用户名: 密码: 验证码:
基于天然茋类化合物的合成研究与活性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然芪类化合物是一类以1,2-二苯乙烯为骨架结构的天然多酚类化合物。由于芪类单体白藜芦醇的多种生物活性,上世纪90年代后期以来,针对其进行的研究工作越来越受到重视,白藜芦醇的潜在营养和药用价值也逐渐被科学界及医药工业界所认识与认可。而作为一类重要的白藜芦醇天然衍生物,芪类低聚体由于其在自然界中含量低、难以分离、缺乏有效的合成方法,所以针对其活性的研究很少见诸报道。本论文主要围绕天然芪类化合物展开,对白藜芦醇低聚体的酶促仿生合成与抗氧化活性,以及亚胺类白藜芦醇类似物对Nrf2的激活作用都做了系统性的研究。研究结果主要包括以下几个方面:
     1.pH调控的辣根过氧化物酶催化白藜芦醇选择性氧化二聚:通过调节反应溶剂体系中水相的pH,可以使得辣根过氧化物酶催化白藜芦醇氧化二聚反应实现精细的选择性。我们实现了pallidol, leachianol F, leachianol G,trans-δ-viniferin和cis-δ-viniferin五种白藜芦醇二聚体的酶催化选择性合成,并衍生合成了另外两个白藜芦醇二聚体parthenocissin A与quadrangularin A,为进一步对其进行生物活性的筛选提供了可能。本论文还对实现该选择性的机制进行了探讨。
     2.金属-辣根过氧化物酶复合物催化的白藜芦醇氧化反应:本论文筛选了10种不同金属,使其与辣根过氧化物酶作用形成[HRP-M]复合物。[HRP-M]复合物在催化白藜芦醇氧化过程中表现出不同的活性,Ca2+可大幅降低酶的催化活性;[HRP-Mn11]可以92%的产率选择性催化生成二聚体trans-δ-viniferin;[HRP-Cu6]和[HRP-Fe3]则可催化白藜芦醇氧化分解,生成4-羟基苯甲醛与3,5-二羟基苯甲酸。本论文还利用对照实验结合光谱方法对该过程的机制进行了探讨。
     3.三种白藜芦醇二聚体的抗氧化活性:利用合成的白藜芦醇二聚体样品,本论文考察了pallido、parthenocissin A和quadrangularin A的直接和间接抗氧化能力。三种白藜芦醇二聚体对DPPH均有较强的清除作用,可选择性地清除单线态氧102,其中quadrangularin A是目前己知的最强的天然单线态氧清除剂之一。此外,pallidol还可以激活Keap1-Nrf2-ARE通路,间接起到抗氧化的作用。
     4.亚胺类白藜芦醇类似物对Nrf2的激活作用:本论文设计合成了34种亚胺类白藜芦醇类似物,并对其Nrf2激活作用进行了筛选。经过构效关系分析,发现6-OH取代的亚胺类白藜芦醇类似物有最强的Nrf2激活作用。在此基础上,本论文设计合成了两个新的类似物,均可实现Nrf2的高效激活。本论文也提出了该类化合物激活Nrf2的分子机制。
Natural stilbenoids, constructed based on1,2-stilbene backbone, is a kind of natural polyphenols. Because of the diverse bioactivities of resveratrol, a stilbene monomer, related research works have attracted much attention since late1990s. The nutritional and pharmaceutical values of resveratrol have long been recognized and accepted by scientific community and pharmaceutical industry. However, as an important kind of natural resveratrol derivatives, stilbene oligomers are not well studied due to their low contents in natural resources, difficulty in isolation and systhesis. Focusing on natural stilbenoids, in this dissertation we developed some biomimetic enzymatic methodology of resveratrol oligomers, evaluated their antioxidant activities and systematically studied the Nrf2inducing activities of imine resveratrol analogs. The results include,
     1. pH-switched Horseradish Peroxidase (HRP) catalyzed selective oxidative dimerization of resveratrol. In dimerization process of resveratrol catalyzed by HRP, subtle chemoselectivity was achieved by concisely adjusting the aqueous pH of the solvent system. Five resveratrol dimers, pallidol, leachianol F, leachianol G, trans-δ-viniferin and cis-δ-viniferin were selectively synthesized using this strategy. And two other resveratrol dimers, parthenocissin A and quadrangularin A, were further obtained derivatively. This strategy made it possible to further investigate the activities of these resveratrol dimers. The mechanism of this selective process was also discussed.
     2. Metal-HRP complex catalyzed oxidation of resveratrol. Ten different metal ions were used to incorporate with HRP to form [HRP-M] complexes, and the formed complexes were screened in their catalytic capacity in oxidation of resveratrol. Among them, Ca2+could decrease the catalytic activity of HRP;[HRP-Mn11] can selectively catalyze the dimerization of resveratrol, obtaining trans-δ-viniferin in92%yield; while [HRP-Cu6] or [HRP-Fe3] catalyzed oxidative decomposition of resveratrol, forming4-hydroxylbenzaylaldehyde and3,5-dihydroxylbenzylacid. The mechanism was also discussed with the help of control experiments and spectroscopic methods.
     3. Antioxidant activities of three resveratrol dimers. The direct and indirect antioxidant activities of three resveratrol dimers, pallidol, parthenocissin A and quadrangularin A were evaluated, which were obtained using the enzymatic methods provided in the first two chapters. All three resveratrol dimers are strong DPPH scavengers, and they can selectively quench singlet oxygen (1O2). Quadrangularin A was found among the most effective natural singlet oxygen scavengers. Besides, pallidol can activate the Keap1-Nrf2-ARE in cells, and achieve the antioxidant activity indirectly.
