用户名: 密码: 验证码:
聚苯胺/铁氧体纳米复合材料的制备及吸波性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息时代造成的电磁污染日趋严重,严重地影响着电子设备的正常运行,也严重干扰着雷达、广播、卫星数字信号等的传输,因而电磁污染问题越来越引起世界各国的共同关注。研究和开发新型的低成本、高吸收和宽频段电磁波吸收材料已成为材料领域的重要研究方向之一。高分子/无机复合材料因其具有新颖的电学性能、光学性能、磁学性能以及轻质价廉等特性,成为研究的热点。聚苯胺(PANI)是最有前景的导电高分子之一,它的合成方法简单、原料易得、化学稳定性好、具有很好导电性,把它和铁氧体纳米材料复合可以得到一类性能独特、兼具高聚物和铁氧体无机材料共同优点的功能材料。
     结合目前高分子/无机复合材料以及石墨烯在微波吸收和电磁屏蔽领域的应用优势,我们制备了不同形貌、不同维数的的PANI/铁氧体纳米复合物,包括一维的PANI/镍锌铁氧体(NZFO)复合纳米棒,二维PANI/NZFO和PANI/'锶铁氧体(SrFO)/氧化石墨烯(GO)纳米片、三维多孔结构还原氧化石墨烯(rGO)/SrFO复合水凝胶,并研究了它们的微波吸收性能。具体研究内容如下:
     1.利用两步法成功地制备了PANI/NZFO片状纳米复合物。首先用超声辅助氧化聚合的方法合成了PANI纳米片,然后以此为模板,在水热条件下诱导PANI/NZFO复合纳米片的形成。研究发现,尺寸大小约为18nm左右的NZFO颗粒覆盖在PANI纳米片表面,这主要是由于PANII的氮原子与NZFO中的金属离子(铁、镍或锌离子)配位作用的结果。复合物纳米片的微波吸收性能相对于单一铁氧体或者PANI、片均有明显提高,该类复合物在微波吸收材料领域有潜在的应用前景。
     2.首次将超声和外磁场引导相结合,原位聚合法成功制备了新颖的一维PANI/NZFO杂化纳米棒。所制备纳米棒具有均匀的形貌、可调的磁性能,较高的比饱和磁化强度和矫顽力。电磁性能测试表明,杂化纳米棒比纯的NZFO具有更高的反射损耗和更宽的微波吸收带。当NZFO含量为59%、涂层厚度为2mm时,在6.2GHz处复合纳米棒存在微波最大反射损耗(RL),达到-27.5dB;最大吸收带宽(RL≤10dB)为8.1GHz。我们还进一步探讨了杂化纳米棒的吸波机理。
     3.以GO片为软模板,利用原位聚合的方法合成了PANI/SrFO/GO复合纳米片。SrFO纳米颗粒均匀分布在GO片上,形成粘附层结构。我们初步探讨了这种结构的形成机理,认为PANI、SrFO颗粒与GO片之间既有配位作用,又有氢键和π-π相互作用。产物的微波性能测试表明,当原材料中苯胺、GO和SrFO的质量比分别是10:5:5和10:5:10时,对应的产物PANI/SrFO/GO-1和PANI/SrFO/GO-2都具有优异的电磁波损耗性能,分别在9.1和6.4GHz处达最大吸收值37dB左右,在2-18GHz频段内-10dB带宽都超过10GHz。
     4.利用石墨烯片之间的疏水作用和π-π堆积作用,水热还原制备了三维多孔结构的rGO/SrFO复合水凝胶。结果显示,随着SrFO含量的增加,rGO/SrFO复合水凝胶吸波性能呈现明显增强趋势。当原材料GO和SrFO的质量比为10:4时,lmm厚度下,在3GHz处RL达到最大值-51dB;低于-10dB的损耗带宽达到10.5GHz。这说明了我们所制备的三维rGO/SrFeO复合水凝胶具有非常优异的微波吸收性能,这可能是由于凝胶的孔隙类似于一个微波谐振腔,微波在孔隙形成共振而减少反射率。这为设计和组装新型三维多孔、轻质、高强度、宽频段微波吸收材料提供了启示。
In recent years, with the fast development of information technology, the electromagnetic pollution is worsening, which affects the normal running of the electronic equipment and interferes with the radar, broadcast services, and satellite digital data transmission sharply. Therefore, the electromagnetic pollution is getting more and more attention of all countries. Now, the research and development of a new type of microwave absorption material with a cheap price, effective microwave absorption and wide-band frequency become the important direction of electromagnetic wave absorption materials. Polyaniline (PANI) is one of the most promising conducting polymers with excellent chemical stability, simple synthesis method, easy obtainment of the raw material, and high electrical conductivity. The composites containing PANI and ferrite nanoparticles have the advantages of both polymer and ferrite inorganic materials, and novel performance, and they are a type of multi-functional material.
     Based on the application advantages of polymer/inorganic materials and graphene, in the dissertation, PANI/ferrite/(grapheme) or graphene/ferrite composite nanomaterials with different morphologies and dimensions have been synthesized, including one-dimensional (ID) PANI/Ni0.5Zn0.5Fe2O4(NZFO) hybrid nanorods,2D PANI/NZFO and PANI/GO/SrFe12O16(SrFO) composite nanoslices, and3D porous rGO/SrFO composite hydrogel. Their electromagnetic wave absorption properties were also investigated.
     The main results can be summarized as follows:
     1. PANI/NZFO ferrite composite nanoslices were successfully prepared by two steps. Firstly pure PANI nanoslices were synthesized via ultrasound assisted chemically oxidative polymerization. Then the nanoslices were used as templates to induce the formation of PANI/NZFO composites under hydrothermal conditions. The investigation results indicate that PANI nanoslices were coated by the NZFO nanoparticals with average size of18nm, and there exists the coordination interaction between M2+(M=Fe, Ni, Zn) on the surface of NZFO nanoparticles and PANI. The PANI/NZFO composite nanoslices show better microwave absorption properties than pure PANI or pure NZFO. These composite materials may be applied in microwave absorption and electromagnetic interference shielding fields.
