用户名: 密码: 验证码:
中基性岩浆系统中铁的超常富集机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取四川攀枝花钒钛磁矿,新疆磁海和雅满苏铁矿和安徽姑山铁矿为研究对象,以揭示不同构造环境、不同性质岩浆和不同地质条件下铁质在中-基性岩浆系统中岩浆过程、岩浆-热液转化和热液条件下的超常富集机理。
     攀枝花苦橄玢岩中高镁橄榄石的识别,表明攀枝花钒钛磁铁矿矿床的形成与二叠纪峨眉山地幔柱导致的高温富铁苦橄质岩浆活动有关。区域地质历史结合富集的He-Ar同位素和Re-Os同位素特征暗示了岩石圈地幔富含榴辉岩相物质,很可能是产生富铁原始岩浆产生的关键。铁钛氧化物早期结晶自富水玄武质岩浆是钒钛磁铁矿成矿的关键控制因素。此外,铁矿层中斜长石边部富An贫Ti,这指示了晶粥层内的粒间熔体不混溶作用。富水-铁的玄武岩中磁铁矿的早期结晶以及粒间不混溶作用共同导致了岩体下部厚层块状矿石的形成。磁海辉绿岩的岩石成因研究表明其为起源自富集岩石圈地幔玄武质岩浆经历贫铁矿物分离结晶而富含挥发分,高侵位形成辉绿岩低压释放流体很可能是磁海铁矿形成的关键控制因素。此外,类似传统矽卡岩型铁矿,多期次的岩浆侵入,碳酸盐岩的围岩与富铁热液的相互作用均为导致热液中铁质大量堆积的关键。对姑山铁矿区闪长玢岩的单斜辉石的系统电子探针分析发现存在铁的突然降低现象,从而为不混溶作用提供了关键的矿物学证据,结合地球化学研究和MELTS模拟,提出不混溶作用是由玄武岩质岩浆在深部发生贫铁矿物(单斜辉石+斜长石)分离结晶形成的富铁闪长岩在上升过程中由于富磷地层的混染结果。LA-ICPMS锆石U-Pb测年的结果表明雅满苏矽卡岩和火山岩是同期形成的,暗示夕卡岩很可能是在下覆活动岩浆房的作用下形成的,成矿热液来自岩浆房释放的富铁流体和海水的混合。玄武岩很可能是主要的铁质来源,富铁流体导致其与灰岩相互作用导致矽卡岩和铁矿。
     综合4个典型铁矿的形成机制,中基性岩浆系统铁矿形成的关键控制因素存在共同点,包括:1)巨量的岩浆活动是形成铁矿的物质基础;2)分离结晶作用是铁质富集的前提条件,导致了岩浆的演化使得铁质富集,也是液态不混溶作用和高盐度岩浆流体释放的基础;3)压力降低有利于岩浆流体的形成,碳酸盐岩围岩有利于铁质的卸载沉淀富集。
In this dissertation, four deposits were selected, including the plutonic PanzhihuaFe-Ti-V oxide ore-bearing layered intrusion in Emeishan Large Igneous Province,Cihai hypabyssal diabase-related Fe skarn deposit in the Beishan region, NW China,Gushan ultra-hypabyssal dioritic porphyry-related Fe deposit, Eastern China andYamansu submarine volcanic-related Fe deposit in Eastern Tianshan, NW China. Onthe basis of the discussion of petrogenesis, some new lights shed on the super efficientenrichment mechanism of iron in the intermediate basic magmatic system includingmagma differentiation, magmatic-hydrothermal transition and hydrothermal fluids.