     4. Nrf2inducing activities of imine resveratrol analogs (IRAs).34IRAs were designed and their Nrf2inducing activities were scavenged. It is found that6-OH IRAs have the strongest inducing activities towards Nrf2based on preliminary and quantitative SAR studies. Two novel analogs were then designed and further proved to be strong Nrf2inducers. The molecular mechanism of the Nrf2activating process of IRAs was also proposed.
引文
1. Riviere C, Pawlus A D, Merillon J-M. Natural Stilbenoids:Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep., 2012,29:1317-1333.
    2. 林茂,李小妹,姚春所.天然二苯乙烯类化合物及其仿生合成的研究进展.天然产物化学进展,于德泉,吴毓林.北京,化学工业出版社,2005:127-165.
    3. Shen T, Wang X-N, Lou H-X. Natural Stilbenes:An Overview. Nat. Prod. Rep.,2009,26:916-935.
    4. Takaoka M. Resveratrol, A New Phenolic Compound, from Veratrum grandiflorum. J. Chem. Soc. Japan,1939,60:1090-1100.
    5. Langcake P, Pryce R J. The Production of Resveratrol by Vitis vinifera and Other Members of the Vitaceae as a Response to Infection or Injury. Physiol. Plant Pathol.,1976,9:77-86.
    6. Siemann E H, Creasy L L. Concentration of the Phytoalexin Resveratrol in Wine. Am. J. Eno. Vitic.,1992,43:49-52.
    7. Jang M, Cai L, Udeani G O, Slowing K V, Thomas C F, Beecher C W W, Fong H H S, Farnsworth N R, Kinghorn A D, Mehta R G, Moon R C, Pezzuto J M. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science,1997,275:218-220.
    8. Gehm B D, McAndrews J M, Chien P-Y, Jameson J L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA,1997,94:14138-14143.
    9. Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G, Zipkin R E, Chung P, Kisielewski A, Zhang L-L, Scherer B, Sinclair D A. Small Molecule Activators of Sirtuins Extend Saccharomyces cerevisiae Lifespan. Nature,2003,425:191-196.
    10. Baur J A, Sinclair D A. Therapeutic Potential of Resveratrol:the in vivo Evidence. Nat. Rev. Drug Discovery,2006,5:493-506.
    11. Cottart C-H, Nivet-Antoine V, Beaudeux J-L. Review of Recent Data on the Metabolism, Biological Effects, and Toxicity of Resveratrol in Humans. Mol. Nutr. Food Res.,2014,58:7-21.
    12. Ndiaye M, Kumar R, Ahmad N. Resveratrol in Cancer Management: Where Are We and Where We Go from Here? Ann. NY Acad. Sci.,2011,1215: 144-149.
    13. Gortzi O, Metaxa X, Mantanis G, Lalas S. Effect of Artificial Ageing Using Different Wood Chips on the Antioxidant Activity, Resveratrol and Catechin Concentration, Sensory Properties and Colour of Two Greek Red Wines. Food Chem.,2013,141:2887-2895.
    14. Szkudelski T, Szkudelska K. Anti-diabetic Effects of Resveratrol. Ann. NY Acad. Sci.,2011,1215:34-39.
    15. Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, Islam F. Resveratrol Exerts Its Neuroprotective Effect by Modulating Mitochondrial Dysfunctions and Associated Cell Death During Cerebral Ischemia. Brain Res., 2009,1250:242-253.
    16. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman E A, Caldwell S D, Napper A, Curtis R, DiStefano P S, Fields S, Bedalov A, Kennedy B K. Substrate-Specific Activation of Sirtuins by Resveratrol. J. Biol. Chem.,2005,280:17038-17045.
    17. Walle T, Hsieh F, DeLegge M, Oatis J, Walle U. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metabolism and Disposition:the Biological Fate of Chemicals,2004,32:1377-1382.
    18. Park S J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown A L, Kim M K, Beaven M A, Burgin A B, Manganiello V, Chung J H. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases. Cell,2012,148:421-433.
    19. Cirla A, Mann J. Combretastatins:from Natural Products to Drug Discovery. Nat. Prod. Rep.,2003,20:558-564.
    20. Pettit G R, Singh S B, Boyd M R, Hamel E, Pettit R K, Schmidt J M, Hogan F. Antineoplastic Agents 291. Isolation and Synthesis of Combretastatins A-4, A-5, and A-6. J. Med. Chem.,1995,38:1666-1672.
    21. Wang Y Q, Tan J J, Tan C H, Jiang S H, Zhu D Y. Halophilols A and B, Two New Stilbenes from Iris halophila. Planta Med.,2003,69:779-781.
    22. Paul S, DeCastro A J, Lee H J, Smolarek A K, So J Y, Simi B, Wang C X, Zhou R, Rimando A M, Suh N. Dietary Intake of Pterostilbene, a Constituent of Blueberries, Inhibits the β-catenin/p65 Downstream Signaling Pathway and Colon Carcinogenesis in Rats. Carcinogenesis,2010,31:1272-1278.
    23. Pan M-H, Chang Y-H, Badmaev V, Nagabhushanam K, Ho C T. Pterostilbene Induces Apoptosis and Cell Cycle Arrest in Human Gastric Carcinoma Cells. J. Agric. Food Chem.,2007,55:7777-7785.
    24. Boonlaksiri C, Oonanant W, Kongsaeree P, Kittakoop P, Tanticharoen M, Thebtaranonth Y. An Antimalarial Stilbene from Artocarpus integer. Phytochemistry,2000,54:415-417.
    25. Belofsky G, French A N, Wallace D R, Dodson S L. New Geranyl Stilbenes from Dalea purpurea with in Vitro Opioid Receptor Affinity. J. Nat. Prod.,2004,67:26-31.