     2. The novel uniform PANI/NZFO one-dimensional (ID) hybrid nanorods were firstly in situ synthesized by ultrasonic-assisted magnetic field guidance methods. The as-synthesized hybrid nanorods possess uniform shape, adjusted magnetic properties, high saturated magnetization and high coercivity. The electromagnetic data demonstrate that hybrid nanorods present stronger reflection loss and a wider absorption band in comparison to pure NZFO. PANI/NZFO hybrid nanorods with addition of59%NZFO exhibit excellent microwave absorption performances, with a maximum reflection loss (RL) of-27.5dB observed at6.2GHz, and the widest absorption band (RL<-10dB) is8.1GHz, corresponding to a matching thin thickness of2mm. Besides, microwave absorption mechanism of hybrid nanorods was explored further.
     3. Using GO nanosheets as soft template, the PANI/SrFO/GO composite nanoflakes were in situ synthesized by chemical oxidation polymorization method. The results show that SrFO nanoparticles and PANI were tightly bound to the surface of graphene sheets to form interlayer structure. The formation mechanism of the as-synthesized composites was discussed. The coordination effect, π-π interaction and hydrogen bonding exist among polyaniline, SrFO nanoparticles and graphene nanosheets. The microwave performance measurement of the products shows that PANI/SrFO/GO-1(weight ratio of aniline/GO/SrFO is10:5:5) and PANI/SrFO/GO-2(weight ratio of aniline/GO/SrFO is10:5:10) both possess excellent electromagnetic loss performances, with a maximum absorption value of about37dB at9.1and6.4 GHz, respectively. And their-10dB bandwidth surpassed10GHz in2-18GHz ranges.
     4. A novel3D porous rGO/SrFO composite hydrogel was synthesized by one step hydfothermal method in the presence of graphene oxide nanosheets and SrFO nanoparticles due to the hydrophobic effect and π-π interaction between rGO nanosheets. The microwave absorbability of products with the different of SrFO contents were tested in the frequency range of2-18GHz. The results show that the product with weight ratios of10:4for GO to SrFO exhibits strongest wave absorption performance. The maximum absorption reaches51dB at frequency of3GHz, and the widest absorption band (RL≤-10dB) is10.5GHz, corresponding to a matching thin thickness of1mm. It is evidently that the3D porous structure of composite hydrogel plays an important role in cavity resonator and lowers microwave reflectivity. It is a way to design and prepare3D porous lightweight and high performance electromagnetic wave absorption materials based on graphene and other nanomaterials.
引文
[1]高技术新材料要览编委会编.高技术新材料要览.北京;中国科学技术出版社,1993:394
    [2]方亮,龚荣州,官建国,雷达吸波材料的现状与展望。武汉工业大学学报1999,21:22-24
    [3]李保东,李巧玲,张存瑞,赵静贤,铁氧体复合吸波材料研究新进展[J]。材料导报,2008,28:226-229
    [4]卓长平,张雄,王雪梅,等.纳米六角晶系铁氧体吸波材料的制备方法及研究进展[J].材料导报,2005,19:109-112.
    [5]陈宁,王海滨,霍冀川,吕淑珍,刘树信,铁氧体吸波材料的制备研究进展[J]。化工新型材料,2009,37:8-10
    [6]X. H. Gui, W Yel, J.Q Wei, K.L.Wang, R.T. Lv, H.W Zhu, FY Kang, J.L Gu, Optimization of Electromagnetic Matching of Fe-filled Carbon Nanotubes/ferrite Composites for Microwave Absorption[J]. J. Phys. D:Appl. Phys,2009,42:075002.
    [7]B Gao,L. Qiao, J.B Wang, Q.F Liu, F.S. Li, J.Feng,D.S Xue, Microwave absorption properties of the Ni nanowires composite [J]. J. Phys. D:Appl. Phys.2008, 41:235005 (5pp)
    [8]S. Narayana, Y. Sato, DC Magnetic Cloak[J]. Adv. Mater.2012,24:71-74
    [9]C.R. Martins, R Faez, M.C. Rezende, M.A. De Paoli, Microwave absorption properties of a conductive thermoplastic blend based on polyaniline [J]. Polymer Bulletin,2004,51(4):321-326.
    [10]H.L. Zhu, Y.J Bai, R. Liu, N. Lun, Y.X. Qi, F.D Han, J.O Bi, In situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties [J]. J. Mater. Chem.,2011,21:13581-13587
    [11]J.W Liu, J.J. Xu, R.C Che, H.J. Chen, Z.W Liu F. Xia, Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement [J]. J. Mater. Chem.,2012,22,9277-9284
    [12]J.W Liu, R.C Che, H.J Chen, F. Zhang, F. Xia, Q.S Wu,and M. Wang, Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores andAnatase TiO2 Shells [J]. Small 2012,8:1214-1221.
    [13]毕红,吴先良,李民权,孙涛,李山东,顾民,碳纳米管/聚苯胺/钴复合物的制备及其微波吸收特性研究[J].功能材料,2004,35,2839-2841.
    [14]F. S. Wen, F. Zhang, Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers. [J]J. Phys. Chem. C.2011,115:14025-14030.
    [15]R. von Hagen, H. Lorrmann, et al. Electrospun LiFe1-yMnyPO4/C Nanofiber Composites as Self-Supporting Cathodes in Li-Ion Batteries [J]. Adv Energy Mater 2012,2(5):553-559.
    [16]YY Song, ZD Gao, JH Wang, XH Xia, R Lynch, Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles [J]. Advanced Functional Materials 2011,21(10):1941-1946
    [17]P. P Yang, S.M Zhan, Z. H. Huang, J. L. Zhai, D. J. Wang, L. J. Zhang, Y. Xin, M. Sun, C. Shao, The fabrication of PPV/C60 composite nanofibers with highly optoelectric response by optimization solvents and electrospinning technology [J]. Materilals Letters 2011,65:537-539
    [18]S. W. Zhang, L. P. Zhao, et al. Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis [J]. Catal Today.2014,224:114-121.
    [19]L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructure [J]. Nature,2002,420:57-61.
    [20]H. Yan, H.S Choe, S.W Nam, Y.J. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M Lieber, Programmable nanowire circuits for nanoprocessors [J]. Nature, 470(7333):240-244
    [21]Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica [J].Nano Lett.2002,2:427-430.
    [22]PJ Wang, JH Xia, CS Liu, H Liu, L Yan, The dynamical analysis of energy decay in one-dimensional composite granular chain [J]. Acta Physica Sinica, 2011,60:014501
    [23]J. L. Guo, X. L. Wang, One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption[J]. J. Mater. Chem.2012, 22(24):11933-11942.