     Zircon U-Pb dating on the co-magmatic picritic porphyryin Panzhihua, and thehigh Mg olivine (Fo90) discovered in the latter, indicate the formation of world-classFe-Ti-V oxide deposit is closely related to the high temperature magmatism inducedby the Permian Emeishan mantle plume. The estimated primary magma isferropicritic, combined with the He-Ar and Re-Os isotopes show enriched signatures,implying the lithospheric mantle had been affected by the ancient subduction-relatedmetasomatism and contains an eclogite or pyroxenite component which could interactwith mantle plume and could have produced the parental Fe-rich magma. Plagioclaseshow higher contents of Fe and Ti in the rim which could be explained by interstitialliquid immiscibility. Except this mechansim, several times of the Fe-rich magmareplenishment are also probably key factors to facilitate the formation of massive ores.The petrogenesis studies on the Cihai diabase suggest the parental basaltic magmawas formed by partial melting of the enrich lithospheric mantle and experiencedfractionation of relatively Fe-poor minerals. Moreover, the shallow emplacementdepth are probably the key factor that triggered the release of post-magmatichydrothermal fluids and facilitate Fe skarn mineralization. Mass balance calculationsuggests that the high grade iron ores in Gushan probably were formed from theimmiscible iron-rich liquid which separated from the ferrodioitic magma. The latterwas derived from the enriched lithospheric mantle and MELTS simulation suggeststhe parental magma may experienced fractionation of clinopyroxene and plagioclase,and contamination of P-rich strata. LAICP-MS U-Pb zircon dating of the basalts and skarns at Yamansu yields almost coeval ages, suggesting that the skarn formation isrelated to subaqueous volcanism. The hydrothermal fluids that generated the skarnscould be a mixture of evolved magma-derived fluids and sea water. The Yamansubasalts provided the source of iron for the skarn mineralization.
     In this study, some common characteristics of key factors were elucidated asfollowed:1) the iron is exlusively from magma, thus large scale magmatism is thebasis of formation of large scale iron deposit;2) Extensive fractional crystallization isone of the requirement for the iron enrichment in the residual magma and possibleliquid immiscibility, and in the high salinity fluids;3) the decompression duringmagma differentiation is favorable for magmatic hydrothermal fluids, and thecarbonate wall rocks is the most favorable environment for the deposition of Fe.
引文
Aftabi, A., Mohseni, S., Babeki, A., et al.,2009. Fluid inclusion and stable isotopestudy of the Esfordi apatite-magnetite deposit, central Iran-a discussion.Economic Geology104,137-140.
    Anderson, A.T.,1976. Magma mixing: petrological process and volcanological tool.Journal of Volcanology and Geothermal Research1,3-33.
    Andrews, B.J., Gardner, J.E., Housh, T.B.,2008. Repeated recharge, assimilation, andhybridization in magmas erupted from El Chichón as recorded by plagioclaseand amphibole phenocrysts. Journal of Volcanology and Geothermal Research175,415-426.
    Ao, S.J., Xiao, W.J., Han, C.M., et al.,2010. Geochronology and geochemistry ofEarly Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NWChina: implications for late Paleozoic tectonic evolution of the southern Altaids.Gondwana Research18,466-478.
    Appel, P.W.U.,1994. Stratabound scheelite in altered Archaean komatiites, WestGreenland. Miner. Deposita29,341-352.
    Armstrong, J.T.,1995. CITZAF a package of correction programs for the quantitativeelectron microbeam X-ray analysis of thick polished materials, thin films andparticles. Microbeam Analysis4,117-200.
    Ashley, P.M.&Plimer, I.R.,1989.“Stratiform skarns”—a re-evaluation of threeeastern Australian deposits. Miner. Deposita24,289-298.
    Bach, W.&Niedermann, S.,1998. Atmospheric noble gases in volcanic glasses fromthe southern Lau Basin: origin from the subducting slab? Earth Planet Sci. Lett.160,297-309.
    Bachman, O., Dungan, M.A.,2002. Temperature-induced Al-zoning in hornblendes ofthe Fish Canyon magma, Colorado. American Mineralogist87,1062-1076.
    Ballentine, C. J., Barfod, D. N.,2000. The origin of air-like noble gases in MORB andOIB. Earth Planet. Sci. Lett.180,39-48.
    Barton, M.D., Johnson, D.A.,2000. Alternative brine sources for Fe oxide (-Cu-Au)systems: Implications for hydrothermal alteration and metals. In: Porter, T.M.(Ed.), Hydrothermal iron oxide copper-gold and related deposits: a globalperspective. Adelaide, Australian Mineral Foundation,43-60.
