用户名: 密码: 验证码:
酶催化多组分反应合成氮杂环方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶促合成作为一个新手段已经引起了化学家们广泛的研究兴趣,近年来,许多研究组发现酶具有催化多功能性,比如酰化酶和蛋白酶催化Michael加成、消旋酶催化aldol加成、酰化酶和谷氨酰胺转移酶催化Henry反应等,因此,水解酶可以应用于更多有机合成反应,已取得诸多成果。但是,水解酶催化多组分一锅法反应还鲜有报道,尤其是构筑结构复杂的杂环化合物。
     论文研究建立了酰化酶催化醛、氰基乙酰胺和1,3-二羰基化合物三组分一锅合成3,4-二氢吡啶-2-酮方法,发现了酰化酶AA的催化新功能,反应中形成了四个新化学键和一个六元氮杂环,实验通过无酶、BSA和失活酰化酶的对照实验表明了酶催化中心的作用,提出了相应的催化机理;实验考察了酶的种类、溶剂、底物摩尔比、催化剂量和底物结构变化等因素对反应效率的影响,合成了一系列基于3,4-二氢吡啶-2-酮核心的新化合物。
     论文研究建立了酰化酶AA催化醛、氰基乙酰胺和乙酰乙酸乙酯或乙酰乙酸环己酯的一锅三组分反应制备吡啶-2-酮的方法,研究提出三组分反应经过Knoevenagel缩合-Michael加成-分子内环化-氧化的多步串联途径;实验考察研究了酶的种类、溶剂、温度、催化剂量和底物结构变化等对反应的影响,通过氮气保护的对照实验数据分析,证实反应中空气起到了氧化剂的作用,把3,4-二氢吡啶-2-酮氧化成了吡啶-2-酮。
     论文研究建立了酰化酶AA催化芳香醛、氰基乙酰胺和单酮的三组分反应合成吡啶-2-酮方法;研究发现该反应实际是一个五分子参与的反应,原位生成氢供体(3,4-二氢吡啶-2-酮)和氢受体(Knoevenagel缩合物),实验通过HPLC定量监测两个中间体的转化过程,进一步确认了原位氢转移过程的存在;该方法可以同时合成吡啶-2-酮和α-烷基化腈两个结构骨架,而α-烷基化腈经分离和化学转化可高产率合成p-氨基酸化合物。
     论文研究建立了脂肪酶催化靛红、丙二腈和烯酮类三组分一锅法反应合成螺环结构方法;研究考察了酶的种类、溶剂、含水量、催化剂量、底物摩尔比和温度等对反应产率的影响,制备了一系列的螺环化合物;研究结果表明,脂肪酶PPL在DMSO中具有最佳的催化活性;4位取代的靛红几乎不能参与反应,氰基乙酰胺或氰基乙酸乙酯代替丙二腈时,也没有检测到产物,说明底物的空间位阻效应显著。
     论文发展了核酸酶催化的靛红衍生物和环酮之间的直接不对称aldol加成反应。详细研究了一系列反应条件对催化活性和立体选择性的影响,包括酶的种类、溶剂、水含量、底物摩尔比和底物结构等。结果表明,体系中添加15%去离子水可以提高核酸酶的催化效率和立体选择性,最高分离产率95%,ee值82%,非对映立体选择性dr值为99/1。
     论文总共合成了84种化合物,其中15种3,4-二氢吡啶-2-酮衍生物,34种吡啶-2-酮衍生物,12种螺环化合物,12种aldol加成产物,6种α-烷基化腈衍生物,3种烯酮类化合物,1种制备氨基酸中间体和1种p-氨基酸。产物经1H NMR、13C NMR、 FTIR、HRMS等手段表征分析和验证,证实其中56种为新化合物。
As a new tool, biocatalytic synthesis in organic chemistry has attracted lots of attention. In recent years, many enzymes have shown catalytic promiscuity, such as, acylase and protease catalyzed Michael addition, racemase catalyzed the aldol reaction, acylase and transglutaminase catalyzed Henry reaction, and hydrolase accelerated many achievements in terms of enzymatic organic synthesis. However, enzymatic one-pot multicomponent reactions are scarcely reported, especially to synthesize complicated and bioactive heterocycles.
     A direct method to construct3,4-dihydropyridin-2-ones by enzymatic condensation of aldehyde with cyanoacetamide and1,3-dicarbonyl compounds was developed. Four new bonds and one six-member aza-ring were formed by one-pot method. Controlled experiments involving catalyst-free, BSA and denatured AA verified the role of active site, its catalytic mechanism was further proposed. And reaction conditions involving hydrolases, solvents, substrate molar ratios, hydrolase loadings and substrate variations were optimized. A series of new compounds based on the3,4-dihydropyridin-2-one core were synthesized.
     The Acylase "Amano"(AA)-catalyzed synthesis of valuable pyridin-2-ones via domino Knoevenagel condensation-Michael addition-intramolecular cyclization-oxidization reaction between aldehyde, cyanoacetamide and ethyl acetoacetate or cyclohexyl acetoacetate was also developed by the one-pot strategy. Reaction conditions involving hydrolases, solvents, temperatures, catalyst loadings and substrate variations were investigated. And controlled reaction under nitrogen atmosphere illustrated that pyridin-2-one was formed via the oxidization by oxygen at the final step.
     An efficient approach for the synthesis of highly substituted pyridin-2-one derivatives via Acylase "Amano"(AA)-catalyzed three-component reaction between aromatic aldehyde, cyanoacetamide and ketone was proposed. Studies showed that this reaction involved five molecules, which could in situ generate hydrogen donor (3,4-dihydropyridin-2-one) and hydrogen acceptor (Knoevenagel condensation product). The internal transfer hydrogenation process was further confirmed after we quantitatively detected the transforming course of the two intermediates by HPLC; Using this method, pyridin-2-ones and a-alkylated nitriles could be obtained simultaneously, and the a-alkylated nitrile could be transformed to synthetically important β-amino acids via simple conversions in high isolated yield.
     A one-pot three-component reaction of isatin derivatives, malononitrile and ketene catalyzed by PPL was established successfully. The effect of enzymes, solvents, water content, catalyst loading, substrate molar ratios and temperatures on reaction yields was investigated in details, and a series of spirocompounds were obtained. PPL exhibited the highest catalytic activity in DMSO. The4-position substituted isatin, cyanoacetamide or ethyl cyanoacetate barely participated in the reaction due to their steric hindrance.
     Nuclease p1was observed to directly catalyze the asymmetric aldol reactions between isatin derivatives and cyclic ketones. The effect of a series of reaction conditions involving enzymes, solvents, water contents, substrate molar ratios and substrate structure on yields and stereoselectivities were investigated in details. The addition of15%deionized water had a large influence on the enzyme activity. The isolated yields was up to95%, ee value was up to82%and dr value was up to>99/1.
     In this thesis,84compounds were synthesized including15derivatives of3,4-dihydropyridin-2-one,34products of pyridin-2-one,12spirocompounds,12products of aldol addition,6α-alkylated nitrile derivatives,3ketene compounds,1amino acid intermediates and1β-amino acid. These compounds were characterized by1H NMR,13C NMR, FTIR, and HRMS and56compounds have been confirmed to be new compounds.
引文
[1]Kilbanov A M. Enzymes That Work in Organic-Solvents. Chemtech,1986,16 (6):354-359.
    [2]Svedendahl M, Hult K, Berglund P. Fast carbon-carbon bond formation by a promiscuous lipase. J Am Chem Soc,2005,127(51):17988-17989.
    [3]Branneby C, Carlqvist P, Magnusson A, et al. Carbon-carbon bonds by hydrolytic enzymes. J Am Chem Soc,2003,125 (4):874-875.
    [4]Branneby C, Carlqvist P, Magnusson A, et al. Carbon-carbon bonds by hydrolytic enzymes. J Am Chem Soc,2003,125 (4):874-875.
    [5]Seebeck F P, Hilvert D. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc,2003,125 (34):10158-10159.
    [6]Xu J M, Zhang F, Liu B K, et al. Promiscuous zinc-dependent acylase-mediated carbon-carbon bond formation in organic media. Chem Commun,2007, (20):2078-2080.
    [7]Xu J M, Zhang F, Wu Q, et al. Hydrolase-catalyzed Michael addition of 1,3-dicarbonyl compounds to alpha,beta-unsaturated compounds in organic solvent. J Mol Catal B-Enzym,2007,49 (1-4):50-54.
    [8]Qian C, Xu J M, Wu Q, et al. Promiscuous acylase-catalyzed aza-Michael additions of aromatic N-heterocycles in organic solvent. Tetrahedron Lett,2007,48 (35):6100-6104.
    [9]Wang J L, Xu J M, Wu Q, et al. Promiscuous enzyme-catalyzed regioselective Michael addition of purine derivatives to alpha,beta-unsaturated carbonyl compounds in organic solvent. Tetrahedron, 2009,65 (12):2531-2536.
    [10]Xu K L, Guan Z, He Y H. Acidic proteinase from Aspergillus usamii catalyzed Michael addition of ketones to nitroolefins. JMol Catal B-Enzym,2011,71 (3-4):108-112.