    [24]A. L. Briseno, T. W. Holcombe, Oligo-and Polythiophene/ZnO Hybrid Nanowire Solar Cells [J]. Nano Lett.2010,10 (1):334-340.
    [25]X. L. Chi, F. Yin, Two-Dimensional Ordered Silicon Dioxide Cavities Array as Matrix for the Immobilization of Horseradish Peroxidase and Its Direct Electrochemistry [J]. J Nanosci Nanotechno.2014,14(7):5459-5463.
    [26]Z Wang, Y Huang, X Bai, W Song, C Wang, Synthesis and field emission properties of carbon nanotubes/nanofibers grown on pyrolyzed polyaniline-SiO2 substrates [J]. Diamond and Related Materials,2005, 14:1411-1415
    [27]B. D. Korth, P. Keng, I. Shim, S. E. Bowles, C. Tang, T. Kowalewski, Polymer-Coated Ferromagnetic Colloids from Well-Defined Macromolecular Surfactants and Assembly into Nanoparticle Chains [J]. J. Am. Chem. Soc.2006, 128(20):6562-6563.
    [28]C. L. Zhang, K. P. Lv, H. P. Cong, S. H. Yu, Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning [J]. Small 2012,8:648-653.
    [29]C. L. Zhang, K. P. Lv, N. Y. Hu, L. Yu, X. F. Ren, S. L. Liu, S. H. Yu, Macroscopic-Scale Alignment of Ultralong Ag Nanowires in Polymer Nanofiber Mat and Their Hierarchical Structures by Magnetic-Field-Assisted Electrospinning [J]. Small 2012,8:2936-2940.
    [30]M. M. Li, Y. Z. Long. Fabrication of self-assembled three-dimensional fibrous stackings by electrospinning [J]. Mater Sci Forum.2011; 688:95-101
    [31]B. Sun, Y. Long, H. Zhang, M. Li, J. Duvail, X.Jiang, H. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning [J].Prog Poly Sci. 2013,5:862-890.
    [32]T. D. Brown, P. D. Dalton, D.W. Hutmacher, Direct writing by way of melt electrospinning [J]. Adv Mater.,2011,23:5651-5657.
    [33]H. J. Choi, J. C. Johnson, R. He, S. K. Lee, F. Kim, P. Pauzauskie, J.Goldberg, R. J. Saykally, P. D. Yang, Self-Organized GaN Quantum Wire UV Lasers [J]. J. Phys. Chem. B 2003,107:8721-8725.
    [34]R. Ng, R. Zang, K. K.Yang, N. Liu, S.T. Yang, Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering [J]. Rsc Advances 2012,2(27):10110-10124
    [35]K. Ashis, K. Sarker, J. Dal, Hong Electrochemical reduction of ultrathin graphene oxide/polyanilinefilms for supercapacitor electrodes with a high specific capacitance [J]. Colloid Surfaces A.2013,436 (8):967-974.
    [36]H.L. Yu,T.S. Wang, B. Wen, M.M Lu, Z. Xu,C.L. Zhu, Y.J. Chen, X.Y. Xue,C.W. Sun, M.S.Cao, Graphene/polyaniline nanorod arrays:Synthesis and excellent electromagnetic absorption properties [J]. Journal of Chemistry Materials 2012 28: 21679-21685.
    [37]I. Brook, G. Mechrez, R.Y. Suckeveriene, R. Tchoudakov, S. Lupo, M. Narkis, The Structure and Electro-mechanical Properties of Novel Hybrid CNT/PANI Nanocomposites. POLYMER COMPOSITES,2014,35 (4):788-794
    [38]I. Kovalenko, D. G. Bucknall, and G.Yushin, Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors [J]. Adv. Funct. Mater. 2010,20,3979-3986
    [39]X. F. Wang, Y. H. Shen, A. J. Xie, S. K. Li, Y. Cai, Y. Wang, H. Y. Shu, Assembly and Application as SERS Nanoprobes of Novel Dandelion-like Au/Polyaniline Nanocomposites [J]. Biosensors and Bioelectronics,2011,26: 3063-3067.
    [40]H. Ding, Y. Long, M. X. Wan, Fe2(SO4)3 as a Binary Oxidant and Dopant to Thin Polyaniline Nanowires with High Conductivity [J]. J. Phys. Chem. B.2010,114(1): 115-119.
    [41]P. D. Gaikwad, D. J. Shirale, V. K. Gade, P. A. Savale, H. J. Kharat, K. P. Kakde, S. S. Hussaini, N. R. Dhumane, M. D. Shirsat, Synthesis of H2SO4 doped polyaniline film by potentiometric method [J]. Mater. Sci.,2006,29(2):169-172
    [42]欧阳锐,章文贡,林炳丽,赵炎,脉冲激光法制备修饰纳米Eu203/聚苯胺导电杂化薄膜[J]。《中国稀土学报》2010,28:60-65。
    [43]Y. Z. Long, M. M. Li, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers [J]. Prog Polym Scie.2011,36(10):1415-1442.
    [44]尹红星,唐成春,龙云泽,曹珂,李蒙蒙刘抗抗,尹志华,静电纺丝法制备聚合物扭曲螺旋结构微纳米纤维[J].青岛大学学报(自然科学版),2009,22:45-49
    [45]王莹,静电纺丝方法制备聚苯胺(PANI)纳米纤维[D].东北师范大学2008
    [46]郑建国,贺传兰,聚氨酯-聚苯胺抗静电材料的研制[J]聚氨酯工业,2004:12-15
    [47]W. D Zhang, H.M Xiao, L.P Zhu, S.Y. Fu, M.X Wan, Facile One-Step Synthesis of Electromagnetic Functionalized Polypyrrole/Fe3O4 Nanotubes via a Self-Assembly Process [J]. J. Polym. Sci.:Part A:Polym, Chem.,2010,48: 320-326
    [48]张文光;吴栋栋;李正伟;罗云,聚苯胺-碳纳米管涂层的电化学合成及其对神经微电极界面性能的影响[J].功能材料2013,44:21-23
    [49]Q. Wu, Y. X. Xu, Z. Y. Yao, A. Liu, G. Q. Shi, Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films [J].ACS. Nano.2010,4 (4):1963-1970.