    Barton, M.D., Johnson, D.A.,1996. Evaporitic-source model for igneous-related Feoxide–(REE–Cu–Au–U) mineralization. Geology24,259-262.
    Basta, F.F., Maurice, A.E., Fontboté, L., et al.,2011. Petrology and geochemistry ofthe banded iron formation (BIF) of Wadi Karim and UmAnab, Eastern Desert,Egypt: implications for the origin of Neoproterozoic BIF. Precambrian Res.187,277-292.
    Bedard, J.H.,2006. Trace element partitioning in plagioclase feldspar. GeochimCosmochim Acta70,3717-3742.
    Bell, A.S., Simon, A.,2011. Experimental evidence for the alteration of the Fe3+/ΣFeof silicate melt caused by the degassing of chlorine-bearing aqueous volatiles.Geology39,499-502.
    Bennett, V. C., Nutman, A. P., Esat, T. M.,2002. Constraints on mantle evolution from187Os/188Os isotopic compositions of Archean ultramafic rocks from southernWest Greenland (3.8Ga) and Western Australia (3.46Ga). Geochimica etCosmochimica Acta66,2615-2630.
    Beswick, A.E.,1982. Some geochemical aspects of alteration and genetic relations inkomatiitic suites. In: Arndt, N.T., Nisbet, E.G.(Eds.), Komatiities. In GeorgeAllen and Unwin, London,283-308.
    Bhat, I., Zainuddin, S. M., Rais, A.,1981. The Panjal Trap chemistry; witness to thebirth of Tethys. Geol. Mag.118,367-375.
    Bienvenu, P., Bougault, H., Joron, M., et al.,1990. MORB alteration: rare-earthelement/non-rare-earth hygromagmaphile element fractionation. Chem. Geol82,1-14.
    Bindeman, I.N., Davis, A.M., Drake, M.J.,1998. Ion microprobe study ofplagiocase–basalt partition experiments at natrual concentration levels of traceelements. Geochim Cosmochim Acta62,1175-1193.
    Bizimis, M., Griselin, M., Lassiter, J. C., et al.,2007. Ancient recycled mantlelithosphere in the Hawaiian plume: osmium–hafnium isotopic evidence fromperidotite mantle xenoliths. Earth and Planetary Science Letters257,259-273.
    Bodnar, R.J.,1995. Fluid-inclusion evidence for a magmatic source for metals inporphyry copper deposits: Mineralogical Association of Canada Short CourseSeries23,139-152.
    Bogaerts, M., Schmidt, M.W.,2006. Experiments on silicate melt immiscibility in thesystem Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5and implications fornatural magmas. Contributions to Mineralogy and Petrology152,257-274.
    Bookstrom, A.A.,1977. The magnetite deposits of El Romeral, Chile. EconomicGeology72,1101-1130.
    Bookstrom, A.A.,1995. Magmatic features of iron ores of the Kiruna Type in Chileand Sweden: Ore textures and magnetite geochemistry-A discussion: EconomicGeology90,469-473.
    Boudreau, A.E., McBirney, A.R.,1997. The Skaergaard Layered Series. Part III.Non–dynamic layering. J Petrol38,1003-1020.
    Boudreau, A.E., Philpotts, A.R.,2002. Quantitative modelling of compaction in theHolyoke flood basalt flow, Hartford Basin, Connecticut. Contrib Mineral Pet144,176-184.
    Bowen, N.L.,1928. The evolution of the igneous rocks: Princeton, New Jersey,Princeton University Press,334.
    Bowers, T.S., Helgeson, H.C.,1983. Calculation of the thermodynamic andgeochemical consequences of nonideal mixing in the system H2O–CO2–NaCl onphase relations in geologic systems: equation of state for H2O–CO2–NaCl fluidsat high pressures and temperatures. Geochemica et Cosmochemical Acta47,1247-1275.