    [11]Zandvoort E, Geertsema E M, Baas B J, et al. Bridging between Organocatalysis and Biocatalysis: Asymmetric Addition of Acetaldehyde to ss-Nitrostyrenes Catalyzed by a Promiscuous Proline-Based Tautomerase. Angew Chem Int Ed,2012,51(5):1240-1243.
    [12]Li C, Feng X W, Wang N, et al. Biocatalytic promiscuity:the first lipase-catalysed asymmetric aldol reaction. Green Chem,2008,10 (6):616-618.
    [13]Lopez-Iglesias M, Busto E, Gotor V, et al. Use of Protease from Bacillus licheniformis as Promiscuous Catalyst for Organic Synthesis:Applications in C-C and C-N Bond Formation Reactions. Adv Synth Catal,2011,353(13):2345-2353.
    [14]Lai Y F, Zheng H, Chai S J, et al. Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents. Green Chem,2010,12 (11):1917-1918.
    [15]Hu W, Guan Z, Deng X, et al. Enzyme catalytic promiscuity:The papain-catalyzed Knoevenagel reaction. Biochimie,2012,94 (3):656-661.
    [16]Wang C H, Guan Z, He Y H. Biocatalytic domino reaction:synthesis of 2H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem,2011,13 (8):2048-2054.
    [17]Wang J L, Li X, Xie H Y, et al. Hydrolase-catalyzed fast Henry reaction of nitroalkanes and aldehydes in organic media. JBiotechnol,2010,145 (3):240-243.
    [18]Tang R C, Guan Z, He Y H, et al. Enzyme-catalyzed Henry (nitroaldol) reaction. J Mol Catal B-Enzym,2010,63 (1-2):62-67.
    [19]Coelho P S, Brustad E M, Kannan A, et al. Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science,2013,339 (6117):307-310.
    [20]Wang Z J, Peck N E, Renata H, et al. Cytochrome P450-catalyzed insertion of carbenoids into N-H bonds. Chem Sci,2014,5 (2):598-601.
    [21]He Y H, Li H H, Chen Y L, et al. Chymopapain-Catalyzed Direct Asymmetric Aldol Reaction. Adv Synth Catal,2012,354 (4):712-719.
    [22]Li H H, He Y H, Guan Z. Protease-catalyzed direct aldol reaction. Catal Commun,2011,12 (7): 580-582.
    [23]Xie B H, Li W, Liu Y, et al. The enzymatic asymmetric aldol reaction using acidic protease from Aspergillus usamii. Tetrahedron,2012,68 (15):3160-3164.
    [24]Yuan Y, Guan Z, He Y H. Biocatalytic direct asymmetric aldol reaction using proteinase from Aspergillus melleus. Sci China Chem,2013,56 (7):939-944.
    [25]Cai J F, Guan Z, He Y H. The lipase-catalyzed asymmetric C-C Michael addition. J Mol Catal B-Enzym,2011,68 (3-4):240-244.
    [26]Xue Y, Li L P, He Y H, et al. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent. Sci Rep-Uk,2012,2
    [27]Li K, He T, Li C, et al. Lipase-catalysed direct Mannich reaction in water:utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot" synthesis. Green Chem,2009,11 (6):777-779.
    [28]Xu J C, Li W M, Zheng H, et al. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron,2011,67 (49):9582-9587.
    [29]Xie Z B, Wang N, Wu W X, et al. Trypsin-catalyzed tandem reaction:one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde. JBiotechnol,2014,1701-5.
    [30]Zheng H, Mei Y J, Du K, et al. Trypsin-Catalyzed One-Pot Multicomponent Synthesis of 4-Thiazolidinones. Catal Lett,2013,143 (3):298-301.
    [31]He Y H, Hu W, Guan Z. Enzyme-Catalyzed Direct Three-Component Aza-Diels-Alder Reaction Using Hen Egg White Lysozyme. J Org Chem,2012,77 (1):200-207.
    [32]Wang J L, Liu B K, Yin C, et al. Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron,2011,67(14):2689-2692.
    [33]Wang J-L, Chen X-Y, Wu Q, et al. One-Pot Synthesis of Spirooxazino DerivativesviaEnzyme-Initiated Multicomponent Reactions. Adv Synth Catal,2014,356 (5):999-1005.
    [1]Pellissier H. Recent developments in asymmetric aziridination. Tetrahedron,2010,66 (8):1509-1555.
    [2]Pineschi M. Asymmetric ring-opening of epoxides and aziridines with carbon nucleophiles. Eur J Org Chem,2006, (22):4979-4988.
    [3]Singh G S, D'hooghe M, De Kimpe N. Synthesis and reactivity of C-heteroatom-substituted aziridines. Chem Rev,2007,107(5):2080-2135.
    [4]Kokotos C G, McGarrigle E M, Aggarwal V K. Sulfur ylide mediated three-component aziridination and epoxidation reactions using vinyl sulfonium salts. Synlett,2008, (14):2191-2195.
    [5]Gupta A K, Mukherjee M, Wulff W D. Multicomponent catalytic asymmetric aziridination of aldehydes. Org Lett,2011,13 (21):5866-5869.
    [6]Gupta A K, Mukherjee M, Hu G, et al. BOROX Catalysis:Self-assembled (AMINO)-BOROX and (IMINO)-BOROX chiral bronsted acids in a five component catalyst assembly/catalytic asymmetric aziridination. JOrg Chem,2012,77 (18):7932-7944.
    [7]Palomo C, Aizpurua J M, Gracenea J J, et al. An asymmetric domino three-component synthesis of beta-lactams. Eur JOrg Chem,1998, (10):2201-2207.
    [8]Keri R S, Hosamani K M. A facile and expeditious approach for the synthesis of 2-azetidinone derivatives via a multicomponent reaction. Monatsh Chem,2010,141 (8):883-888.
    [9]Walsh C T, Garneau-Tsodikova S, Howard-Jones A R. Biological formation of pyrroles:Nature's logic and enzymatic machinery. Nat Prod Rep,2006,23 (4):517-531.
    [10]Furstner A. Chemistry and biology of roseophilin and the prodigiosin alkaloids:A survey of the last 2500 years. Angew Chem Int Ed,2003,42 (31):3582-3603.
    [11]Hoffmann H, Lindel T. Synthesis of the pyrrole-imidazole alkaloids. Synthesis-Stuttgart,2003, (12): 1753-1783.
    [12]Hall A, Atkinson S, Brown S H, et al. Discovery of novel, non-acidic 1,5-biaryl pyrrole EP1 receptor antagonists. Bioorg Med Chem Lett,2007,17 (5):1200-1205.
    [13]Bellina F, Rossi R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron,2006,62 (31):7213-7256.
    [14]Huffman J W. Cannabimimetic indoles, pyrroles and indenes. Curr Med Chem,1999,6 (8):705-720.
    [15]Roth B D, Blankley C J, Chucholowski A W, et al. Inhibitors of cholesterol-biosynthesis.3. tetrahydro-4-hydroxy-6-[2-(lh-pyrrol-l-yl)ethyl]-2h-pyran-2-one inhibitors of Hmg-Coa reductase.2. effects of introducing substituents at positions 3 and 4 of the pyrrole nucleus. J Med Chem,1991,34 (1):357'-366.
    [16]Plitt P, Gross D E, Lynch V M, et al. Dipyrrolyl-functionalized bipyridine-based anion receptors for emission-based selective detection of dihydrogen phosphate. Chem-Eur J,2007,13 (5):1374-1381.
    [17]Zhao W L, Carreira E M. Conformationally restricted Aza-BODIPY:highly fluorescent, stable near-infrared absorbing dyes. Chem-Eur J,2006,12 (27):7254-7263.
    [18]Gale P A. Structural and molecular recognition studies with acyclic anion receptors. Accounts Chem Res,2006,39 (7):465-475.
    [19]Sessler J L, Camiolo S, Gale P A. Pyrrolic and polypyrrolic anion binding agents. Coordin Chem Rev,2003,240 (1-2):17-55.
    [20]Yoon D W, Hwang H, Lee C H. Synthesis of a strapped calix[4]pyrrole:structure and anion binding properties. Angew Chem Int Ed,2002,41 (10):1757-+.
    [21]Seidel D, Lynch V, Sessler J L. Cyclo[8]pyrrole:A simple-to-make expanded porphyrin with no meso bridges. Angew Chem Int Ed,2002,41 (8):1422-1425.
    [22]Miyaji H, Sato W, Sessler J L. Naked-eye detection of anions in dichloromethane:colorimetric anion sensors based on calix[4]pyrrole. Angew Chem Int Ed,2000,39 (10):1777-+.
    [23]Depraetere S, Smet M, Dehaen W. N-confused calix[4]pyrroles. Angew Chem Int Ed,1999,38 (22): 3359-3361.
    [24]Williamson N R, Simonsen H T, Ahmed R A A, et al. Biosynthesis of the red antibiotic, prodigiosin, in Serratia:identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol,2005,56(4):971-989.
    [25]Seganish J L, Davis J T. Prodigiosin is a chloride carrier that can function as an anion exchanger. Chem Commun,2005, (46):5781-5783.