    [50]L. Al-Mashat, K. Shin, K. Kalantar-zadeh, S.H. Han, R.W. Kojima, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, M.H Graphene/Polyaniline Nanocomposites for hydrogen Sensing [J]. J. Phys. Chem. C,2010,114,16168-1617
    [51]A. A. Eigner, Two-Dimensional Infrared Vibrational Echo Spectroscopy Measurements of the Structural Dynamics Occurring in Conducting Polymer Thin Films [D]. Minneapolis U.S. A, University of Minnesota,2011.
    [52]刘玮高性能碳纳米管/聚乙烯醇复合材料的制备及其物理和力学性能研 究[D]。上海,东华大学,2013
    [53]M. j. Li, J. H. Zhang, H. Zhang, Y. F. Liu, C. L. Wang, X. Xu, Y. Tang, B. Yang, A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer [J].Adv Funct Mater.2007,17:3650-3656.
    [54]S. R. Gowda, A.L. Mohana Reddy, X.B Zhan,H. R. Jafry,and P. M. Ajayan,3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries [J]. Nano.Lett. 2012,12:1198-1202
    [55]D. Li, J. X. Huang, R. Kaner, Polyaniline Nanofibers:A Unique Polymer Nanostructure for Versatile Applications[J]. Acc. Chem. Res.2009,42(1):135-145.
    [56]M. j. Li, J. H. Zhang, H. Zhang, Y. F. Liu, C. L. Wang, X. Xu, Y. Tang, B. Yang, A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer. [J].Advanced Functional Materials. 2007,17:3650-3656..
    [57]雷西萍,聚苯胺衍生物及无机物/聚苯胺纳米复合材料的制备及性能研究[D].兰州,兰州大学,2007.
    [58]张鸿,王立九,聚苯胺复合导电纤维的制备与应用基础研究[D]大连,大连理工大学,2008.
    [59]R, Kumar, M. O Ansari, M. A Barakat, DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution [J]. Chemical Engineering Journal,2013,228:748-755
    [60]C. Yang, X. Wang, P.C. Du, P. Liu, Polyaniline/carbon nanotube multi-layered hollow microspheres with sandwich structure and their electrochemical performance[J]. Synthetic Metals,2013,179:34-41.
    [61]M.A. Mohamoud, Polyaniline/poly-vinyl alcohol (PAN/PVA) composite films: the synergy of film structural stiffening, redox amplification, and mobile species compositional dynamics [J]. Journal of Solid State Electrochemistry, 2013,17:2771-2782
    [62]R. Gangopadhyay, A.D Chowdhury, A. De,Functionalized polyaniline nanowires for biosensing[J]. Sensors and Actuators B:Chemical,2012,171:777-785
    [63]H. Y. Ma, B. S. Hsiao, B.Chu, Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. [J].Polymer 2011,52:2594-2599.
    [64]C. Zhang, W. W. Tjiu, T. X. Liu, Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube-Two-Dimensional Clay Nanoplatelet Heterostructures [J]. J. Phys. Chem. B.2011,115 (13):3392-3399.
    [65]S, W. Zhang, L. P. Zhao, et al. Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis [J]. Cataly Today,2014,224:114-121.
    [66]H. Y. Ma, K. Yoon, L. X. Rong, Y. M. Mao, Z. R. Mo, D. F. Fang, High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer. [J]. J Mater Chem.2010,20:4692-704
    [67]A. Suthat, G.Chase,J. Hoferer, V. Heuveline, G. Kasper, Nanofibres in filter media.[J]. Chem Eng.2001,726:26-28.
    [68]Y. Gao, C. A. Chen, H. M. Gau, A. James. Bailey, Elshan Akhadov, Darrick Williams, Hsing-Lin Wang. Facile Synthesis of Polyaniline-Supported Pd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynes and Cinnamaldehyde [J]. Chem. Mater.2008,20,2839-2844.
    [69]T. Kobayashi, H. Yoneyama, H. Tamura, Polyaniline film-coated electrodes as electrochromic display devices[J].J.Electroanal Chem.,1984,161:419-423.
    [70]M. Nmaba, K. Ikwa.a., M. Mimuzoto, The cathodic decomposition of ester solvents in polymer lithium secondary batteries[J]. Denki Kgakau 1991.59(9):770-775.
    [71]L. S Yang, Z. Q Shan, Y. D. Liu. Perfmornace of polyaniline positive in A lithium battery [J]. J. Power Sources 1991.34(2):141-145
    [72]N. Oyama, T. Tatsuma, T. Sato, T. Sotomura, Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density [J].Nature,1995,373: 598-600.
    [73]D. P. He, C. Zeng, C. Xu, N. C. Cheng, H. G. Li, S. C. Mu, M. Pan, Polyaniline-Functionalized Carbon Nanotube Supported Platinum Catalysts[J]. Langmuir,2011,27(9):5582-5588.
    [74]T. Kobayashi, H. Yoneyama, H. Tamura, Polyaniline film-coated electrodes as electrochromic display devices [J]. J. Electroanal Chem.,1984,161:419-423.
    [75]R. Prakash, Electrochemistry of polyaniline:study of the pH effect and electrochormism[J]. J. Appl. Polym. Sci.2002.83(2):378-385.
    [76]钟平,黄建军,聚苯胺/聚乙烯醇微乳液导电涂料的研制及其性能的测试[]].玻璃钢复合材料,2009(1):58-61.
    [77]K. Huang,Y. J. Zhang, Y. Z. Long, J. H. Yuan, D. X. Han, Z. J. Wang, L. Niu, Z. J. Chen, Preparation of Highly Conductive, Self-Assembled Gold/Polyaniline Nanocables and Polyaniline Nanotubes [J]. Chem. Eur.2006,12:5314-5319
    [78]D. W. Deberry, Modification of the electrochemical and corrosion behaviour of stainless steel with elecrtoactive coating [J]. J. Electrochem. Soc.1985, 132(5):1022-1026.
    [79]M. M. Popovic, B. N.Grgur, Electrochemical synthesis and corrosion behvaior of thin polyaniline-benzaote film on mild steel [J]. Synth. Met.2004.143(2):191-195.
    [80]H. Zhang, Y. F. Zhu. Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization [J], J. Phys. Chem. C 2010,114:5822-5826.