    Brandon, A. D., Walker, R. J., Morgan, J. W., et al.,2000. Re-Os isotopic evidence forearly differentiation of the Martian mantle. Geochimica et CosmochimicaActa64,4083-4095.
    Brandon, A. D., Walker, R. J., Puchtel, I. S., et al.,2003.186Os–187Os systematics ofGorgona Island komatiites: implications for early growth of the inner core. Earthand Planetary Science Letters206,411-426.
    Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al.,1995. Mineral-aqueous fluidpartitioning of trace elements at900°C and2.0GPa: constraints on the traceelement chemistry of mantle and deep crust fluids. Geochim. Cosmochim. Acta59,3331-3350.
    Brooks, C. K., Keays, R. R., Lambert, D. D., et al.,1999. Re–Os isotopegeochemistry of Tertiary picritic and basaltic magmatism of East Greenland:constraints on plume–lithosphere interactions and the genesis of the Platinovareef, Skaergaard intrusion. Lithos47,107-126.
    Burnard, P. G., Graham, D. W., Turner, G.,1997. Vesiclespecific noble gas analyses of“popping rock”: implications for primordial noble gases in earth. Science276,568-571.
    Burton, K.W., Bourdon, B., Birck, J.-L., et al.,1999. Osmium isotope variations in theoceans recorded by FeMn crusts. Earth Planet. Sci. Lett17,185-197.
    Bussen, I.V., Sakharov, A.S.,1971. Luyavurt ovoidophyre, a liquation product ofalkalic magma. Doklady of the Academy of Sciences U.S.S.R Earth ScienceSections197,170-173.
    Campbell, I.H., Turner, J.S.,1986. The influence of viscosity on fountains in magmachambers. J Petrol27,1-30.
    Campbell, I.H., Turner, J.S.,1989. Fountains in magma chambers. J Petrol30,885-923.
    Caricchi, L., Burlini, L., Ulmer, P., et al.,2007. Non-Newtonian rheology ofcrystal-bearing magmas and implications for magma ascent dynamics. Earth andPlanetary Science Letters,264,402-419.
    Cawthorn, R.G.,2010. Geological Interpretations from the PGE Distribution in theBushveld Merensky and UG2Chromitite Reefs. In: Platinum in Transition–Boom or Bust? Southern African Institute of Mining and Metallurgy,Johannesburg,57-70.
    Cawthorn, R.G.,2013. The Residual or Roof Zone of the Bushveld Complex, SouthAfrica. J Petrol54,1875-1900.
    Chai, F. M., Zhang, Z. C., Mao, J. W., et al.,2008. Geology, petrology andgeochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions inXinjiang, NW China: Implications for tectonics and genesis of ores. Journal ofAsian Earth Sciences32,218-235.
    Chai, G., Naldrett, A.J.,1992. The Jinchuan ultramafic intrusion: cumulate of ahigh-Mg basaltic magma. J. Petrol33,277-303.
    Charlier, B., Grove, T. L.,2012. Experiments on liquid immiscibility along tholeiiticliquid lines of descent. Contributions to Mineralogy and Petrology164,27-44.
    Charlier, B., Namur, O., Malpas, S., et al.,2010. Origin of the giant Allard Lakeilmenite ore deposit (Canada) by fractional crystallization, multiple magmapulses and mixing. Lithos117,119-134.
    Charlier, B., Namur, O., Toplis, M. J., et al.,2011. Large-scale silicate liquidimmiscibility during differentiation of tholeiitic basalt to granite and the origin ofthe Daly gap. Geology39,907-910.
    Charlier, B., Sakoma, E., Sauvé, M., et al.,2008. The Grader layered intrusion(Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and otherFe–Ti–P ores.Lithos,101(3),359-378.
    Charlier, B., Sakoma, E., Sauvé, M., et al.,2008. The Grader layered intrusion(Havre–Saint–Pierre anorthosite, Quebec) and genesis of nelsonite and otherFe–Ti–P ores. Lithos101,359-378.
    Chen, J.F., Yan, J., Xie, Z., et al.,2001. Nd and Sr isotopic compositions of igneousrocks from the Lower Yangtze region in eastern China: constraints on sources.Physics and Chemistry of the Earth (A)26,719-731.