    26. van der Kaaden J E,Hemscheidt T K, Mooberry S L. Mappain, a New Cytotoxic Prenylated Stilbene from Macaranga mappa. J. Nat. Prod.,2001,64: 103-105.
    27. Chavez D, Chai H-B, Chagwedera T E, Gao Q, Farnsworth N R, Cordell G A, Pezzuto J M, Kinghorn A D. Novel Stilbenes Isolated from the Root Bark of Ekebergia benguelensis. Tetrahedron Lett.,2001,42:3685-3688.
    28. Sobolev V S, Neff S A, Gloer J B. New Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus caelatus Strain. J. Agric. Food Chem.,2009,57:62-68.
    29. Yoder B J, Cao S, Norris A, Miller J S, Ratovoson F, Razafitsalama J, Andriantsiferana R, Rasamison V E, Kingston D G I. Antiproliferative Prenylated Stilbenes and Flavonoids from Macaranga alnifoliafrom the Madagascar Rainforest. J. Nat. Prod.,2007,70:342-346.
    30. Li X-M, Wang Y-H, Lin M. Stilbenoids from the Lianas of Gnetum pendulum. Phytochmistry,2001,58:591-594.
    31. Lin M, Li J B, Wu B, Zheng Q T. A Stilbene Derivative from Gnetum parvifolium. Phytochemistry,1991,30:4201-4203.
    32. Tanaka T, Ito T, Ido Y, Son T-K, Nakaya K, Iinuma M, Ohyama M, Chelladurai V. Stilbenoids in the Stem Bark of Hopea parviflora. Phytochemistry,2000,53:1015-1019.
    33. Pacher T, Seger C, Engelmeier D, Vajrodaya S, Hofer O, Greger H.Antifungal Stilbenoids from Stemona collinsae. J. Nat. Prod.,2002,65: 820-827.
    34. Muhammad I, Li X-C, Dunbar D C, ElSohly M A, Khan I A. Antimalarial (+)-trans-Hexahydrodibenzopyran Derivatives from Machaerium multiflorum. J. Nat. Prod.,2001,64:1322-1325.
    35. Na M K, Hoang D M, Njamen D, Mbafor J T, Fomum Z T, Thuong P T, Ahn J S, Oh W K. Inhibitory Effect of 2-arylbenzofurans from Erythrina addisoniae on Protein Tyrosine Phosphatase-1B. Bioorg. Med. Chem. Lett., 2007,17:3868-3871.
    36. Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q. Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro. PLoS ONE,2013,8:e54505.
    37. Okasaka M, Takaishi Y, Kogure K, Fukuzawa K, Shibata H, Higuti T, Honda G, Ito M, Kodzhimatov O K, Ashurmetov O. New Stilbene Derivatives from Calligonum leucocladum. J. Nat. Prod.,2004,67:1044-1046.
    38. Atta-ur-Rahman, Naz H, Fadimatou, Makhmoor T, Yasin A, Fatima N, Ngounou F N, Kimbu S F, Sondengam B L, Choudhary M I. Bioactive Constituents from Boswellia papyrifera. J. Nat. Prod.,2005,68:189-193.
    39. Yang H, Sung S H, Kim Y C. Two New Hepatoprotective Stilbene Glycosides from Acer mono Leaves. J. Nat. Prod.,2005,68:101-103.
    40. Ito T, Tanaka T, Nakaya K, Iinuma M, Takahashi Y, Naganawa H, Ohyama M, Nakanishi Y, Bastow K F, Lee K-H. A New Resveratrol Octamer, Vateriaphenol A, in Vateria indica. Tetrahedron Lett.,2001,42:5909-5912.
    41. Sotheeswaran S, Pasupathy V. Distribution of Resveratrol Oligomers in Plants. Phytochemistry,1993,32:1083-1092.
    42. Cichewicz R H, Kouzi S A. Resveratrol Oligomers:Structure, Chemistry, and Biological Activity. Studies in Natural Products Chemistry,2002,26: 507-579.
    43. Khan M A, Nabi S G, Prakash S, Zaman A. Pallidol, A Resveratrol Dimer from Cissus pallid. Phytochemistry,1986,25:1945-1948.
    44. Vitrac X, Monti J-P, Vercauteren J, Deffieux G, Merillon J-M. Direct Liquid Chromatographic Analysis of Resveratrol Derivatives and Flavanonols in Wines with Absorbance and Fluorescence Detection. Anal. Chim. Acta, 2002,458:103-110.
    45. Waffo-Teguo P, Lee D, Cuendet M, Merillon J-M, Pezzuto J M, Kinghorn A D. Two New Stilbene Dimer Glucosides from Grape (Vitis vinifera) Cell Cultures. J. Nat. Prod.,2001,64:136-138.
    46. Gonzalez-SarriasA, Gromek S, Niesen D, Seeram N P, Henry G. Resveratrol Oligomers Isolated from Carex Species Inhibit Growth of Human Colon Tumorigenic Cells Mediated by Cell Cycle Arrest. J. Agric. Food Chem.,2011,59: 8632-8638.
    47. Jin Q, Han X H, Hong S S, Lee C, Choe S, Lee D, Kim Y, Hong J T, Lee M K, Hwang B Y. Antioxidative Oligostilbenes from Caragana sinica. Bioorg. Med. Chem. Lett.,2012,22:973-976.
    48. He S, Jiang L, Wu B, Pan Y, Sun C. Pallidol, A Resveratrol Dimer from Red Wine, Is A Selective Singlet Oxygen Quencher. Biochem. Biophys. Res. Comm.,2009,379:283-287.
    49. Tanaka T, Iinuma M, Murata H. Stilbene Derivatives in the Stem of Parthenocissus quinquefolia. Phytochemistry,1998,48:1045-1049.
