, B.; Almendros, P.; Martinez del Campo, T. Eur. J. Org. Chem.2007, 2844.
    [119]Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed.2000,39,2285.
    [120]Zhou, C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett.2006,8,325.
    [121]Alcaide, B.; Almendros, P.; Alonso, J. M.; Fernandez, I. J. Org. Chem.2013, 78,6688.
    [122](a) Kel'in, A. V.; Gevorgyan, V. J. Org. Chem.2002,67,95. (b) Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.2003,42,98. (c) Stromek, A. W.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.2004,43,2280. (d) Stromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc.2005,127,10500. (e) Schwier, T.; Stromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V.J. Am. Chem. Soc.2007,129,9868. (f) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed.2007,46,5195. (g) Dudnik, A. S.; Stromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. J. Am. Chem. Soc.2008,130,1440. (h) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc.2010,132,7645.
    [123]Mothe, S. R.; Lauw, S. J. L.; Kothandaraman, P.; Chan, P. W. H. J. Org. Chem.2012,77,6937.
    [124](a) Ma, S.; Zhang, J. Chem. Commun.2000,117. (b) Ma, S.; Zhang, J.; Lu, L. Chem. Eur. J.2003,9,2447-2456.
    [125]Ma, S.; Li, L. Org. Lett.2000,2,941.
    [126]Ma, S.; Yu, Z. Org. Lett.2003,5,2581.
    [127]Deng, Y.; Fu, C.; Ma, S. Chem. Eur. J.2011,17,4976.
    [128]Crystal data for compound 3b:C23H17F7O2, MW=458.37, Triclinic, space group P-1, Final R indices [I>2σ(I)], R1=0.1209, wR2=0.3271, R indices (all data)R1=0.1833, wR2=0.3959, a=13.635(4) A, b=13.766(4)k,c=14.406(7) A, a=108.215(10)°,β=105.015(10)°,γ=110.595(7)°, V= 2187.5(14) A3, T= 296(2) K, Z=4, reflections collected/unique:22725/7584 (Rint,=0.0511), number of observations [>2σ(I)]3742, parameters:577. CCDC:993055.
    [129]Ismail, M. A.; Zoorob, H. H.; Strekowski, L. Arkivoc 2002, x,1.
    [130]Lee, H.; Czarny, A.; Battiste, M. A.; Strekowski, L. J. Fluorine Chem.1998, 91,221.
    [131]Yang, X.-J.; Liu, J.-T.; Zhao, F.-L. J. Fluorine Chem.2004,125,415.
    [132]Brown, L. J.; Bouvet, D. R.; Champion, S.; Gibson, A. M.; Hu, Y.; Jackson, A.; Khan, I.; Ma, N.; Millot, N.; Wadsworth, H.; Brown, R. C. D. Angew. Chem. Int. Ed.2007,46,941.
    [133]For the synthetic methods and reactions of Py·9HF, see:Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A.J. Org. Chem.1979,44, 3872.
    [134]For iodofluorination of alkenes with "IF", see:(a) Evans, R. D.; Schauble, J. H. Synthesis,1987,551. (b) Barluenga, J.; Campos, P. J.; Gonzalez, J. M.; Suarez, J. L.; J. Org. Chem.1991,56,2234. (c) Hara, S.; Yoshida, M.; Fukuhara, T.; Yoneda, N. Chem. Commun,1998,965. (d) Yoshino, H.; Matsumoto, K.; Hagiwara, R.; Ito, Y.; Oshima, K.; Matsubara, S. J. Fluorine Chem.2006,127, 29.
    [135]For bromofluorination of alkenes with "BrF", see:(a) Alvernhe, A.; Laurent, A.; Haufe, G. Synthesis 1987,562. (b) Camps, F.; Chamorro, E.; Gasol, V.; Guerrero, A. J. Org. Chem.1989,54,4294; (c) Hedhli, A.; Baklouti, A. J. Org. Chem.1994,59,5277; (d) Haufe, G.; Alvernhe, G.; Laurent, A.; Ernet, T.; Goj, O.; Kroger, S.; Sattler, A.; Smith, D. W.; Martin, S. F. Org. Syn.2004,10,128; 1999,76,159.