    [26]Jiang C, Frontier A J. Stereoselective synthesis of pyrrolidine derivatives via reduction of substituted pyrroles. Org Lett,2007,9 (24):4939-4942.
    [27]Lazerges M, Chane-Ching K I, Aeiyach S, et al. Paramagnetic pyrrole-based semiconductor molecular material. J Solid State Electr,2009,13 (2):231-238.
    [28]Kros A, van Hovel S W F M, Nolte R J M, et al. A printable glucose sensor based on a poly(pyrrole)-latex hybrid material. Sensor Actuat B-Chem,2001,80 (3):229-233.
    [29]Hamilton S, Hepher M, Sommerville J. Polypyrrole materials for detection and discrimination of volatile organic compounds. Sensor Actuat B-Chem,2005,107 (1):424-432.
    [30]Jadhav N C, Jagadhane P B, Patile H V, et al. Three-component direct synthesis of substituted pyrroles from easily accessible chemical moieties using hypervalent iodine reagent. Tetrahedron Lett,2013,54 (23):3019-3021.
    [31]Yadav J S, Reddy B V S, Hashim S R. A new and efficient synthesis of 2,2-disubstituted-3,4-dihydro-2H-l-benzopyrans. JChem Soc Perk T 1,2000, (18):3082-3084.
    [32]Yadav J S, Reddy B V S, Premalatha K, et al. First example of the activation of polymethylhydrosiloxane with molecular iodine:a facile synthesis of 3,6-dihydropyran derivatives. Tetrahedron Lett,2005,46 (15):2687-2690.
    [33]Yadav J S, Reddy B V S, Rao C V, et al. Iodine-catalyzed stereoselective synthesis of allylglycosides, glycosyl cyanides and glycosyl azides. Synlett,2001, (10):1638-1640.
    [34]Mphahlele M J. Molecular iodine-mediated cyclization of tethered heteroatom-containing alkenyl or alkynyl systems. Molecules,2009,14 (12):4814-4837.
    [35]Mphahlele M J. Molecular iodine-an expedient reagent for oxidative aromatization reactions of alpha,beta-unsaturated cyclic compounds. Molecules,2009,14 (12):5308-5322.
    [36]Reddy G R, Reddy T R, Joseph S C, et al. Iodine catalyzed four-component reaction:a straightforward one-pot synthesis of functionalized pyrroles under metal-free conditions. Rsc Adv, 2012,2 (8):3387-3395.
    [37]Maiti S, Biswas S, Jana U. Iron(III)-catalyzed four-component coupling reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes:a simple and direct synthesis of functionalized pyrroles. JOrg Chem,2010,75 (5):1674-1683.
    [38]Tamaddon F, Farahi M. A new three-component reaction catalyzed by silica sulfuric acid:synthesis of tetrasubstituted pyrroles. Synlett,2012, (9):1379-1383.
    [39]Tamaddon F, Farahi M, Karami B. Molybdate sulfuric acid as a reusable solid catalyst in the synthesis of 2,3,4,5-tetrasubstituted pyrroles via a new one-pot [2+2+1] strategy. J Mol Catal a-Chem,2012,35685-89.
    [40]Chen X B, Wang X Y, Zhu D D, et al. Three-component domino reaction synthesis of highly functionalized bicyclic pyrrole derivatives. Tetrahedron,2014,70 (5):1047-1054.
    [41]Wang L, Cherian C, Desmoulin S K, et al. Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. JMed Chem,2012,55 (4):1758-1770.
    [42]Gangjee A, Jain H D, Queener S F, et al. The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents. JMed Chem, 2008,51 (15):4589-4600.
    [43]Soares M I L, Brito A F, Laranjo M, et al. Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c] thiazoles with anti-breast cancer properties. Eur JMed Chem,2013,60 254-262.
    [44]Wang L, Desmoulin S K, Cherian C, et al. Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits beta-glycinamide ribonucleotide formyltransferase. J Med Chem,2011,54 (20):7150-7164.
    [45]Regueiro-Ren A, Xue Q F M, Swidorski J J, et al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment.12. structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248). J Med Chem,2013,56 (4): 1656-1669.
    [46]Saxena N K, Hagenow B M, Genzlinger G, et al. Synthesis and antiviral activity of certain 4-substituted and 2,4-disubstituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-D]pyrimidines. J Med Chem,1988,31 (8):1501-1506.
    [47]Pudlo J S, Saxena N K, Nassiri M R, et al. Synthesis and antiviral activity of certain 4-disubstituted and 4,5-disubstituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-D]pyrimidines. J Med Chem,1988, 31 (11):2086-2092.
    [48]Trzoss M, Bensen D C, Li X M, et al. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase Ⅳ (ParE), Part Ⅱ:development of inhibitors with broad spectrum, Gram-negative antibacterial activity. Bioorg Med Chem Lett,2013,23 (5):1537-1543.
    [49]Chen Z C, Venkatesan A M, Dehnhardt C M, et al. Synthesis and SAR of novel 4-morpholinopyrrolopyrimidine derivatives as potent phosphatidylinositol 3-Kinase Inhibitors. J Med Chem,2010,53 (8):3169-3182.
    [50]Clark M P, George K M, Bookland R G, et al. Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). Bioorg Med Chem Lett,2007,17 (5):1250-1253.
    [51]Weinberg L R, Albom M S, Angeles T S, et al.2,7-Pyrrolo[2,1-f][1,2,4]triazines as JAK2 inhibitors: Modification of target structure to minimize reactive metabolite formation. Bioorg Med Chem Lett, 2011,21 (24):7325-7330.
    [52]Lindsay K B, Pyne S G. Synthesis of (+)-(1R,2S,9S,9aR)-octahydro-1H-pyrrolo[1,2-a]azepine-1,2,9-triol:a potential glycosidase inhibitor. Tetrahedron,2004,60 (19):4173-4176.
    [53]Liu Y, Fang J P, Cai H Y, et al. Identification and synthesis of substituted pyrrolo[2,3-d]pyrimidines as novel firefly luciferase inhibitors. Bioorgan Med Chem,2012,20 (18):5473-5482.
    [54]Taylor E C, Kuhnt D, Shih C, et al. A dideazatetrahydrofolate analog lacking a chiral center at C-6,N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7h-pyrrolo[2,3-D]pyrimidin-5-Yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem,1992,35 (23):4450-4454.
    [55]Xu Z H, Buechler T, Wheeler K, et al. A three-component reaction based on a remote-group-directed dynamic kinetic aza-Michael addition:stereoselective synthesis of imidazolidin-4-ones. Chem-Eur J,2010,16(10):2972-2976.
    [56]Ali T E S. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur J Med Chem,2009,44 (11):4385-4392.
    [57]Zhou M D, Jain K R, Gunyar A, et al. Bidentate lewis base adducts of methyltrioxidorhenium (VII):ligand influence on catalytic performance and stability. Eur J Inorg Chem,2009, (20):2907-2914.
    [58]Bora D, Deb B, Fuller A L, et al. Dicarbonyliridium(I) complexes of pyridine ester ligands and their reactivity towards various electrophiles. Inorg Chim Acta,2010,363 (7):1539-1546.
    [59]Hofmeier H, Schubert U S. Combination of orthogonal supramolecular interactions in polymeric architectures. Chem Commun,2005, (19):2423-2432.
    [60]Horiuch M, Murakami C, Fukamiya N, et al. Tripfordines A-C, sesquiterpene pyridine alkaloids from Tripterygium wilfordii, and structure anti-HIV activity relationships of Tripterygium alkaloids. J Nat Prod,2006,69 (9):1271-1274.
    [61]Follot S, Debouzy J C, Crouzier D, et al. Physicochemical properties and membrane interactions of anti-apoptotic derivatives 2-(4-fluorophenyl)-3-(pyridin-4-yl)imidazo[1,2-a]pyridine depending on the hydroxyalkylamino side chain length and conformation:An NMR and ESR study. Eur J Med Chem,2009,44 (9):3509-3518.
    [62]Onnis V, Cocco M T, Fadda R, et al. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorgan Med Chem,2009,17 (17):6158-6165.
    [63]Duffy C D, Maderna P, McCarthy C, et al. Synthesis and biological evaluation of pyridine-containing lipoxin A(4) analogues. Chemmedchem,2010,5 (4):517-522.
    [64]Smejkal T, Breit B. A supramolecular catalyst for regioselective hydroformylation of unsaturated carboxylic acids. Angew Chem Int Ed,2008,47 (2):311-315.
    [65]Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nat Mater,2010,9 (7):565-571.
    [66]Zhou Y C, Kijima T, Kuwahara S, et al. Synthesis of ethyl 5-cyano-6-hydroxy-2-methyl-4-(1-naphthyl)-nicotinate. Tetrahedron Lett,2008,49 (23):3757-3761.
    [67]Franco L H, Joffe E B D, Puricelli L, et al. Indole alkaloids from the tunicate Aplidium meridianum. J Nat Prod,1998,61 (9):1130-1132.
    [68]Bringmann G, Reichert Y, Kane V V. The total synthesis of streptonigrin and related antitumor antibiotic natural products. Tetrahedron,2004,60 (16):3539-3574.