    50. Adesanya S A, Nia R, Martin M-T, Boukamcha N, Montagnac A, Pais M. Stilbene Derivatives from Cissus quadr angular is. J. Nat. Prod.,1999,62: 1694-1695.
    51. He S, Lu Y, Wu B, Pan Y. Isolation and Purification of Antioxidative Isomeric Polyphenols from the Roots of Parthenocissus laetevirens by Counter-Current Chromatography. J. Chromatogr. A,2007,1151:175-179.
    52. Ito T, Akao Y, Yi H, Ohguchi K, Matsumoto K, Tanaka T, Iinuma M, Nozawa Y. Antitumor Effect of Resveratrol Oligomers Against Human Cancer Cell Lines andthe Molecular Mechanism of Apoptosis Induced by Vaticanol C. Caricinogenesis,2003,24:1489-1497.
    53. Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O. Anti-hyperlipidemic Constituents from the BarkofShorea roxburghii. J. Nat. Med.,2012,66:516-524.
    54. Snyder S A, ElSohly A M, Kontes F. Synthetic Approaches to Oligomeric Natural Products. Nat. Prod. Rep.,2011,28:897-924.
    55. Sako M, Hosokawa H, Ito T, Iinuma M. Regioselective Oxidative Coupling of 4-Hyroxystilbenes:Synthesis of Resveratrol and ε-viniferin (E)-Dehydrodimers. J. Org. Chem.,2004,69:2598-2600.
    56. Velu S S, Buniyamin I, Ching L W, Feroz F, Noorbatcha I, Gee L C, Awang K, Wahab I A, Weber J-F F. Regio-and Stereoselective Biomimetic Synthesis of Oligostilbenoid Dimers from Resveratrol Analogues:Influence of the Solvent,Oxidant, and Substitution. Eur. J. Chem.,2008,14:11376-11384.
    57. Velu S S, Di Meo F, Trouillas P, Sancho-Garcia J-C, Weber J-F F. Regio-and Stereocontrolled Synthesis of Oligostilbenoids:Theoretical Highlights at the Supramolecular Level. J. Nat. Prod.,2013,76:538-546.
    58. Langcake P, Pryce R J. Oxidative Dimerisation of 4-Hydroxystilbenes in vitro:Production of a Grapevine Phytoalexin Mimic. J. Chem. Soc. Chem. Comm.,1977:208-210.
    59. Takaya Y, Terashima K, Ito J, He Y-H, Tateoka M, Yamaguchi N, Niwa M. Biomimic Transformation of Resveratrol. Tetrehedron,2005,61: 10285-10290.
    60. Ponzoni C, Beneventi E, Cramarossa M R, Raimondi S, Trevisi G, Pagnoni U M, Riva S, Forti L. Laccase-Catalyzed Dimerization of Hydroxystilbenes. Adv. Synth. Catal.,2007,349:1497-1506.
    61. Li W, Li H, Hou Z. Total Synthesis of (±)-Quandrangularin A. Angew. Chem. Int. Ed.,2006,45:7609-7611.
    62. He S, Wu B, Jiang L, Pan Y. Stilbene Oligomers from Parthenocissus laetevirens:Isolation, Biomimetic Synthesis, Absolute Configuration and Implication of Antioxidative Defense System in the Plant. J. Org. Chem.2008, 73:5233-5241.
    63. Jiang L, He S, Sun C, Pan Y. Selectiv 1O2 Quenchers, Oligostilbenes, from Vitis wilsonae:Structural Identification and Biogenetic Relationship. Phytochemistry,2012,77:297-303.
    64. Snyder S A, Zografos A L, Lin Y. Total Synthesis of Resveratrol-Based Natural Products:A Chemoselective Solution. Angew. Chem. Int. Ed.,2007,46: 8186-8191.
    65. Snyder S A, Breazzano S P, Ross A G, Lin Y, Zografos A L. Total Synthesis of Diverse Carbogenic Complexity within theResveratrol Class from a Common Building Block. J. Am. Chem. Soc.,2009,131:1753-1765.
    66. Snyder S A, Gollner A, Chiriac M I. Regioselective Reactions for Programmable Resveratrol Oligomer Synthesis. Nature,2011,474:461-466.
    67. Nicolaou K C, Kang Q, Wu T R, Lim C S, Chen D Y-K. Total Synthesis and Biological Evaluaction of the Resveratrol-Derivated Polyphenol Natural Products Hopeanol and Hopeahainol A. J. Am. Chem. Soc.,2010,132:7540-7548.
    1. a) Snyder S A, Zografos A L, Lin Y. Total Synthesis of Resveratrol-Based Natural Products:A Chemoselective Solution. Angew. Chem. Int. Ed.,2007,46: 8186-8191. b) Snyder S A, Breazzano S P, Ross A G, Lin Y, Zografos A L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc.,2009,131:1753-1765. c) Snyder S A, Gollner A, Chiriac M I. Regioselective Reactions for Programmable Resveratrol Oligomer Synthesis. Nature,2011,474:461-466.
    2. Monti D, Ottolina G, Carrea G, Riva S. Redox Reactions Catalyzed by Isolated Enzymes. Chem. Rev.,2011,111:4111-4140.
    3. Berglund G I, Carlsson G H, Smith A T, Szoke H, Henriksen A, Hajdu J. The Catalytic Pathway of Horseradish Peroxidase at High Resolution. Nature,2002, 417:463-468.
    4. Bodtke A, Pfeiffer W-D, Ahrens N, Langer P. Horseradish Peroxidase (HRP) Catalyzed Oxidative Coupling Reactions Using Aqueous Hydrogen Peroxide:An Environmentally Benign Procedure for the Synthesis of Azine Pigments. Tetrahedron,2005,61:10926-10929.