    [81]M. M. Popovic, B. N.Grgur, Electrochemical synthesis and corrosion behvaior of thin polyaniline-benzaote film on mild steel[J]. Synth. Met.2004.143(2):191-195.
    [82]Y. J. Zhang, Y. W. Shao, T. Zhang, G. Z. Meng, F. H. Wang, The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy[J].Corros Sci. 2011,53:3747-3755.
    [83]赵颂,利用聚苯胺强化分离膜性能研究[D].天津,天津大学,2012
    [84]M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner. Conjugated polymer films for gas separations[J].Science,1991,252:1412-1415.
    [85]R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanofibrous filtration membrane. [J].J Membr Sci.2006,281:581-586.
    [86]K. Sutherland, Developments in filtration:what is nanofiltration? [J]. Filtr Separat.2008,45(8):32-35.
    [87]B. J. Li, H. Q.Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water.[J]. J Mater Chem.2011,21:3346-3349.
    [88]K. Yoon, K. Kim, X. Wang, D. Fang, B. S. Hsiao,B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. [J].Polymer 2006,47:2434-2441.
    [89]H. Hasbullah, S. Kumbharkar, A.F. Ismail, K. Li, Preparation of polyaniline asymmetric hollow fiber membranes and investigation towards gas separation performance [J]. J. Membr. Sci.,2011,366:116-12
    [90]S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes[J]. Syn. Syn. Metals.2008,158:251-255.
    [91]A. Zehhaf, E. Morallon,A. Benyoucef, Polyaniline/Montmorillonite Nanocomposites Obtained by In Situ Intercalation and Oxidative Polymerization in Cationic Modified-Clay [J]. Journal of Inorganic and Organometallic Polymers and Materials 2013,23:1485-1491
    [92]GB Sun, B.X. Dong, M.H.Cao, B.G.Wei, C.W. Hu, Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, y-Fe2O3, and Fe with High Performance of Microwave Absorption [J]. Chem. Mater.2011,23,1587-1593
    [93]李鹏,纳米镍与镍/聚苯胺纳米复合材料的制备和性能研究[D],武汉:武汉理工大学,2005。
    [94]P.B. Liu,Y. Huang, X. Zhang, Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline:Synthesis, characterization and their excellent electromagnetic absorption properties[J]. J Alloys and Compounds,2014,596:25-31
    [95]J. Jiang, L.C. Li, F. Xu, Polyaniline-LiNi ferrite core-shell composite: Preparation, characterization and properties [J]. Materials Science and Engineering A, 2007,456:300-304
    [96]J. Stejskal, M.Trchova, J.Brodinova, P. Kalenda, S.V. Fedorova, J. Prokes, J. Zemek, Coating of zinc ferrite particles with a conducting polymer, polyaniline [J]. J. Coll. and Interf. Sci,2006,298:87-93
    [97]J.Jiang, L.H. Ai, D.B. Qin, H. Liu, L.C. Li, Preparation and characterization of electromagnetic functionalized polyaniline/BaFe12O19 composites [J]. Synthetic Metals 2009,159:695-699
    [98]H. J. Ding, X. M. Liu, M. X. Wan, S. Y. Fu, Electromagnetic Functionalized Cage-like Polyaniline Composite Nanostructures[J]. J. Phys. Chem. B,2008,112 (31):9289-9294.
    [99]L. C. Li, C. Xiang, X. X. Liang, B. Hao, Zn0.6Cu0.4Cro.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline andpolypyrrole:Preparation and electromagnetic properties[J]. Synthetic Metals,2010,160,28
    [100]史长明,张教强,季铁正,易娜,聚苯胺吸波材料的研究趋势及应用前景[J].材料开发与应用2013,28:82-87.
    [101]P.B. Liu,Y. Huang, X. Zhang, Enhanced Electromagnetic Absorption Properties of Reduced Graphene Oxide-polypyrrole with NiFe2O4 Particles Prepared with Simple Hydrothermal Method [J]. Mater.Lett.2014,120:143-146
    [1]X. Shen, R.Z. Gong, Z.K. Feng, C. H. Liu, Preparation, microstructure and magnetic properties of NiZn ferrite thin films by spin spray plating [J].2008, 23,708-711
    [2]张海军,姚熹,张良莹等,X,U铁氧体的溶胶-凝胶合成及微波性能研究[J].功能材料.2003,34:39-41.
    [3]I Brook, G. Mechrez, et al, A Novel Approach for Preparation of Conductive Hybrid Elastomeric Nano-Composites [J]. Polym. Adv. Techn.2013,24(8):758-763.
    [4]S.H. Lee, Z. Yuan, C.W. Lee, Enhanced electrical conductivity of self-assembled, layered molecular composites of metallo-backbone polymer and polyanline[J]. Adv Mater.2003,15:251-254.
    [5]S. S. Patil, S. P. Koiry, P. Veerender, D. K. Aswal, S. K. Gupta, D. S. Joag and M. A. More, Synthesis of Vertically Aligned Polyaniline (PANI) Nanofibers, Nanotubes on APTMS Monolayer and Their Field Emission Characteristics. RSC Advances, 2012,2:5822-5827.
    [6]B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X Han, P. Xu, Microwave Absorption Enhancement of Fe3O4/Polyaniline Core/Shell Hybrid Microspheres with Controlled Shell Thickness [J]. J. Appl. Polym. Sci.2013,10:1909-1915.
    [7]Z. F. He, Y. Fang, X.J. Wang, H. Pang, Microwave absorption properties of PANI/CIP/Fe3O4 composites [J]. Synthetic Met.2011,161:420-425.
    [8]Z. H. Guo, K. Shin, Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites [J]. J Nanopart Res.2009,11:1441-1452.
    [9]E.N. Konyushenko, N.E. Kazantseva, J. Stejskal, M. Trchova, J. Kovafova, I. Sapurina, M.M. Tomishko, O.V. Demicheva, J. Prokes, Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles [J]. J. Magn Magn Mater.2008,320:231-240.