    [69]Cooke M W, Hanan G S. Luminescent polynuclear assemblies. Chem Soc Rev,2007,36 (9):1466-1476.
    [70]Constable E C.2,2':6',2 "-terpyridines:From chemical obscurity to common supramolecular motifs. Chem Soc Rev,2007,36 (2):246-253.
    [71]Yan S J, Chen Y L, Liu L, et al. Three-component solvent-free synthesis of highly substituted bicyclic pyridines containing a ring-junction nitrogen. Green Chem,2010,12 (11):2043-2052.
    [72]Yan S J, Niu Y F, Huang R, et al. Synthesis of bicyclic pyridones via cyclocondensation of heterocyclic ketene aminals with beta-ketoester enol tosylates. Synlett,2009, (17):2821-2824.
    [73]Zhang A M, Zheng X L, Fan J F, et al. Synthesis of imidazo[1,5-a]pyridines from 1,1-dibromo-l-alkenes. Tetrahedron Lett,2010,51 (5):828-831.
    [74]Bengtsson C, Almqvist F. Regioselective halogenations and subsequent Suzuki-Miyaura coupling onto bicyclic 2-pyridones. JOrg Chem,2010,75 (3):972-975.
    [75]Sellstedt M, Almqvist F. A novel heterocyclic scaffold formed by ring expansion of a cyclic sulfone to sulfonamides. Org Lett,2009,11 (23):5470-5472.
    [76]Movassaghi M, Hill M D. Synthesis of substituted pyridine derivatives via the ruthenium-catalyzed cycloisomerization of 3-azadienynes. JAm Chem Soc,2006,128(14):4592-4593.
    [77]Donohoe T J, Basutto J A, Bower J F, et al. Heteroaromatic synthesis via olefin cross-metathesis: entry to polysubstituted pyridines. Org Lett,2011,13 (5):1036-1039.
    [78]Boger D L. Diels-Alder reactions of heterocyclic azadienes-scope and applications. Chem Rev, 1986,86 (5):781-793.
    [79]Rajanarendar E, Raju S, Reddy M N, et al. Multi-component synthesis and in vitro and in vivo anticancer activity of novel arylmethylene bis-isoxazolo[4,5-b]pyridine-N-oxides. Eur J Med Chem,2012,50274-279.
    [80]Zeng L Y, Cai C. Four-component synthesis of star-shaped 2-(indol-3-yl)pyridine derivatives in one pot. Synthetic Commun,2013,43 (5):705-718.
    [81]Alizadeh A, Saberi V, Mokhtari J. A simple one-pot procedure for the synthesis of 1,2,4-triazolo[1,5-a]pyridines via pseudo five-component reactions catalyzed by molecular iodine. Synlett,2013,24 (14):1825-1829.
    [82]Gunasekaran P, Indumathi S, Perumal S. L-Proline-catalyzed three-component domino reactions in the regioselective synthesis of novel densely functionalized pyrazolo[3,4-b]pyridines. Rsc Adv, 2013,3(22):8318-8325.
    [83]Gunasekaran P, Prasanna P, Perumal S. L-Proline-catalyzed three-component domino reactions for the synthesis of highly functionalized pyrazolo[3,4-b]pyridines. Tetrahedron Lett,2014,55 (2): 329-332.
    [84]Kumar P M, Kumar K S, Mohakhud P K, et al. Construction of a six-membered fused N-heterocyclic ring via a new 3-component reaction:synthesis of (pyrazolo) pyrimidines/pyridines. Chem Commun,2012,48 (3):431-433.
    [85]Jiang B, Liu YP, Tu S J. Facile Three-component synthesis of macrocyclane-fused pyrazolo[3,4-b] pyridine derivatives. Eur J Org Chem,2011, (16):3026-3035.
    [86]Paravidino M, Scheffelaar R, Schmitz R F, et al. A flexible six-component reaction to access constrained depsipeptides based on a dihydropyridinone core. J Org Chem,2007,72 (26):10239-10242.
    [87]Liang F S, Cheng X, Liu J, et al. Efficient three-component one-pot synthesis of fully substituted pyridin-2(1H)-ones via tandem Knoevenagel condensation-ring-opening of cyclopropane-intramolecular cyclization. Chem Commun,2009, (24):3636-3638.
    [88]Lin S X, Wei Y, Liang F S, et al. Multi-component anion relay cascade of 1-acetylcyclopropanecarboxamides, aldehydes and acrylonitrile:access to biscyanoethylated furo[3,2-c]pyridinones. Org Biomol Chem,2012,10 (23):4571-4576.
    [89]Rahmati A, Kenarkoohi T, Khavasi H R. Synthesis of 2,6'-dioxo-1',5',6',7'-tetrahydrospiro[indoline-3,4'-pyrazolo[3,4-b]pyridine]-5'-carbonitriles via a one-pot, three-component reaction in water. Acs Comb Sci,2012,14 (12):657-664.
    [90]Shen Z L, Xu X P, Ji S J. Bronsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J Org Chem,2010,75 (4):1162-1167.
    [91]Sajadikhah S S, Hazeri N, Maghsoodlou M T, et al. Trityl chloride as an efficient organic catalyst for one-pot, five-component and diastereoselective synthesis of highly substituted piperidines. Res Chem Intermediat,2014,40 (2):723-736.
    [92]Nair V, Jose A, Lakshmi K C S, et al. A facile four component protocol for the synthesis of dihydropyridine derivatives. Org Biomol Chem,2012,10 (38):7747-7752.
    [93]Lecinska P, Corres N, Moreno D, et al. Synthesis of pseudopeptidic (S)-6-amino-5-oxo-1,4-diazepines and (S)-3-benzyl-2-oxo-1,4-benzodiazepines by an Ugi 4CC Staudinger/aza-Wittig sequence. Tetrahedron,2010,66 (34):6783-6788.
    [94]Sarkar S, Bera K, Maiti S, et al. Three-component coupling synthesis of diversely substituted N-aryl pyrroles catalyzed by iron(III) chloride. Synthetic Commun,2013,43 (11):1563-1570.
    [95]Khan A T, Lal M, Bagdi P R, et al. Synthesis of tetra-substituted pyrroles, a potential phosphodiesterase 4B inhibitor, through nickel(II) chloride hexahydrate catalyzed one-pot four-component reaction. Tetrahedron Lett,2012,53 (32):4145-4150.
    [96]Magar D R, Ke Y J, Chen K M. Three-component synthesis of functionalized N-protected tetrasubstituted pyrroles by an addition-elimination-aromatization process. Asian J Org Chem, 2013,2 (4):330-335.
    [97]Estevez V, Villacampa M, Menendez J C. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions:a generalization of the Hantzsch pyrrole synthesis. Chem Commun,2013,49 (6):591-593.
    [98]Stalling T, Saak W, Martens J. Synthesis of bicyclic thiazolidinethiones and oxazolidinones by water-mediated multicomponent reactions (MCR) and ring-closing metathesis (RCM). Eur J Org Chem,2013,2013 (35):8022-8032.
    [99]Thimmaiah M, Li P, Regati S, et al. Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal-organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Lett,2012,53 (36):4870-4872.
    [100]Heravi M R P, Fakhr F. Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl1 center dot 8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature. Tetrahedron Lett,2011,52 (50):6779-6782.
    [101]Reddy L S, Reddy T R, Mohan R B, et al. An efficient green multi-component reaction strategy for the synthesis of highly functionalised pyridines and evaluation of their antibacterial activities. Chem Pharm Bull,2013,61 (11):1114-1120.
    [102]Sobhani S, Honarmand M. Ionic liquid immobilized on gamma-Fe2O3 nanoparticles:a new magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines. Appl Catal a-Gen,2013,467 456-462.
    [103]Xin X, Wang Y, Kumar S, et al. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org Biomol Chem,2010,8(13):3078-3082.
    [104]Mahmoodi N O, Shoja S, Sharifzadeh B, et al. Regioselective synthesis and antibacterial evaluation of novel bis-pyrimidine derivatives via a three-component reaction. Med Chem Res, 2014,23(3):1207-1213.
    [105]Rostamizadeh S, Nojavan M, Aryan R, et al. A facile synthesis of new pyrazolo[3,4-d] pyrimidine derivatives via a one-pot four-component reaction with sodium acetate supported on basic alumina as promoter. Helv Chim Acta,2013,96(12):2267-2275.
    [106]Shafiee M R M, Najafabadi B H, Ghashang M. Multicomponent preparation of highly functionalized piperidines using magnesium hydrogen sulfate as an efficient catalyst. Res Chem Intermediat,2013,39 (8):3753-3762.
    [107]Atar A B, Jeong Y T. Silica supported tungstic acid (STA):an efficient catalyst for the synthesis of bis-spiro piperidine derivatives under milder condition. Tetrahedron Lett,2013,54 (10):1302-1306.
    [108]Wei W, Wen J W, Yang D S, et al. Iron-catalyzed three-component tandem process:a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and alpha-ketoesters. Tetrahedron,2013,69(50):10747-10751.
    [109]Kubo T, Sakaguchi S, Ishii Y. Iridium-catalyzed aziridination of aliphatic aldehydes, aliphatic amines and ethyl diazoacetate. Chem Commun,2000, (7):625-626.