    5. Yan M, Ge J, Liu Z, Ouyang P. Encapsulation of Single Enzyme in Nanogel with Enhanced BiocatalyticActivity and Stability. J. Am. Chem. Soc.,2006,128: 11008-11009.
    6. Langcake P, Pryce R J. Oxidative Dimerisation of 4-Hydroxystilbenes in vitro:Production of a Grapevine Phytoalexin Mimic. J. Chem. Soc. Chem. Comm.,1977:208-210.
    7. Takaya Y, Terashima K, Ito J, He Y-H, Tateoka M, Yamaguchi N, Niwa M. Biomimic Transformation of Resveratrol. Tetrahedron,2005,61: 10285-10290.
    8. Li W, Li H, Hou Z. Total Synthesis of (±)-Quandrangularin A. Angew. Chem. Int. Ed.,2006,45:7609-7611.
    9. Ohyama M, Tanaka T, Iinuma M. Five Resveratrol Oligomers from Roots of Sophora Leachiana. Phytochemistry,1995,38:733-740.
    10. Sako M, Hosokawa H, Ito T, Iinuma M. Regioselective Oxidative Coupling of 4-Hyroxystilbenes:Synthesis of Resveratrol and ε-viniferin (E)-Dehydrodimers. J. Org. Chem.,2004,69:2598-2600.
    11. Holzbaur I E, English A M, Ismail A A. Infrraed Spectra of Carbonyl Horseradish Peroxidase and Its Substrate Complexes:Characterization of pH-Dependent Conformers. J. Am. Chem. Soc.,1996,118:3354-3359.
    12. a) Barlow C H, Ohlsson P I, Paul K G. Infrared Spectroscopic Studies of Carbonyl Horseradish Peroxidases. Biochemistry,1976,15:2225-2229. b) Warshel A, Sharma P K, Kato M, Xiang Y, Liu H B, Olsson M H M. Electrostatic Basis for Enzyme Catalysis. Chem. Rev.,2006,106:3210-3235.
    13. Fryszkowska A, Toogood H, Sakuma M, Gardiner J M, Stephens G M, Scrutton N S. Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase:Specificity and Control of Stereochemical Outcome by Reaction Optimisation. Adv. Synth. Catal.,2009,351:2976-2990.
    14. Kim S, Ko H, Park J E, Jung S, Lee S K, Chun Y J. Design, Synthesis, and Discovery of Noveltrans-Stilbene Analogues as Potent and Selective Human Cytochrome P450 1B1 Inhibitors. J. Med. Chem.,2002,45:160-164.
    15. Heynekamp J J, Weber W M, Hunsaker L A, Gonzales A M, Orlando R A, Deck L M, Jagt D L V. Substituted trans-Stilbenes, Including Analogues of the Natural Product Resveratrol, Inhibit the Human Tumor Necrosis Factor Alpha-Induced Activation of Transcription Factor Nuclear Factor Kappa B. J. Med. Chem.,2006,49:7182-7189.
    1. Ringenberg M R, Ward T R. Merging the Best of Two Worlds:Artificial Metalloenzymes for Enantioselective Catalysis. Chem. Comm.,2011,47: 8470-8476.
    2. Deuss P J, den Heeten R, Laan W, Kamer P C J. Bioinspired Catalyst Design and Artificial Metalloenzymes. Chem. Eur. J.,2011,17:4680-4698.
    3. Christianson D W, Fierke C A. Carbonic Anhydrase:Evolution of the Zinc Binding Site by Nature and by Design. Ace. Chem. Res.,1996,29:331-339.
    4. Okrasa K, Kazlauskas R J. Manganese-Substituted Carbonic Anhydrase as a New Peroxidase. Chem. Eur. J.,2006,12:1587-1596.
    5. Jing Q, Okrasa K, Kazlauskas R J. Stereoselective Hydrogenation of Olefins Using Rhodium-Substituted Carbonic Anhydrase-A New Reductase. Chem. Eur. J.,2009,15:1370-1376.
    6. Jing Q, Kazlauskas R J. Regioselective Hydrofromylation of Styrene Using Rhodium-Substituted Carbonic Anhydrase. ChemCatChem,2010,2:953-957.
    7. Podtetenieff J, Taglieber A, Bill E, Reijerse E J, Reetz M T. An Artificial Metalloenzyme:Creation of a Designed Copper Binding Site in a Thermostable Protein. Angew. Chem. Int. Ed.,2010,49:5151-5155.
    8. van de Velde F, Konemann L, van Rantwijk F, Sheldon R A. Enantioselective Sulfoxidation Mediated by Vanadium-Incorporated Phytase:a Hydrolase Acting as a Peroxidase. Chem. Comm.,1998:1891-1892.
    9. Langcake P, Pryce R J. Oxidative Dimerisation of 4-Hydroxystilbenes in vitro:Production of a Grapevine Phytoalexin Mimic. J. Chem. Soc. Chem. Comm.,1977:208-210.
    10. Takaya Y, Terashima K, Ito J, He Y-H, Tateoka M, Yamaguchi N, Niwa M. Biomimic Transformation of Resveratrol. Tetrahedron,2005,61: 10285-10290.
    11. a) Ueno T, Ohashi M, Kono M, Kondo K, Suzuki A, Yamane T, Watanabe Y. Crystal Structures of Artificial Metalloproteins:Tight Binding of FeⅢ (Schiff-Base) by Mutation of Ala71 to Gly in Apo-Myoglobin. Inorg. Chem.,2004,43: 2852-2858. b) Dunn B M, Speicher D W, Wingfield P T, Coligan J E. Short Protocols in Protein Science. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,2003.