    [10]郭亚平,郭亚军,吕君英,聚苯胺/铁氧体复合颗粒的合成与表征[J].材料科学与工艺.2005,02:1005-1299
    [11]J. Jiang, L. C. Li, F. Xu, Polyaniline-LiNi ferrite core-shell composite: Preparation, characterization and properties [J]. Journal of Colloid and Interface Science,2006,298:87-93
    [12]J. Stejskal, M. Trchova, J. Brodinova, P. Kalenda, S. V. Fedorova. J. Prokes", J. Zemek, Coating of zinc ferrite particles with a conducting polymer, polyaniline [J]. J Coll. and Interf Sci.2006,298:87-93
    [13]K. R. Reddy, K. P. Lee, A. G. Iyengar, Synthesis and Characterization of Novel Conducting Composites of Fe3O4 Nanoparticles and Sulfonated Polyanilines [J]. J Appl. Polym. Sci.,2007,104:4127-4134
    [14]P Saini, V Choudhary, S. K. Dhawan, Electrical Properties and EMI Shielding Behavior of Highly Thermally Stable Polyaniline/colloidal Graphite Composites [J]. Polym. Adv. Technol.2009,20:355-361
    [15]Y. Mosqueda, C.E. Perez, J. Arana, E. Longo, A. Ries, M. Cilense, Preparation and characterization of LiNio.8Coo.2O2/PANI microcomposite electrode materials under assisted ultrasonic irradiation[J]. J. Solid. State. Chem.2006,179:308-314.
    [16]X.F. Wang, Y.H. Shen, A.J. Xie, S.K. Li, Y. Cai, Y. Wang, Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS. Nanosensors [J]. Biosens. Bioelectron.2011,26:3063-3067.
    [17]D.P. He, C. Zeng, C. Xu, N.C. Cheng, H.G. Li, S.C. Mu, Polyaniline-Functionalized Carbon Nanotube Supported Platinum Catalysts[J]. Langmuir.2011,27:5582-5588.
    [18]Y Gao, D.C. Shan, F. Cao, J. Gong, X. Li, H.Y. Ma, Silver/Polyaniline Composite Nanotubes:One-Step Synthesis and Electrocatalytic Activity for Neurotransmitter Dopamine [J]. J. Phys. Chem. C 2009,113:15175-15181.
    [19]X.F Wang, Y.H Shen, A.J Xie, L.G Qiu, S.K Li, Y Wang. Novel structure CuI/PANI nanocomposites with bifunctions:superhydrophobicity and photocatalytic activity [J]. J. Mater. Chem.,2011,21:9641-9646
    [20]J.H. Kim, F.F. Fang, H.J. Choi, Y. Seo, Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology [J]. Mater. Lett.2008, 62:2897-2899.
    [21]M.A Dar, R.K. Kotnala, V. Verma, J Shah, W.A. Siddiqui, M. Alam, High Magneto-Crystalline Anisotropic Core-Shell Structured Mn0.5Zn0.5Fe2O4/Polyaniline Nanocomposites Prepared by in Situ Emulsion Polymerization [J]. J. Phys. Chem. C. 2012,116:5277-5287.
    [22]P.P. Sarangi, S.R. Vadera, Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method [J]. Powder Technol. 2010,203:348-353.
    [23]X. Li, Y. Gao, F.H. Liu, J. Gong, L.Y, Qu. Electrochemical synthesis of nanosize polyaniline from aqueous surfactant solutions [J]. Mater. Lett.2009,63:467-469.
    [24]L.C. Li, H.Z. Qiu, H.S. Qian, B. Hao, X.X. Liang, Controlled Synthesis of the Poly(N-methylaniline)/Zno.6Mno.2Nio.2Fe204 Composites and Its Electrical-Magnetic Property[J]. J. Phys. Chem. C.2010,114:6712-6717.
    [25]Y.X. Li, H.W. Zhang, Y.L. Liu, Q.Y. Wen, J. Li, Rod-Shaped Polyaniline-Barium Ferrite Nanocomposite:Preparation, Characterization and Properties [J]. Nanotechnology,2008,19:105-605.
    [1]Z. H. Guo, K. Shin, Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites [J]. J. Nanopart. Res.2009,11(6):1441-1452.
    [2]H. L. Han, A M. Sutherland, Development of a lead oxide photopatternable organic-inorganic film [J]. Appl. Phys. Lett.2009,94(14):114106-114108.
    [3]J. Y. Yuan, Y. Y. Xu, One-dimensional magnetic inorganic-organic hybrid nanomaterials[J].Chem. Soc. Rev.2011,40:640-655.
    [4]F. S. Wen, F. Zhang, Z. Y. Liu. Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers [J]. J. Phys. Chem. C.2011,115(29):14025-14030.
    [5]J. L. Guo, X. L. Wang, One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption [J]. J. Mater. Chem.2012, 22(24):11933-11942.
    [6]C. L. Zhang, K. P. Lv, N. Y. Hu, L. Yu, X. F. Ren, S. L. Liu, S. H. Yu, Macroscopic-Scale Alignment of Ultralong Ag Nanowires in Polymer Nanofiber Mat and Their Hierarchical Structures by Magnetic-Field-Assisted Electrospinning[J]. Small.2012,8(19):2936-2940.
    [7]C. L. Zhang, K. P. Lv, H. P. Cong, S. H. Yu, Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning[J]. Small.2011,8(5):648-653.
    [8]D. P. He, C. Zeng, C. Xu, N. C. Cheng, H. G. Li, S. C. Mu, M. Pan, Polyaniline-Functionalized Carbon Nanotube Supported Platinum Catalysts [J]. Langmuir.2011,27(9):5582-5588.
    [9]M. Q. Zhao, Q. Zhang, Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides-Properties, Synthesis, and Applications [J]. Adv. Funct. Mater.2012,22(4):675-694.
    [10]W. Lu, Y. Chen, V. A. L. Roy, S. Y. Chui, and C. M. Che, Supramolecular Polymers and Chromonic Mesophases Self-Organized from Phosphorescent Cationic Organoplatinum (II) Complexes in Water [J]. Angew. Chem.2009,121,7757 7761
    [11]W. Z. Yuan, J. Y. Yuan, Fe3O4@poly (2-hydroxyethyl methacrylate)-graft-poly (epsilon-caprolactone) magnetic nanoparticles with branched brush polymeric shell [J]. Polymer.2010,51(12):2540-2547.
    [12]S. Cavaliere, V. Salles, Elaboration and characterization of magnetic nanocomposite fibers by electrospinning [J]. J. Nanopart. Res.2010,12 (8): 2735-2740.