    [110]Reddy A R, Zhou C Y, Che C M. Ruthenium porphyrin catalyzed three-component reaction of diazo compounds, nitrosoarenes, and alkynes:an efficient approach to multifunctionalized aziridines. Org Lett,2014,16(4):1048-1051.
    [111]Annunziata R, Cinquini M, Cozzi F, et al. Yb(OTf)(3)-catalyzed one-pot synthesis of beta-lactams from silyl ketene thioacetals by a two- or a three-component reaction. J Org Chem,1996,61 (23): 8293-8296.
    [112]Damavandi S, Sandaroos R, Zohuri G H, et al. A novel multicomponent Zr-catalyzed synthesis of functionalized pyrano[3,2-b]pyrrole derivatives. Res Chem Intermediat,2014,40 (1):307-315.
    [113]Zhou Y Q, Yan X Y, Chen C, et al. Copper-mediated reaction of zirconacyclopentadienes with azides:a one-pot three-component synthesis of multiply substituted pyrroles from one azide and two alkynes. Organometallics,2013,32 (21):6182-6185.
    [114]Zhang M, Neumann H, Beller M. Selective Ruthenium-catalyzed three-component synthesis of pyrroles. Angew Chem Int Ed,2013,52 (2):597-601.
    [115]Zhang M, Fang X J, Neumann H, et al. General and regioselective synthesis of pyrroles via Ruthenium-catalyzed multicomponent reactions. J Am Chem Soc,2013,135 (30):11384-11388.
    [116]Reddy G R, Reddy T R, Joseph S C, et al. Pd-mediated new synthesis of pyrroles:their evaluation as potential inhibitors of phosphodiesterase 4. Chem Commun,2011,47(27):7779-7781.
    [117]Yoo W J, Li C J. Copper-catalyzed four-component coupling between aldehydes, amines, alkynes, and carbon dioxide. Adv Synth Catal,2008,350 (10):1503-1506.
    [118]Chen M Z, Micalizio G C. Three-component coupling sequence for the regiospecific synthesis of substituted syridines. JAm Chem Soc,2012,134 (2):1352-1356.
    [119]Zheng L Y, Ju J, Bin Y H, et al. Synthesis of isoquinolines and heterocycle-fused pyridines via three-component cascade reaction of aryl ketones, hydroxylamine, and alkynes. J Org Chem,2012, 77 (13):5794-5800.
    [120]Zhou F G, Liu X, Zhang N, et al. Copper-catalyzed three-component reaction:solvent-controlled regioselective synthesis of 4-amino-and 6-amino-2-iminopyridines. Org Lett,2013,15 (22):5786-5789.
    [121]Shekarrao K, Nath D, Kaishap P P, et al. Palladium-catalyzed multi-component synthesis of steroidal A- and D-ring fused 5,6-disubstituted pyridines under microwave irradiation. Steroids, 2013,78(11):1126-1133.
    [122]Kobayashi Y, Kayahara H, Tadasa K, et al. Synthesis of N-kojic-amino acid and N-kojic-amino acid-kojiate and their tyrosinase inhibitory activity. Bioorg Med Chem Lett,1996,6(12):1303-1308.
    [123]Safaei S, Mohammadpoor-Baltork I, Khosropour A R, et al. One-pot three-component synthesis of pyrano [3,2-b]pyrazolo[4,3-e]pyridin-8(1H)-ones.Acs Comb Sci,2013,15 (3):141-146.
    [124]Reddy L S, Reddy T R, Reddy N C G, et al. One-pot, three-component synthesis of novel 4-phenyl-2-[3-(alkynyl/alkenyl/aryl)phenyl]pyrimidine libraries via Michael addition, cyclization, and C-C coupling reactions:a new MCR strategy. Synthesis-Stuttgart,2013,45 (1):75-84.
    [125]Karpov A S, Muller T J J. Straightforward novel one-pot enaminone and pyrimidine syntheses by coupling-addition-cyclocondensation sequences. Synthesis-Stuttgart,2003, (18):2815-2826.
    [126]Karpov A S, Muller T J J. New entry to a three-component pyrimidine synthesis by TMS-ynones via Sonogashira coupling. Org Lett,2003,5(19):3451-3454.
    [127]Braun P U, Zeitler K, Muller T J J. A novel 1,5-benzoheteroazepine synthesis via a one-pot coupling-isomerization-cyclocondensation sequence. Org Lett,2000,2 (26):4181-4184.
    [128]Banfi L, Basso A, Guanti G, et al. A new highly convergent entry to densely functionalized aziridines based on the Ugi reaction. Qsar Comb Sci,2006,25 (5-6):457-460.
    [129]Veinberg G, Dikovskaya K, Vorona M, et al. The synthesis of cytotoxic 2-oxoazetidinyl-l-acetamide derivatives. Khim Geterotsikl+,2005, (1):107-112.
    [130]Szakonyi Z, Sillanpaa R, Fulop F. Synthesis of conformationally constrained tricyclic beta-lactam enantiomers through Ugi four-center three-component reactions of a monoterpene-based beta-amino acid. Mol Divers,2010,14 (1):59-65.
    [131]Bhat S I, Trivedi D R. A catalyst- and solvent-free three-component reaction for the regioselective one-pot access to polyfunctionalized pyrroles. Tetrahedron Lett,2013,54 (41):5577-5582.
    [132]Wang X, Xu X P, Wang S Y, et al. Highly efficient chemoselective synthesis of polysubstituted pyrroles via isocyanide-based multicomponent domino reaction. Org Lett,2013,15 (16):4246-4249.
    [133]Jiang B, Yi M S, Tu M S, et al. Bronsted acid-promoted divergent reactions of enaminones: efficient synthesis of fused pyrroles with different substitution patterns. Adv Synth Catal,2012,354 (13):2504-2510.
    [134]Jiang B, Li Y, Tu M S, et al. Allylic amination and N-arylation-based domino reactions providing rapid three-component strategies to fused pyrroles with different substituted patterns. J Org Chem, 2012,77 (17):7497-7505.
    [135]Li Y, Li Q Y, Xu H W, et al. Multicomponent formation of fused pyrroles through p-TsOH promoted N-arylation. Tetrahedron,2013,69 (14):2941-2946.
    [136]Liu J Y, Li Q Y, Jiang B, et al. Three-component domino reactions providing rapid and efficient routes to fully substituted pyrroles. Rsc Adv,2013,3(15):5056-5068.
    [137]Tu X C, Fan W, Jiang B, et al. A novel allylic substitution strategy to four-component synthesis of pyrazole-substituted fused pyrroles. Tetrahedron,2013,69 (30):6100-6107.
    [138]Feng X, Wang Q, Lin W, et al. Highly efficient synthesis of polysubstituted pyrroles via four-component domino reaction. Org Lett,2013,15(10):2542-2545.
    [139]Hong C M, Statsyuk A V. The development of a one pot, regiocontrolled, three-component reaction for the synthesis of thieno[2,3-c]pyrroles. Org Biomol Chem,2013,11(18):2932-2935.
    [140]Horikoshi S, Hamamura T, Kajitani M, et al. Green chemistry with a novel 5.8-GHz microwave apparatus. prompt one-pot solvent-free synthesis of a major ionic liquid:The 1-Butyl-3-methylimidazolium tetrafluoroborate system. Org Process Res Dev,2008,12 (6):1089-1093.
    [141]He Y F, Shen X H. Interaction between beta-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J Photoch Photobio A, 2008,197 (2-3):253-259.
    [142]Chowdhury S, Mohan R S, Scott J L. Reactivity of ionic liquids. Tetrahedron,2007,63 (11): 2363-2389.
    [143]Meshram H M, Ramesh P, Kumar G S, et al. One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media. Tetrahedron Lett,2010,51 (33):4313-4316.
    [144]Meshram H M, Prasad B R V, Kumar D A. A green approach for efficient synthesis of N-substituted pyrroles in ionic liquid under microwave irradiation. Tetrahedron Lett,2010,51 (27): 3477-3480.
    [145]Meshram H M, Babu B M, Kumar G S, et al. Catalyst-free four-component protocol for the synthesis of substituted pyrroles under reusable reaction media. Tetrahedron Lett,2013,54 (19): 2296-2302.
    [146]Hasaninejad A, Firoozi S. Catalyst-free, one-pot, three-component synthesis of 5-amino-1,3-aryl-1-pyrazole-4-carbonitriles in green media. Mol Divers,2013,17 (3):459-469.
    [147]Gudmundsson K S, Williams J D, Drach J C, et al. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. JMed Chem,2003,46 (8):1449-1455.
    [148]Rival Y, Grassy G, Michel G. Synthesis and antibacterial activity of some imidazo[1,2-a] pyrimidine derivatives. Chem Pharm Bull,1992,40 (5):1170-1176.
    [149]Badawey E, Kappe T. Benzimidazole condensed ring-system.9. potential antineoplastics-new synthesis of some pyrido[1,2-a]benzimidazoles and related derivatives. Eur J Med Chem,1995,30 (4):327-332.
    [150]Hranjec M, Kralj M, Piantanida N, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem,2007,50 (23):5696-5711.