    12. Gajhede M, Schuller D J, Henriksen A, Smith A T, Poulos T L. Crystal Structure of Horseradish Peroxidase C at 2.15 A Resolution. Nat. Struct. Biol., 1997,4:1032-1038.
    13. a) Myer Y P, Conformation of Cytochromes II. Comparative Study of Circular Dichroism Spectra, Optical Rotatory Dispersion, and Absorption Spectra of Horse Heart Cytochrome C. J. Biol. Chem.,1968,243:2115-2122. b) Tang J, Jiang J, Song Y, Peng Z, Wu Z, Dong S and Wang E. Conformation Change of Horseradish Peroxidase in Lipid Membrane. Chem. Phys. Lipids,2002,120: 119-129.
    1. Baur J A, Sinclair D A. Therapeutic Potential of Resveratrol:the in vivo Evidence. Nat. Rev. Drug Discovery,2006,5:493-506.
    2. Harman D. Aging:A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol.,1957,2:298-300.
    3. Finkel T, Holbrook N J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature,2000,408:239-247.
    4. a) Circu M L, Aw T Y. Reactive Oxygen Species, Cellular Redox Systems, and Apoptosis. Free Radical Biol. Med.,2010,48:749-762. b) Halliwell B. Oxidative Stress and Neurodegeneration:Where Are We Now? J. Neurochem., 2006,97:1634-1658.
    5. Finkel T. Opinion:Radical Medicine:Treating Ageing to Cure Disease. Nat. Rev. Mol. Cell. Biol.,2005,6:971-976.
    6. Halliwell B, Gutteridge J M C, Cross C E. Free Radicals, Antioxidants, and Human Disease:Where Are We Now? J. Lab. Clin. Med.,1992,119:598-620.
    7. Day B J. Antioxidant Therapeutics:Pandora's Box. Free Radical Biol. Med., 2014,66:58-64.
    8. Epstein A C R, Gleadle J M, McNeill L A, Hewitson K S, O'Rourke J, Mole D R, Mukherji M, Metzen E, Wilson M I, Dhanda A, Tian Y M, Masson N, Hamilton D L, Jaakkola P, Barstead R, Hodgkin J, Maxwell P H, Pugh C W, Schofield C J, Ratcliffe P J. C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell,2001, 107:43-54.
    9. Villeneuve N F, Lau A, Zhang D D. Regulation of the Nrf2-Keapl Antioxidant Response by the Ubiquitin Proteasome System:An Insight into Cullin-Ring Ubiquitin Ligases. Antioxid. Redox Signaling,2010,13:1699-1712.
    10. a) Talalay P, Fahey J H. Phytochemicals from Cruciferous Plants Protect against Cancer by Modulating Carcinogen Metabolism. J. Nurtr.,2001,131: 3027S-3033S. b) Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M. An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochem. Biophys. Res. Comm.,1997, 236:313-322.
    11. a) Shen G X, Xu C J, Hu R, Jain M R, Nair S, Lin W, Yang C S, Chan J Y, Kong A N T. Comparison of (-)-epigallocatechin-3-gallate Elicited Liver and Small Intestine Gene Expression Profiles Between C57BL/6J Mice and C57BL/6J/Nrf2 (-/-) Mice. Pharm. Res.,2005,22:1805-1820. b) Erlank H, Elmann A, Kohen R, Kanner J. Polyphenols Activate Nrf2 in Astrocytes via H2O2, Semiquinones, and Quinones. Free Radic. Biol. Med.,2011,51:2319-2327.
    12. Cao Z, Li Y. Potent Induction of Cellular Antioxidants and Phase 2 Enzymes by Resveratrol in Cardiomyocytes:Protection Against Oxidative and Electrophilic Injury. Eur. J. Pharmacol.,2004,489:39-48.
    13. Rubiolo J A, Mithieux G, Vega F V. Resveratrol Protects Primary Rat Hepatocytes Against Oxidative Stress Damage:Activation of the Nrf2 Transcription Factor and Augmented Activities of Antioxidant Enzymes. Eur. J. Pharmacol.,2008,591:66-72.
    14. Lu F, Zahid M, Wang C, Saeed M, Cavalieri E L, Rogan E G. Resveratrol Prevents Estrogen-DNA Adduct Formation and Neoplastic Transformation in MCF-10F Cells. Cancer Prev. Res.,2008,1:135-145.
    15. Bishayee A, Barnes K F, Bhatia D, Darvesh A S, Carrol R T. Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prev. Res.,2010,3:753-763.
    16. He S, Jiang L, Wu B, Pan Y, Sun C. Pallidol, a Resverarol Dimer from Red Wine, Is a Selective Singlet Oxygen Quencher. Biochem. Biophys. Res. Comm., 2009,379:283-287.
    17. He S, Jiang L, Wu B, Li C, Pan Y. Chunganenol:An Unusual Antioxidative Resveratrol Hexamer from Vitis chunganesis. J. Org. Chem.,2009,74:7966-7969.
    18. Jiang L, He S, Sun C, Pan Y. Selective 1O2 Quenchers, Oligostilbenes, from Vitis wilsonae:Structural Identification and Biogenetic Relationship. Phytochemistry,2012,77:294-303.
    19. Sharma O P, Bhat T K. DPPH Antioxidant Assay Revisited. Food Chem., 2009,113:1202-1205.
    20. Lu J, Li C, Chai Y, Yang D, Sun C. The Antioxidant Effect of Imine Resveratrol Analogues. Bioorg. Med. Chem. Lett.,2012,22:5744-5747.
    21. Jiang L, He S, Jiang K, Sun C, Pan Y. Resveratrol and Its Oligomers from Wine Grapes Are Selective 1O2 Quenchers:Mechanistic Implication by High-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry and Theoretical Calculation. J. Agric. Food Chem.,2010,58: 9020-9027.