    [13]J. L. Guo, X. L. Wang, One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption[J]. J. Mater. Chem.2012, 22(24):11933-11942.
    [14]C. Zhang, W. W. Tjiu, T. X. Liu, Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube-Two-Dimensional Clay Nanoplatelet Heterostructures [J]. J. Phys. Chem. B.2011,115 (13):3392-3399.
    [15]C.Yao, Y. Shimada, S. Muroga, G.W. Qin, S. Okamoto,0. Kitakami Y. Endo, M. Yamaguchi, High permeability and electromagnetic noise suppression characteristics of Fe-B-P sub-micron particle chains and their composites with NiZn-ferrite nanoparticles. J. Alloys and Compd.,2013,554:414-418
    [16]H. J. Ding, Y. Z. Long, Fe2(SO4)3 as a Binary Oxidant and Dopant to Thin Polyaniline Nanowires with High Conductivity[J]. J. Phys. Chem. B.2010,114(1): 115-119.
    [17]J. Jiang, L. C. Li, F. Xu, Polyaniline-LiNi ferrite core-shell composite: Preparation, characterization and properties [J]. Mater. Sci. Eng. A.2007,456(1-2): 300-304
    [18]Y. X. Li, H. W. Zhang, Y. L. Liu, Q, Y, Wen, J. Li, Rod-shaped polyaniline-barium ferrite nanocomposite:preparation, characterization and properties[J]. Nanotechnology,2008,19:105605
    [19]B. D. Korth, P. Keng, I. Shim, S. E. Bowles, C. B. Tang, T. Kowalewski, K. Nebesny, J. Pyun, Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains [J]. J. Am. Chem. Soc.2006,128(20):6562-6563.
    [20]S. S. Patil, S. P. Koiry, P. Veerender, D. K. Aswal, S. K. Gupta, D. S. Joag, M. A. More, Synthesis of vertically aligned polyaniline (PANI) nanofibers, nanotubes on APTMS monolayer and their field emssion characteristics [J]. RSC. Adv.2012,2: 5822-5827.
    [21]L. Zhao, Z. Q. Lin, Crafting Semiconductor Organic-Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells[J]. Adv. Mater.2012,24(32):4353-4368.
    [22]J. Yuan, H. Gao, F. Schacher, Y. Xu, R. Richter, W. Tremel, Alignment of tellurium nanorods via a magnetization-alignment-demagnetization ("MAD") process assisted by an external magnetic field[J]. ACS. Nano.2009,3(6):1441-1450.
    [23]X. F. Wang, Y. H. Shen, A. J. Xie, Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS nanosensors[J]. Biosens.Bioelectron. 2011,26(6):3063-3067.
    [24]H. L. Zhu, Y. J. Bai, R. Liu, N. Lun, Y. X. Qi, F. D. Han and J. Q. Bi, In situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties [J]. J. Mater. Chem.,2011,21, 13581-13587.
    [25]J. W. Liu, R. C. Che, H. J. Chen, F. Zhang, F. Xia, Q. S. Wu and M. Wang, Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells [J]. Small,2012,8,1214-1221.
    [1]潘喜峰,钴基金属包覆锶铁氧体复合粉末的制备和吸波性能研究[D]。 上海,上海交通大学,2008.
    [2]陈娜,稀土替代锶铁氧体及其复合材料的制备和吸波性能研究[D]。上海,上海交通大学,2009.
    [3]T. H. Ting, R. P. Yu, Y. N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40GHz [J]. Mater. Chem. Phys.2011,126(1):364-368.
    [4]P.B Liu, Y. Huang, X. Zhang, Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline:Synthesis, characterization and their excellent electromagnetic absorption properties [J]. J. Alloy Compd,2014,596:25-31.
    [5]Y.J. Chen, Gang Xiao, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. Ma P. Gao,C. L. Zhu, M. S. Cao, H. B. Jin, Porous Fe3O4/Carbon Core/Shell Nanorods:Synthesis and Electromagnetic Properties [J]. J. Phys. Chem. C,2011,115(28):13603-13608.
    [6]W.J.Wang, C.G. Zang, Q.J Jiao, Ni-Coated Carbon Nanotubes/Mn-Zn Ferrite Composite as Viable Microwave Absorbing Materials, Adv. Mater. Research,2011 399:310-314
    [7]M. A. Dar, R K. Kotnala, Verma V, et al. High Magneto-Crystalline Anisotropic Core-Shell Structured Mn0.5Zn0.5Fe2O4/Polyaniline Nanocomposites Prepared by in Situ Emulsion Polymerization [J]. J. Phys. Chem. C,2012,116(9):5277-5287.
    [8]Xu, H.-L.; Bi, H.; Yang, R.-B. Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 2012,111,07A522.
    [9]H. Zhang, A. J. Xie, C. P. Wang, H. S. Wang, Y. H. Shen, X. Y. Tian, Novel rGO/a-Fe2O3 composite hydrogel:synthesis, characterization and high performance of electromagnetic wave absorption [J]. J. Mater. Chem.2013,1(30):8547-8552.
    [10]H. L. Yu, T. S. Wang, B. Wen, M. M. Lu, Z. Xu, C.L. Zhu, Y. J. Chen, X.Y. Xue, C.W. Sun, M. S. Cao. Graphene/polyaniline nanorod arrays:synthesis and excellent electromagnetic absorption properties[J]. J. Mater. Chem.2012,22(40): 21679-21685.
    [11]刘明权,沈湘黔,孟献丰,宋福展,向军,M型锶铁氧体纳米纤维静电纺丝和磁性能[J].无机材料学报.2010,25(1):68-72.
    [12]M. Grzeszczuk, A. Granska, R., Raman Spectroelectrochemistry of Poly aniline Synthesized Using Different Electrolytic Regimes--Multivariate Analysis [J]. Int. J. Electrochem. Sci.2013,8 (7):8951-8965.
    [13]P. Liu, Y. Huang, Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties[J]. RSC Adv.2013,3(41):19033-19039.
    [14]翟青霞,黄英,镧掺杂锶铁氧体/聚苯胺纳米复合材料的制备及电磁性能[J].航空材料学报2011,31:55-60
    [15]S. j. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Aqueous suspension and characterization of chemically modified graphene sheets[J]. Chem Mater,2008,20(21):6592-6594.