    [136]For chlorofluorination of alkenes with "ClF", see:Haufe, G.; Wepel, U.; Schulze, K.; Alvernhe, G. J. Fluorine Chem.1995,74,283.
    [137]Liu, S. Q.; Wang, S. W.; Qing, F.-L. J. Fluorine Chem.2005,126,771.
    [138]Wong, O. A.; Shi, Y. A. J. Org. Chem.2009,74,8377.
    [139]李晶博士学位论文,浙江大学理学博士论文,2009.
    [140](a) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc.1978,100,6294. (b) Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751. (c) Feuer, H.; Nielsen, T. Nitro Compounds: Recent Advances in Synthesis and Chemistry; VCH: New York, 1990. (d) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137. (e) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001. (f) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017. (g) Ballini, R.; Petrini, M. Arkivoc 2009, 195. (h) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010,110, 5447. (i) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45,1278.
    [141](a) Mean, Y; Massey, V. Proc. Natl. Acad. Sci. USA 2000, 97, 10733. (b) Kaap, S.; Quentin, I.; Tamiru, D.; Shaheen, M.; Eger, K.; Steinfelder, H. J. Biochem. Pharmacol. 2003, 65, 603. (c) Kim, J. H.; Kim, J. H.; Lee, G. E.; Lee, J. E.; Chung, I. K. Mol. Pharmacol. 2003, 63, 1117. (d) Cheng, P.; Jiang, Z. Y; Wang, R. R; Zhang, X. M.; Wang, Q.; Zheng, Y. T.; Zhou, J.; Chen, J. J. Bioorg. Med. Chem. Lett. 2007, 17, 4476. (e) Reddy, M. A.; Jain, N.; Yada, D.; Kishore, C; Reddy, V. J.; Reddy, P. S.; Addlagatta, A.; Kalivendi, S. V.; Sreedhar, B. J. Med. Chem. 2011, 54, 6751.
    [142](a) Henry, L. C. R. Hebd. Seances Acad. Sci. 1895,120, 1265. (b) Luzzio, F. A. Tetrahedron 2001, 57, 915. (c) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua, N. C. Tetrahedron: Asymmetry 2006, 17, 3315. (d) Palomo, C; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007,2561. (e) Fioravanti, S.; Pellacani, L.; Tardella, P. A.; Vergari, M. C. Org. Lett. 2008,10,1449.
    [143]Tebben, L.; Studer, A. Angew. Chem. Int. Ed. 2011,50,5034.
    [144]Waldman, S. R.; Monte, A. P.; Bracey, A.; Nichols, D. E. Tetrahedron Lett. 1996,37,7889.
    [145]Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013,135, 3355.
    [146]Hwu, J. R.; Chen, K.-L.; Ananthan, S.; Patel, H. V. Organometallics 1996,15, 499.
    [147](a) Stepanov, A. V.; Veselovsky, V. V. Russ. Chem. Rev. 2003, 72, 327. (b) Jayakanthan, K.; Madhusudanan, K. P.; Vankar, Y. D. Tetrahedron 2004, 60, 397. (c) Lewandowska, E. Tetrahedron 2006, 62, 4879.
    [148]Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. J. Org. Chem. 2013, 78, 5949.
    [149]Taniguchi, T.; Fujii, T.; Ishibashi, H. J. Org. Chem. 2010, 75, 8126.
    [150]Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013,15,3384.
    [151]Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Chem. Commun. 2013, 49, 5286.
    [152]Jovel, I.; Prateeptongkum, S.; Jackstell, R.; Vogl, N.; Weckbecker, C.; Beller, M. Adv. Synth. Catal. 2008,350, 2493.
    [153](a) Wieser, V. K.; Berndt, A. Angew. Chem. Int. Ed. 1975, 14, 69. (b) Sabbasani, V. R.; Lee, D. Org. Lett. 2013,15,3954.