    [151]Yu F C, Yan S J, Huang R, et al. Three-component solvent-free synthesis of highly substituted tetra-hydroimidazo[1,2-a]pyridines. Rsc Adv,2011,1 (4):596-601.
    [152]Chen J A, Ma Z, Yan C G. Three-component reaction of aromatic aldehyde, malononitrile and aliphatic amine leading to different pyridine derivatives. Chem Res Chinese U,2010,26 (6):937-941.
    [153]Sobhani S, Honarmand M.2-Hydroxyethylammonium acetate:A reusable task-specific ionic liquid promoting one-pot, three-component synthesis of 2-amino-3,5-dicarbonitrile -6-thio-pyridines.Cr Chim,2013,16 (3):279-286.
    [154]Evdokimov N M, Kireev A S, Yakovenko A A, et al. One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J Org Chem,2007,72 (9):3443-3453.
    [155]Mamgain R, Singh R, Rawat D S. DBU-catalyzed three-component one-pot synthesis of highly functionalized pyridines in aqueous ethanol. J Heterocyclic Chem,2009,46 (1):69-73.
    [156]Mishra S, Ghosh R. K2CO3-mediated, one-pot, multicomponent synthesis of medicinally potent pyridine and chromeno[2,3-B]pyridine scaffolds. Synthetic Commun,2012,42 (15):2229-2244.
    [157]Shinde P V, Labade V B, Shingate B B, et al. Application of unmodified microporous molecular sieves for the synthesis of poly functionalized pyridine derivatives in water. J Mol Catal a-Chem, 2011,336(1-2):100-105.
    [158]Olyaei A, Vaziri M, Razeghi R. A one-pot, pseudo four-component synthesis of novel benzopyrano[2,3-b]pyridines under solvent-free conditions. Tetrahedron Lett,2013,54 (15):1963-1966.
    [159]Huang Z B, Hu Y, Zhou Y, et al. Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid. Acs Comb Sci,2011,13 (1):45-49.
    [160]Poondra R R, Nallamelli R V, Meda C L T, et al. Discovery of novel 1,4-dihydropyridine-based PDE4 inhibitors. Bioorg Med Chem Lett,2013,23 (4):1104-1109.
    [161]Zhang X Y, Li D F, Fan X S, et al. Ionic liquid-promoted multi-component reaction:novel and efficient preparation of pyrazolo[3,4-b]pyridinone, pyrazolo[3,4-b]-quinolinone and their hybrids with pyrimidine nucleoside. Mol Divers,2010,14 (1):159-167.
    [162]Li M, Kong W, Wen L R, et al. Facile isocyanide-based one-pot three-component regioselective synthesis of highly substituted pyridin-2(1H)-one derivatives at ambient temperature. Tetrahedron, 2012,68 (24):4838-4845.
    [163]Shaabani A, Seyyedhamzeh M, Ganji N, et al. Catalyst-free rapid synthesis of benzo[4,5] imidazo[1,2-a]-pyrimidine-3-carboxamides via four-component coupling in one pot. J Iran Chem Soc,2014,11 (2):481-487.
    [164]Sarmah M M, Sarma R, Prajapati D, et al. Efficient synthesis of dihydropyrido[4,3-d]pyrimidines by microwave-promoted three-component aza-Diels-Alder reaction. Tetrahedron Lett,2013,54 (3): 267-271.
    [165]Lashkari M, Maghsoodlou M T, Hazeri N, et al. Synthesis of highly functionalized piperidines via one-pot, five-component reactions in the presence of acetic acid solvent. Synthetic Commun,2013, 43 (5):635-644.
    [166]Alizadeh A, Mokhtari J. Novel four-component route to the synthesis of spiro[indoline-3,4'-pyridine]-3'-carboxylate derivatives. Tetrahedron,2011,67(19):3519-3523.
    [167]Humble M S, Berglund P. Biocatalytic promiscuity. Eur J Org Chem,2011, (19):3391-3401.
    [168]Bornscheuer U T, Kazlauskas R J. Catalytic promiscuity in biocatalysis:Using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed,2004,43 (45):6032-6040.
    [169]Busto E, Gotor-Fernandez V, Gotor V. Hydrolases:catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev,2010,39 (11):4504-4523.
    [170]Babtie A, Tokuriki N, Hollfelder F. What makes an enzyme promiscuous? Curr Opin Chem Biol, 2010,14 (2):200-207.
    [171]Wu Q, Liu B K, Lin X F. Enzymatic promiscuity for organic synthesis and cascade process. Curr Org Chem,2010,14 (17):1966-1988.
    [172]Zheng H, Mei Y J, Du K, et al. Trypsin-catalyzed one-pot multicomponent synthesis of 4-Thiazolidinones. Catal Lett,2013,143 (3):298-301.
    [173]Zheng H, Mei Y J, Du K, et al. One-pot chemoenzymatic multicomponent synthesis of thiazole derivatives. Molecules,2013,18 (11):13425-13433.
    [174]Tudorache M, Protesescu L, Coman S, et al. Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chem,2012,14 (2):478-482.
    [175]Isobe K, Tokuta K, Narita Y, et al. A method for production of N-alpha-benzyloxycarbonyl-aminoadipate-delta-semialdehyde with amine oxidase from Aspergillus niger. J Mol Catal B-Enzym,2004,30(3-4):119-123.
    [176]Gefflaut T, Martin C, Delor S, et al. Deoxysugars via microbial reduction of 5-acyl-isoxazolines: Application to the synthesis of 3-deoxy-D-fructose and derivatives. J Org Chem,2001,66 (7): 2296-2301.
    [177]Bora P P, Bihani M, Bez G. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. JMol Catal B-Enzym,2013,92 24-33.
    [178]Wang J L, Chen X Y, Wu Q, et al. One-pot synthesis of spirooxazino derivatives via enzyme-initiated multicomponent reactions. Adv Synth Catal,2014,356 (5):999-1005.
    [179]Wang J L, Liu B K, Yin C, et al. Candida antarctica lipase B-catalyzed the unprecedented three- component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron,2011,67 (14):2689-2692.
    [180]He Y H, Hu W, Guan Z. Enzyme-catalyzed direct three-component aza-Diels-Alder reaction using Hen Egg White Lysozyme. JOrg Chem,2012,77 (1):200-207.
    [181]Xie Z B, Wang N, Wu W X, et al. Trypsin-catalyzed tandem reaction:One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde. JBiotechnol,2014,1701-5.
    [182]Li C, Feng X W, Wang N, et al. Biocatalytic promiscuity:the first lipase-catalysed asymmetric aldol reaction. Green Chem,2008,10 (6):616-618.
    [183]Li C, Zhou Y J, Wang N, et al. Promiscuous protease-catalyzed aldol reactions:A facile biocatalytic protocol for carbon-carbon bond formation in aqueous media. J Biotechnol,2010,150 (4):539-545.
    [184]Li H H, He Y H, Yuan Y, et al. Nuclease p1:a new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions. Green Chem,2011,13 (1):185-189.
    [185]Li H H, He Y H, Guan Z. Protease-catalyzed direct aldol reaction. Catal Commun,2011,12 (7): 580-582.
    [186]He Y H, Li H H, Chen Y L, et al. Chymopapain-catalyzed direct asymmetric aldol reaction. Adv Synth Catal,2012,354 (4):712-719.
    [187]Chen Y L, Li W, Liu Y, et al. Trypsin-catalyzed direct asymmetric aldol reaction. JMol Catal B-Enzym,2013,8783-87.
    [188]Fu J P, Gao N, Yang Y, et al. Ficin-catalyzed asymmetric aldol reactions of heterocyclic ketones with aldehydes. J Mol Catal B-Enzym,2013,971-4.
    [189]Yuan Y, Guan Z, He Y H. Biocatalytic direct asymmetric aldol reaction using proteinase from Aspergillus melleus. Sci China Chem,2013,56 (7):939-944.
    [190]Xie Z B, Wang N, Zhou L H, et al. Lipase-catalyzed stereoselective cross-aldol reaction promoted by water. Chemcatchem,2013,5 (7):1935-1940.
    [191]Cai J F, Guan Z, He Y H. The lipase-catalyzed asymmetric C-C Michael addition. JMol Catal B-Enzym,2011,68 (3-4):240-244.
    [192]Xue Y, Li L P, He Y H, et al. Protease-catalysed direct asymmetric mannich reaction in organic solvent. Sci Rep-Uk,2012,2
    [1]Kilbanov A M. Enzymes That work in organic-solvents. Chemtech,1986,16 (6):354-359.
    [2]Bornscheuer U T, Kazlauskas R J. Catalytic promiscuity in biocatalysis:Using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed,2004,43 (45):6032-6040.
    [3]Copley S D. Enzymes with extra talents:moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol,2003,7(2):265-272.
    [4]O'Brien P J, Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol,1999,6(4):R91-R105.
    [5]Svedendahl M, Hult K, Berglund P. Fast carbon-carbon bond formation by a promiscuous lipase. J Am Chem Soc,2005,127(51):17988-17989.
    [6]Seebeck F P, Hilvert D. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc,2003,125 (34):10158-10159.