    [16]T.Y. Kim, H. W. Lee, J. E. Kim, K. S. Suh, Synthesis of phase transferable graphene sheets using ionic liquid polymers [J]. ACS Nano,2010,4(3):1612-1618.
    [17]S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene:an environmentally friendly method[J]. J. Mater. Chem.2012,22(19):9696-9703.
    [18]X.M. Feng, R.M Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications[J], Adv. Funct. Mater.2011,21(15):2989-2996
    [19]Z. Dong, Y. Fu, Q. Han, Y. Y. Xu, H. Zhang, Synthesis and physical properties of Co3O4nanowires[J]. J. Phys. Chem. C,2007,111(50):18475-18478.
    [20]R. K. Pandey, V. Lakshminarayanan, Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium[J]. J. Phys. Chem. C,2009,113(52):21596-21603.
    [21]X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, C. G. Lee, Microwave absorption properties of the carbon-coated nickel nanocapsules [J]. Appl. Phys. Lett.2006,89(5):053115.
    [22]A. Katsounaros, K. Z. Rajab, Y. Hao, M. Mann, W. I. Milne Microwave characterization of vertically aligned multiwalled carbon nanotube arrays [J]. Appl. Phys. Lett.2011,98(20):203105.
    [23]Q. C. Liu, J. M. Dai, Z. F. Zi, A. B. Pang, Q. Z. Liu, D. J. Wu, Y. P. Sun, Low Temperature Solution Synthesis and Microwave Absorption Properties of Multiwalled Carbon Nanotubes/Fe3O4 Composites [J]. J. Low Temp. Phys,2013,170(5-6): 261-267.
    [1]P. Lu, Y. Feng, X. Zhang, Y. Li, W. Feng. Recent progresses in application of functionalized graphene sheets [J]. Sci. China Tech. Sci.,2010,53:2311-2319.
    [2]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, GG Wallace, Processable aqueous dispersions of graphene nanosheets [J]. Nanotechnology,2008,3:101-105.
    [3]Y. Xu; K. Sheng; C. Li; G. Shi, Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process [J]. ACS Nano,2010,4:4324-4330.
    [4]M. T Pettes, H. X Ji, R. S. Ruoff, and L. Shi,Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite [J]. Nano Lett.2012,12:2959-2964
    [5]G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff. Synthesis of Graphene-like Nanosheets and their Hydrogen Adsorption Capacity [J]. Carbon,2010, 48:630-635.
    [6]刘明权,沈湘黔,孟献丰,宋福展,向军,M型锶铁氧体纳米纤维静电纺丝和磁性能.无机材料学报.2010,25:68-72.
    [7]杨妍林,刘江龙,高档永磁铁氧体预烧料制备技术的应用研究[D].重庆,重庆大学2003.
    [8]王文婷,铁氧体和镍修饰的碳纳米管复合吸波材料的制备及表征[D].太原,中北大学,2011.
    [9]Li Y, Chen C, Zhang S, et al. Electrical conductivity and electromagnetic interference shielding characteristics of multi-walled carbon nanotube filled polyacrylate composite films [J]. Appl. Surf. Sci.,2008,254:5766
    [10]P.B Liu, Y. Huang, X. Zhang, Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline:Synthesis, characterization and their excellent electromagnetic absorption properties [J]. J. Alloy Compd,2014,596:25-31.
    [11]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite [J] Chem. Mater.2007,19:4396-4404.
    [12]M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, Electrical conductivity and electromagnetic interference shielding characteristics of multi-walled carbon nanotube filled polyacrylate composite films [J]. Carbon,2012,50:1455-1464.
    [13]C. Wang; X. Han; P. Xu; X. Zhang; Y. Du; S. Hu; J. Wang; X, Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [J]. Appl. Phys. Lett.,2011,98:072906.
    [14]H. Zhang, A. J. Xie, C. P. Wang, H. S. Wang, Y. H. Shen and X. Y. Tian, Novel rGO/α-Fe2O3 composite hydrogel:synthesis, characterization and high performance of electromagnetic wave absorption[J]. J. Mater. Chem. A,2013,1:8547-8552.
    [15]Y. W. Liu; M. X. Guan; L. Feng; S. L. Deng; J. F. Bao; S. Y. Xie; Z. Chen; R. B. Huang; L. S. Zheng, Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe304 hybrid composite by a solvothermal reaction [J]. Nanotechnology,2013,24:25604.
    [16]J. Huang, L. M. Zhang, B. A. Chen, N. Ji, F. H. Chen, Y. Zhang, Z. J. Zhang. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SIMS and catalysis [J]. Nanoscale,2010,2:2733-2738.
    [17]X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar [J]. Nano Lett.,2008,8:323-327.
    [18]刘明权,沈湘黔,孟献丰,宋福展,向军,M型锶铁氧体纳米纤维静电纺丝和磁性能[J].无机材料学报.2010,25(1):68-72.
    [19]W. Yang, K. R. Ratinac, S. P. Ringer. Carbon nanomaterials in biosensors: should you use nanotubes or grapheme [J]. Angew. Chem. Int. Ed.,2010,49(12): 2114-2138. S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene:an environmentally friendly method [J]. J. Mater. Chem.,2012,22:9696-9703.
    [20]T. Cohen-Karni, Q. Qing, Q. Li, Y Fang, C.M. Lieber. Graphene and nanowire transistors for cellular interfaces and electrical recording [J]. Nano Lett.,2010,10(3): 1098-1102.
    [21]Y. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu. Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer[J]. ACS Nano 2012,6(11):9777-9789.
    [22]J. Liang, Y. Wang, Y. Huang, Electromagnetic Interference Shielding of Graphene/Epoxy Composites [J]. Carbon,2009,47:922-925.
    [23]Y.J.Chen, P." Gao,R.X. Wang, C.L.Zhu, L. J. Wang, M. S. Cao, and H. B. Jin, Porous Fe3O4/SnO2 Core/Shell Nanorods:Synthesis and Electromagnetic Properties [J]. J. Phys. Chem. C 2009,113:10061-10064
    [24]S. K. Meher, G. R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4 [J]. J. Phys. Chem. C, 2011,115(51):25543-25556.
    [25]G. T. Mohanraj, Ac Impedance Analysis and EMI Shielding Effectiveness of Conductive SBR Composites [J]. Polym. Eng. Sci.,2006,10:1342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700