    [154]Crystal data for compound (E)-17h: C18H25BrN2O3, MW = 397.31, Orthorhombic, space group Pbcn, Final R indices [I> 2σ(I)], R1 = 0.0381, wR2 = 0.0915, R indices (all data) R1 = 0.0599, wR2 = 0.0809, a = 18.9268(13) A, b = 8.3654(5) A,c = 23.4009(19) A, α= 90°,β = 90°, γ = 90°, V= 3705.1(5) A3, T = 293(2) K, Z= 8, reflections collected/unique: 23814/3383 (Rint = 0.0459), number of observations [>2σ(7)]2519, parameters: 221. CCDC: 993059.
    [155]Crystal data for compound (E,E)-17r: C30H46N4O6, MW = 558.71, Orthorhombic, space group Pbca, Final R indices [I> 2σ(2)], R1 = 0.0385, wR2 = 0.0936, R indices (all data) R1 = 0.0491, wR2 = 0.0877, a = 9.4439(4) A, b = 11.2685(4) A, c = 28.3698(16) A, α= 90°,β = 90°, γ= 90°, V= 3019.1(2) A3, T= 170(2) K, Z= 4, reflections collected/unique: 18082/2764 (Rint = 0.0380), number of observations [>2σ(I)]2286, parameters: 185. CCDC: 993058.
    [156]Crystal data for compound (E)-17s: C20H30N2O3, MW= 346.46, Monoclinic, space group P 21/n, Final R indices [I> 2σ(I)], R1 = 0.0553, wR2 = 0.1603, R indices (all data) R1 =0.1038, wR2 = 0.1313, a= 10.3348(11) A, b= 10.3477(14) A, c = 19.267(2) A, α = 90°, β = 99.688(11)°,γ = 90°, V = 2031.1(4) A3, T = 293(2) K, Z = 4, reflections collected/unique: 8119/3724 (Rint = 0.0295), number of observations [>2σ(I)]2l27, parameters: 231. CCDC: 993056.
    [157]Crystal data for compound (Z)-17s: C20H30N2O3, MW = 346.46, Monoclinic, space group P 21/c, Final R indices [I > 2σ(2)], R1 = 0.0614, wR2 = 0.1932, R indices (all data) R1 = 0.1169, wR2 = 0.1526, α = 7.7538(9) A, b = 12.6212(13) A, c = 21.109(3) A, α= 90°, β = 96.498(13)°, γ = 90°, F= 2052.5(4) A3, T= 293(2) K, Z = 4, reflections collected/unique: 7986/3748 (Rint = 0.0335), number of observations [>2σ(I)]205l, parameters: 231. CCDC: 993057.
    [158]陆展博士学位论文,浙江大学理学博士论文,2008.
    [159]Howells, R. D.; Gilman, H. J. Fluorine Chem. 1975, 5, 99.
    [160](a) Loomis S. C.; Christ T. J. Fluorine Chem. 1981,19, 43. (b) Chen, L. S.; Chen, G. J.; Tamborski, C. J. Fluorine Chem. 1984, 26, 341. (c) Jing, X.; Kakuda, K.; Matsukawa, S.; Yamamichi, H.; Kojima, S.; Yamamoto, Y. Chem. Asian. J. 2007, 2, 314. (d) Tsutomu, K.; Tsuyoshi, T.; Makoto, M.; Takashi, I. J. Org. Chem. 2006, 71, 3545. (e) Yamazaki, K.; Terajima, T.; Kawasaki, T. Tetrahedron 2008, 64, 2419; (f) Kitazume, T.; Ohnogi, T.; Lin, J. T.; Yamazaki, T. J. Fluorine Chem. 1989, 42, 17. (g) Yu, V.; Zeifrnan, S.; Postovoi, A. J. Fluorine Chem. 2004,725,1815.
    [161]Wiberg, K. B. Tetrahedron 1968,24, 1083.
    [162]Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700