    22. Nakano M, Takayama K, Shimizu Y, Tsuji Y, Inaba H, Migita T. Spectroscopic Evidence for the Generation of Singlet Oxygen in Self-reaction of Sec-peroxy Radicals. J. Am. Chem. Soc.,1976,98:1974-1975.
    23. Hofer T, Badouard C, Bajak E, Ravanat J L, Mattsson A, Cotgreave I A. Hydrogen Peroxide Causes Greater Oxidation in Cellular RNA Than in DNA. Biol. Chem.,2005,386:333-337.
    24. Foote C S. Photosensitized Oxidation and Singlet Oxygen:Consequences in Biological Systems. in Free Radicals in Biology, Pryor W A. Eds., Academic Press: New York,1976:85-133.
    25. Bradley D G, Kim H J, Min D B. Effects, Quenching Mechanisms, and Kinetics of Water Soluble Compounds in Riboflavin Photosensitized Oxidation of Milk. J. Agric. Food Chem.,2006,54:6016-6020.
    26. Celaje J A, Zhang D, Guerrero A M, Selke M. Chemistry of Trans-resveratrol with Singlet Oxygen:[2+2] Addition, [4+2] Addition, and Formation of the Phytoalexin Moracin M. Org. Lett.,2011,13:4846-4849.
    27. a) Wang X J, Hayes J D, Wolf C R. Generation of A Stable Antioxidant Response Element Driven Reporter Gene Cell Line and Its Use to Show Redox-dependent Activation of Nrf2 by Cancer Chemotherapeutic Agents. Cancer Res.,2006,66:10893-10994. b) Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang X J. Luteolin Inhibits Nrf2 Leading to Negative Regulation of the Nrf2/ARE Pathway and Sensitization of Human Lung Carcinoma A549 Cells to Therapeutic Drugs. Free Radical Biol. Med.,2011,50:1599-1609.
    1. Newman D J, Cragg G M. Natural Products as Drugs and Leads to Drugs: The Historical Perspective. In Natural Product Chemistry for Drug Discovery, RSC Biomolecular Sciences No.18, Royal Society of Chemistry, Cambridge, 2010:3-27.
    2. a) Cirla A, Mann J. Combretastatins:from Natural Products to Drug Discovery. Nat. Prod. Rep.,2003,20:558-564. b) Simoni D, Romagnoli R, Baruchello R, Rondanin R, Grisolia G, Eleopra M, Rizzi M, Tolomeo M, Giannini G, Alloatti D, Castorina M, Marcellini M, Pisano C. Novel A-Ring and B-Ring Modified Combretastatin A-4 (CA-4) Analogues Endowed with Interesting Cytotoxic Activity. J. Med. Chem.,2008,51:6211-6215.
    3. Dowlati A, Robertson K, Cooney M, Petros W P, Stratford M, Jesberger J, Rafie N, Overmoyer B, Makkar V, Stambler B, Taylor A, Waas J, Lewin J S, McCrae K R, Remick S C. A Phase I Pharmacokinetic and Translational Study of the Novel Vascular Targeting Agent Combretastatin A-4 Phosphate on A Single-Dose Intravenous Schedule in Patients with Advanced Cancer. Cancer Res., 2002,62:3408-3416.
    4. Rustin G J, Galbraith S M, Anderson H, Stratford M, Folkes L K, Sena L, Gumbrell L, Price P M. Phase I Clinical Trial of Weekly Combretastatin A4 Phosephate:Clinical and Pharmacokinetic Results. J. Clin. Oncol.,2003,21: 2815-2822.
    5. Li L Y, Rojiani A, Siemann D W. Targeting the Tumor Vasculature with Combretastatin A-4 Disodium Phosphate:Effects on Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys.,1998,42:899-903.
    6. Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases. Nature, 2000,207:249-257.
    7. Hori K, Saito S, Nihei Y, Suzuki M, Sato Y. Antitumor Effects Due to Irreversible Stoppage of Tumor Tissue Blood Flow:Evaluation of A Novel Combretastatin A-4 Derivative, AC7700. Jpn. J. Cancer Res.,1999,90:1026 1038.
    8. Hori K, Saito S, Kubota K. A Novel Combretastatin A-4 Derivative, AC7700, Strongly Stanches Tumour Blood Flow and Inhibits Growth of Tumors Developing in Various Tissues and Organs. Br. J. Cancer.,2002,86:1604-1614.
    9. Hsieh T, Huang Y, Wu J M. Control of Prostate Cell Growth, DNA Damage and Repair and Gene Expression by Resveratrol Analogues, in vitro. Carcinogenesis,2011,32:93-101.
    10. Kang S S, Cuendet M, Endringer D C, Croy V L, Pezzuto J M, Lipton M A. Synthesis and Biological Evaluation of A Library of Resveratrol Analogues as Inhibitors of COX-1, COX-2 and NF-κB. Bioorg. Med. Chem.,2009,17:1044-1054.
    11. a) Lippman S, Hawk E. Cancer Prevention:from 1727 to Milestones of the Past 100 Years. Cancer Res.,2009,69:5269-5284. b) Lee K, Bode A, Dong Z. Molecular Targets of Phytochemicals for Cancer Prevention. Nature Rev. Cancer, 2011,11:211-218. c) Umar A, Dunn B, Greenwald P. Future Directions in Cancer Prevention. Nature Rev. Cancer,2012,12:835-848.
    12. a) Dinkova-Kostova A T, Wang X J. Induction of the Keapl/Nrf2/ARE Pathway by Oxidizable Diphenols. Chemico-Biol. Interactions.,2011,192: 101-106. b) Ahn Y, Hwang Y, Liu H, Wang X. Electrophilic Tuning of the Chemoprotective Natural Product Sulforaphane. Proc. Natl. Acad. Sci. USA,2010, 107:9590-9595.