    [7]Xu J M, Zhang F, Liu B K, et al. Promiscuous zinc-dependent acylase-mediated carbon-carbon bond formation in organic media. Chem Commun,2007, (20):2078-2080.
    [8]Li K, He T, Li C, et al. Lipase-catalysed direct Mannich reaction in water:utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot" synthesis. Green Chem,2009,11 (6):777-779.
    [9]Lai Y F, Zheng H, Chai S J, et al. Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents. Green Chem,2010,12 (11):1917-1918.
    [10]Zhang P F, Chai S J, Lai Y F, et al. One-pot synthesis of spirooxindole derivatives catalyzed by lipase in the presence of water. Adv Synth Catal,2011,353 (2-3):371-375.
    [11]Comins D L, Hong H, Saha J K, et al. A 6-step synthesis of (+/-)-camptothecin. JOrg Chem,1994, 59(18):5120-5121.
    [12]Jayasinghe L, Abbas H K, Jacob M R, et al. N-methyl-4-hydroxy-2-pyridinone analogues from Fusarium oxysporum. J Nat Prod,2006,69 (3):439-442.
    [13]Li Q, Mitscher L A, Shen L L. The 2-pyridone antibacterial agents:Bacterial topoisomerase inhibitors. Med Res Rev,2000,20 (4):231-293.
    [14]Cox R J, Ohagan D. Synthesis of isotopically labeled 3-amino-2-phenylpropionic acid and its role as a precursor in the biosynthesis of tenellin and tropic acid. J Chem Soc Perk T 1,1991, (10): 2537-2540.
    [15]Nagarajan M, Xiao X S, Antony S, et al. Design, synthesis, and biological evaluation of indenoisoquinoline topoisomerase I inhibitors featuring polyamine side chains on the lactam nitrogen. J Med Chem,2003,46(26):5712-5724.
    [16]Dolle V, Fan E, Nguyen C H, et al. A new series of pyridinone derivatives as potent nonnucleoside human-immunodeficiency-virus type-1 specific reverse-transcriptase inhibitors. J Med Chem,1995, 38 (23):4679-4686.
    [17]Wai J S, Williams T M, Bamberger D L, et al. Synthesis and evaluation of 2-pyridinone derivatives as specific Hiv-1 reverse-transcriptase inhibitors.3. pyridyl and phenyl analogs of 3-aminopyridin-2(1h)-One. J Med Chem,1993,36 (2):249-255.
    [18]Pendleton M D, Beddoes R L, Andrew N J, et al. Syntheses of some 1,2-and 1,4-dihydropyridines and X-ray crystal structures of 1-dimethylamino-5-ethoxycarbonyl-1,4-dihydro-3-methoxy carbonyl-2-methyl-4-phenylpyridine,3-cyano-3,4-dihydro-5-methoxycarbonyl-6-methyl-4-phenylpyridin-2(1H)-one and 5-ethoxycarbonyl-1,4-dihydro-3-methoxycarbonyl-1,2-dimethyl-4-phenylpyridine. JChem Res-S,1997, (3):86-87.
    [19]Noguez M O, Marcelino V, Rodriguez H, et al. Infrared assisted production of 3,4-dihydro-2(1H)-pyridones in solvent-free conditions. Int J Mol Sci,2011,12 (4):2641-2649.
    [20]Pan W, Dong D W, Wang K W, et al. Efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones via the Vilsmeier-Haack reaction of 1-acetyl,l-carbamoyl cyclopropanes. Org Lett, 2007,9 (12):2421-2423.
    [21]Alberola A, Calvo L A, Ortega A G, et al. Regioselective synthesis of 2(1H)-pyridinones from beta-aminoenones and malononitrile. Reaction mechanism. J Org Chem,1999,64 (26):9493-9498.
    [22]Yamamoto Y, Takagishi H, Itoh K. Ruthenium(II)-catalyzed cycloaddition of 1,6-diynes with isocyanates leading to bicyclic pyridones. Org Lett,2001,3 (13):2117-2119.
    [23]Padwa A, Sheehan S M, Straub C S. An isomunchnone-based method for the synthesis of highly substituted 2(1H)-pyridones. J Org Chem,1999,64 (23):8648-8659.
    [1]Chia M, Dumesic J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to gamma-valerolactone over metal oxide catalysts. Chem Commun,2011,47 (44):12233-12235.
    [2]Yang X H, Zhao L L, Fox T, et al. Transfer hydrogenation of imines with ammonia-borane:a concerted double-hydrogen-transfer reaction. Angew Chem Int Ed,2010,49 (11):2058-2062.
    [3]Chikashita H, Nishida S, Miyazaki M, et al.2-Phenylbenzimidazoline as a reducing agent in the preparation of malononitriles from Alpha,Beta-unsaturated dinitriles. Synth Commun,1983,13 (12): 1033-1039.
    [4]Mashraqui S H, Kellogg R M.3-Methyl-2,3-dihydrobenzothiazoles as reducing agents-dye enhanced photoreactions. Tetrahedron Lett,1985,26(11):1453-1456.
    [5]Coleman C A, Rose J G, Murray C J. General acid catalysis of the reduction of P-benzoquinone by an nadh analog-evidence for concerted hydride and hydron transfer. J Am Chem Soc,1992,114 (25):9755-9762.
    [6]Xu H J, Liu Y C, Fu Y, et al. Catalytic hydrogenation of alpha,beta-epoxy ketones to form beta-hydroxy ketones mediated by an NADH coenzyme model. Org Lett,2006,8(16):3449-3451.
    [7]Rueping M, Antonchick A R, Theissmann T. A highly enantioselective bronsted acid catalyzed cascade reaction:Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew Chem Int Ed,2006,45 (22):3683-3686.
    [8]Wang N X, Zhao J. A novel NADH model:design, synthesis, and its chiral reduction and fluorescent emission. Adv Synth Catal,2009,351 (18):3045-3050.
    [9]Rueping M, Theissmann T, Raja S, et al. Asymmetric counterion pair catalysis:an enantioselective bronsted acid-catalyzed protonation. Adv Synth Catal,2008,350 (7-8):1001-1006.
    [10]Ramachary D B, Kishor M. Organocatalytic sequential one-pot double cascade asymmetric synthesis of Wieland-Miescher ketone analogues from a Knoevenagel/Hydrogenation/Robinson annulation sequence:scope and applications of organocatalytic biomimetic reductions. J Org Chem, 2007,72(14):5056-5068.
    [11]Ramachary D B, Reddy G B. Towards organo-click reactions:development of pharmaceutical ingredients by using direct organocatalytic bio-mimetic reductions. Org Biomol Chem,2006,4 (24): 4463-4468.
    [12]Cox R J, Ohagan D. Synthesis of isotopically labeled 3-amino-2-phenylpropionic acid and its role as a precursor in the biosynthesis of tenellin and tropic acid. J Chem Soc Perk T 1,1991, (10): 2537-2540.
    [13]Li Q, Mitscher L A, Shen L L. The 2-pyridone antibacterial agents:bacterial topoisomerase inhibitors. Med Res Rev,2000,20 (4):231-293.
    [14]Hasvold L A, Wang W B, Gwaltney S L, et al. Pyridone-containing farnesyltransferase inhibitors: Synthesis and biological evaluation. Biorg Med Chem Lett,2003,13 (22):4001-4005.
    [15]Comins D L, Hong H, Saha J K, et al. A 6-step synthesis of (+/-)-camptothecin. J Org Chem,1994, 59 (18):5120-5121.
    [16]Kozikowski A P, Campiani G, Sun L Q, et al. Identification of a more potent analogue of the naturally occurring alkaloid huperzine A. predictive molecular modeling of its interaction with AChE. JAm Chem Soc,1996,118 (46):11357-11362.
    [17]Wang S Z, Sun J W, Yu G, et al. CuI catalyzed N-arylation of amide as a key step for the preparation of 3-aryl beta-carbolin-1-ones. Org Biomol Chem,2004,2 (11):1573-1574.
    [18]Rong L C, Han H X, Jiang H, et al. An efficient synthesis of indeno [1,2-b]pyridine and Benzo[h]quinoline derivatives under solvent-free conditions. J Heterocyclic Chem,2009,46 (3): 465-468.
    [19]Wu Z L, Li Z Y. Practical synthesis of optically active alpha,alpha-disubstituted malonamic acids through asymmetric hydrolysis of malonamide derivatives with Rhodococcus sp CGMCC 0497. J Org Chem,2003,68(6):2479-2482.
    [20]Ooi T, Takeuchi M, Kameda M, et al. Practical catalytic enantioselective synthesis of alpha,alpha-dialkyl-alpha-amino acids by chiral phase-transfer catalysis. J Am Chem Soc,2000,122 (21): 5228-5229.
    [21]Kulp S S, Mcgee M J. Oxidative decyanation of benzyl and benzhydryl cyanides-a simplified procedure. JOrg Chem,1983,48 (22):4097-4098.
    [22]Grigg R, Mitchell T R B, Sutthivaiyakit S, et al. Oxidation of alcohols by transition-metal complexes.5. selective catalytic monoalkylation of arylacetonitriles by alcohols. Tetrahedron Lett, 1981,22(41):4107-4110.
    [23]Trost B M. Atom economy-a challenge for organic-synthesis-homogeneous catalysis leads the way. Angew Chem Int Ed,1995,34 (3):259-281.
    [24]Sheldon R A. Atom efficiency and catalysis in organic synthesis. Pure Appl Chem,2000,72 (7): 1233-1246.
    [25]Motokura K, Fujita N, Mori K, et al. Environmentally friendly one-pot synthesis of alpha-alkylated nitriles using hydrotalcite-supported metal species as multifunctional solid catalysts. Chem Eur J, 2006,12 (32):8228-8239.
    [26]Cheng R P, Gellman S H, DeGrado W F. beta-peptides:from structure to function. Chem Rev,2001, 101(10):3219-3232.
    [27]Shih C, Gossett L S, Gruber J M, et al. Synthesis and biological evaluation of novel cryptophycin analogs with modification in the beta-alanine region. Biorg Med Chem Lett,1999,9(1):69-74.
    [28]Peukert S, Sun Y C, Zhang R, et al. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS):Tetramic, tetronic acids and dihydropyridin-2-ones. Biorg Med Chem Lett,2008,18 (6):1840-1844.
    [1]da Silva J F M, Garden S J, Pinto A C. The chemistry of isatins:a review from 1975 to 1999. J Brazil Chem Soc,2001,12 (3):273-U286.
    [2]Chiyanzu I, Hansell E, Gut J, et al. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg Med Chem Lett,2003,13 (20):3527-3530.
    [3]Almeida M R, Leitao G G, Silva B V, et al. Counter-current chromatography separation of isatin derivatives using the sandmeyer methodology. J Brazil Chem Soc,2010,21 (4):764-769.
    [4]Li K, He T, Li C, et al. Lipase-catalysed direct Mannich reaction in water:utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot" synthesis. Green Chem,2009,11 (6):777-779.
    [5]Liu Z Q, Liu B K, Wu Q, et al. Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation-Michael addition-intramolecular cyclization. Tetrahedron,2011,67 (50):9736-9740.
    [6]Wang J L, Liu B K, Yin C, et al. Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron,2011,67 (14):2689-2692.
    [7]Liu Z Q, Xiang Z W, Wu Q, et al. Unexpected three-component domino synthesis of pyridin-2-ones
    catalyzed by promiscuous acylase in non-aqueous solvent. Biochimie,2013,95 (7):1462-1465.
    [8]Bora P P, Bihani M, Bez G. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. JMol Catal B-Enzym,2013,92 24-33.
    [9]Xiang Z W, Liu Z Q, Chen X, et al. Biocatalysts for cascade reaction:porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes. Amino Acids,2013,45 (4):937-945.
    [10]He Y H, Hu W, Guan Z. Enzyme-catalyzed direct three-component aza-Diels-Alder reaction using Hen Egg White Lysozyme. JOrg Chem,2012,77 (1):200-207.
    [1]Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem,1974,39 (12):1615-1621.
    [2]Yamada Y M A, Yoshikawa N, Sasai H, et al. Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones. Angew Chem Int Ed,1997,36 (17):1871-1873.
    [3]Dalko P I, Moisan L. Enantioselective organocatalysis. Angew Chem Int Ed,2001,40 (20):3726-3748.
    [4]Dalko P I, Moisan L. In the golden age of organocatalysis. Angew Chem Int Ed,2004,43 (39): 5138-5175.
    [5]Kochetkov S V, Kucherenko A S, Kryshtal G V, et al. Simple ionic liquid supported C-2-symmetric bisprolinamides as recoverable organocatalysts for the asymmetric aldol reaction in the presence of water. Eur J Org Chem,2012, (36):7129-7134.
    [6]Sreenithya A, Sunoj R B. Noninnocent Role of N-methyl pyrrolidinone in thiazolidinethione-promoted asymmetric aldol reactions. Org Lett,2012,14 (22):5752-5755.
    [7]Ramachandran P V, Chanda P B. Enantioselective synthesis of anti- and syn-beta-hydroxy-alpha-phenyl carboxylates via boron-mediated asymmetric aldol reaction. Chem Commun,2013,49 (30): 3152-3154.
    [8]Qiao Y P, Chen Q K, Lin S R, et al. Organocatalytic direct asymmetric crossed-aldol reactions of acetaldehyde in aqueous media. J Org Chem,2013,78 (6):2693-2697.
    [9]Zayas H A, Lu A, Valade D, et al. Thermoresponsive polymer-supported L-proline micelle catalysts for the direct asymmetric aldol reaction in water. Acs Macro Lett,2013,2 (4):327-331.
    [10]Almasi D, Alonso D A, Najera C. Prolinamides versus prolinethioamides as recyclable catalysts in the enantioselective solvent-free inter- and intramolecular aldol reactions. Adv Synth Catal,2008, 350 (16):2467-2472.
    [11]Wang B, Liu X W, Liu L Y, et al. Highly efficient direct asymmetric aldol reactions catalyzed by a prolinethioamide derivative in aqueous media. Eur J Org Chem,2010, (31):5951-5954.
    [12]Xie Z B, Wang N, Jiang G F, et al. Biocatalytic asymmetric aldol reaction in buffer solution. Tetrahedron Lett,2013,54 (8):945-948.
    [13]Li C, Zhou Y J, Wang N, et al. Promiscuous protease-catalyzed aldol reactions:A facile biocatalytic protocol for carbon-carbon bond formation in aqueous media. J Biotechnol,2010,150 (4):539-545.
    [14]Li H H, He Y H, Yuan Y, et al. Nuclease p1:a new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions. Green Chem,2011,13 (1):185-189.
    [15]He Y H, Li H H, Chen Y L, et al. Chymopapain-catalyzed direct asymmetric aldol reaction. Adv Synth Catal,2012,354 (4):712-719.
    [16]Li H H, He Y H, Guan Z. Protease-catalyzed direct aldol reaction. Catal Commun,2011,12 (7): 580-582.
    [17]List B, Lerner R A, Barbas C F. Enantioselective aldol cyclodehydrations catalyzed by antibody 38C2. (vol 1, pg 59,1999). Org Lett,1999,1 (2):353-353.
    [18]Guo Q S, Bhanushali M, Zhao C G. Quinidine thiourea-catalyzed aldol reaction of unactivated ketones:highly enantioselective synthesis of 3-alkyl-3-hydroxy-indolin-2-ones. Angew Chem Int Ed,2010,49 (49):9460-9464.
    [19]Guo Q S, Zhao J C G. Primary amine catalyzed aldol reaction of isatins and acetaldehyde. Tetrahedron Lett,2012,53 (14):1768-1771.
    [20]Kawasaki T, Nagaoka M, Satoh T, et al. Synthesis of 3-hydroxyindolin-2-one alkaloids, (+/-)-donaxaridine and (+/-)-convolutamydines A and E, through enolization-Claisen rearrangement of 2-allyloxyindolin-3-ones. Tetrahedron,2004,60 (15):3493-3503.
    [21]Labroo R B, Cohen L A. Preparative separation of the diastereoisomers of dioxindolyl-L-alanine and assignment of stereochemistry at C-3. J Org Chem,1990,55 (16):4901-4904.
    [22]Hewawasam P, Erway M, Moon S L, et al. Synthesis and structure-activity relationships of 3-aryloxindoles:A new class of calcium-dependent, large conductance potassium (maxi-K) channel openers with neuroprotective properties. JMed Chem,2002,45 (7):1487-1499.
    [23]Somei M, Yamada F. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep,2005,22:73-107.
    [24]Hibino S, Choshi T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep,2013,30:694-752.
    [25]Zhang F R, Li C M, Qi C Z. Highly diastereo- and enantioselective direct aldol reaction under solvent-free conditions. Tetrahedrons-Asymmetry,2013,24 (7):380-388.
    [26]Ricci A, Bernardi L, Gioia C, et al. Chitosan aerogel:a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chem Commun,2010,46 (34):6288-6290.
    [27]Shen C, Shen F Y, Xia H J, et al. Carbohydrate-derived alcohols as organocatalysts in enantioselective aldol reactions of isatins with ketones. Tetrahedron-Asymmetry,2011,22 (6):708-712.
    [28]Orrenius C, Norin T, Hult K, et al. The Candida antarctica lipase B catalysed kinetic resolution of seudenol in non-aqueous media of controlled water activity. Tetrahedron-Asymmetry,1995,6(12): 3023-3030.
    [29]Klibanov A M. Enzymatic catalysis in anhydrous organic-solvents. Trends Biochem Sci,1989,14 (4):141-144.
    [30]Yadav G D, Lathi P S. Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases:kinetic studies. JMol Catal B-Enzym,2004,27(2-3):113-119.
    [31]Costes D, Wehtje E, Adlercreutz P. Hydroxynitrile lyase-catalyzed synthesis of cyanohydrins in organic solvents-Parameters influencing activity and enantiospecificity. Enzyme Microb Tech, 1999,25 (3-5):384-391.
    [32]Hudson E P, Eppler R K, Beaudoin J M, et al. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents. J Am Chem Soc,2009,131 (12): 4294-4300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700