    13. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, Eguchi M, WadaY, Kumagai Y, Yamamoto M. The Antioxidant Defense System Keapl-Nrf2 Comprises A Multiple Sensing Mechanism for Responding to A Wide Range of Chemical Compounds. Mol. Cell Biol.,2009,29:493-502.
    14. Zhang Q, Pi J, Woods CG, Andersen ME. A Systems Biology Perspective on Nrf2-Mediated Antioxidant Response. Toxicol. Appl. Pharmacol.,2010,244: 84-97.
    15. Magesh S, Chen Y, Hu L. Small Molecule Modulators of Keapl-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents. Med. Res. Rev.,2012,32: 687-726.
    16. Nair S, Xu C, Shen G, Hebbar V, Gopalakrishnan A, Hu R, Jain M R, Lin W, Keum Y, Liew C, Chan J Y, Kong A-N T. Pharmacogenomics of Phenolic Antioxidant Butylated Hydroxyanisole (BHA) in the Small Intestine and Liver of Nrf2 Knockout and C57BL/6J Mice. Pharm. Res.,2006,23:2621-2637.
    17. Cheung K, Yu S, Pan Z, Ma J, Wu T, Kong A-N T. tBHQ-Induced HO-1 Expression Is Mediated by Calcium Through Regulation of Nrf2 Binding to Enhancer and Polymerase Ⅱ to Promoter Region of HO-1. Chem. Res. Toxicol., 2011,24:670-676.
    18. Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H, Yamamoto M. Nrf2 Is Essential for the Chemopreventive Efficacy of Oltipraz Against Urinary Bladder Carcinogenesis. Cancer Res., 2004,64: 6424-6431.
    19. Dinkova-Kostova A, Talalay P, Sharkey J, Zhang Y, Holtzclaw W, Wang X J, David E, Schiavoni K H, Finlayson S, Mieke D F, Honda T. An Exceptionally Potent Inducer of Cytoprotective Enzymes:Elucidation of the Structural Features that Determine Inducer Potency and Reactivity with Keap1. J. Biol. Chem.,2010, 285:33747-33755.
    20. Lee C-Y, Chew E-H, Go M-L. Functionalized Aurones as Inducers of NAD(P)H:quinone oxidoreductase 1 that Activate AhR/XRE and Nrf2/ARE Signaling Pathways:Synthesis, Evaluation and SAR. Eur. J. Med. Chem.,2010,45: 2957-2971.
    21. Kumar V, Kumar S, Hassan M, Wu H, Thimmulappa R, Kumar A, Sharma S K, Parmar V S, Biswal S, Mallhotra S. Novel Chalcone Derivatives as Potent Nrf2 Activators in Mice and Human Lung Epithelial Cells. J. Med. Chem.,2011,54: 4147-4159.
    22. Xi M, Sun Z, Sun H, Jia J, Jiang Z, Tao L, Ye M, Yang X, Wang Y, Xue X, Huang J, Gao Y, Guo X, Zhang S, Yang Y, Guo Q, Hu R, You Q. Synthesis and Bioevaluation of A Series of α-pyrone Derivatives as Potent Activators of Nrf2/ARE Pathway (Part I). Eur. J. Med. Chem.,2013,66:364-371.
    23. a) Bishayee A, Barnes K, Bhatia D, Darvesh A, Carroll R. Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine Initiated Rat Hepatocarcinogenesis. Cancer Prev. Res.,2010,3:753-763. b) Juan Andres R, Gilles M, Felix Victor V. Resveratrol Protects Primary Rat Hepatocytes Against Oxidative Stress Damage. Eur. J. Pharmacol.,2008,591:66-72. c) Hsieh T-c, Lu X, Wang Z, Wu J M. Induction of Quinone Reductase NQO1 by Resveratrol in Human K562 Cells Involves the Antioxidant Response Element ARE and Is Accompanied by Nuclear Translocation of Transcription Factor Nrf2. Med. Chem. (Shariqah (United Arab Emirates)),2006,2:275-285.
    24. Walle T, Hsieh F, De Legge M, Oatis J, Walle U. High Absorption But Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metabolism and Disposition:the Biological Fate of Chemicals.,2004,32:1377-1382.
    25. Lu J, Li C, Chai Y-F, Yang D-Y, Sun C-R. The Antioxidant Effect of Imine Resveratrol Analogues. Bioorg. Med. Chem. Lett.,2012,22:5744-5747.
    26. Tanaka K, Shiraishi R. Clean and Efficient Condensation Reactions of Aldehydes and Amines in A Water Suspension Medium. Green Chem.,2000,2: 272-273.
    27. Dinkova-Kostova A T, Fahey J W, Talalay P. Chemical Structures of Inducers of Nicotinamide Quinone Oxidoreductase 1 (NQO1). Methods in Enzymology,2004,382:423-448.
    28. Dinkova-Kostova A, Holtzclaw W. Direct Evidence That Sulfhydryl Groups of Keapl Are the Sensors Regulating Induction of Phase 2 Enzymes That Protect Against Carcinogens and Oxidants. Proc. Natl. Acad. Sci. USA,2002,99: 11908-11913.
    29. a) Takahiko A, Yasuhiro H, Junji I, Kohei F. Vinylogous Mannich-Type Reaction Catalyzed by an Iodine-Substituted Chiral Phosphoric Acid. Adv. Synth. Catal.,2008,350:399-402. b) Yamanaka M, Itoh J, Fuchibe K, Akiyama T. Chiral Br(?)nsted Acid Catalyzed Enantioselective Mannich-Type Reaction. J. Am. Chem. Soc.,2007,129:6756-6764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700