    Chiaradia, M.,2003. Formation and evolution processes of the SalanfeW-Au-As-skarns (Aiguilles Rouges Massif, western Swiss Alps). Miner.Deposita38,154-168.
    Chiaradia, M.,2009. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera,Ecuador). Chem. Geol.265,468-487.
    Chung, H.Y., Mungall, J.E.,2009. Physical constraints on the migration of immisciblefluids through partially molten silicates, with special reference to magmaticsulfide ores. Earth Planet Sci Lett286,14-22.
    Chung, S. L., Jahn, B. M.,1995. Plume-lithosphere interaction in generation of theEmeishan flood basalts at the Permian-Triassic boundary. Geology23,889-892.
    Chung, S. L., Jahn, B. M., Genyao, W., et al.,1998. The Emeishan flood basalt in SWChina: a mantle plume initiation model and its connection with continentalbreakup and mass extinction at the Permian-Triassic boundary. GeodynamicsSeries27,47-58.
    Clark, A.H., Kontak, D.J.,2004. Fe-Ti-P oxide melts generated through magmamixing in the Antauta Subvolcanic Center, Peru: Implications for the origin ofNelsonite and iron oxide-dominated hydrothermal deposits. Economic Geology99,377-395.
    Cohen, R. S., O’Nions, R. K.,1982. Identification of recycled continental material inthe mantle from Sr, Nd and Pb isotope investigations. Earth Planet. Sci. Lett.61,73-84.
    Corfu, F., Hanchar, J.M., Hoskin, P.W., et al.,2003. Atlas of zircon textures: Reviewsin Mineralogy and Geochemistry53,469–500.
    Cortes, J.A., Wilson, M., Condliffe, E., et al.,2005. The evolution of the magmaticsystem of Stromboli Volcano during the Vancori Period (26–13.8k.y.). Journal ofVolcanology and Geothermal Research147,1-38.
    Cox, K.G.,1980. A model for flood basalt volcanism. Journal of Petrology21,629-650.
    Craig, H., Lupton, J. E.,1976. Primordial neon, helium and hydrogen in oceanicbasalts. Earth Planet. Sci. Lett.31,369-385.
    Cullers, R.L., Graf, J.L.,1984. Rare earth elements in igneous rocks of the continentalcrust: predominantly basic and ultrabasic rocks. In: Henderson, P.,(Ed.), RareEarth Element Geochemistry, Elsevier, Amsterdam,237-274.
    Cunningham, W.D.,2005. Active intracontinental transpressional mountain buildingin the Mongolian Altai: defining a new class of orogen. Earth and PlanetaryScience Letters240,436-444.
    Cunningham, W.D., Windley, B.F., Dorjnamjaa, D., et al.,1996. A structural transectacross the Mongolian Western Altay: active transpressional mountain building incentral Asia. Tectonics15,142-156.
    Czuppon, G., Matsumoto, T., Handler, M. R., et al.,2009. Noble gases in spinelperidotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbedMORB-type noble gases in the subcontinental lithospheric mantle. Chem. Geol.266,19-28.
    Czuppon, G., Matsumoto, T., Matsuda, J., et al.,2010. Noble gases in anhydrousmantle xenoliths from Tasmania in comparison with other localities from easternAustralia: implications for the tectonic evolution. Earth Planet. Sci. Lett.299,317-327.
    De Grave, J., Glorie, S., Buslov, M.M., et al.,2012. Thermo-tectonic history of theIssyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res.http://dx.doi.org/10.1016/j.gr.2012.06.014
    Deng, J., Wang, Q. F., Wan, L., et al.,2008. Random difference of the trace elementdistribution in skarn and marbles from Shizishan orefield, Anhui Province, China.Journal of China University of Geosciences19,319-326.
    DePaolo, D.J.,1981.Trace element and isotopic effects of combined wallrockassimilation and fractional crystallization. Earth Planetary Science Letters53,189-202.
    Dill, H.G.,2010. The ‘‘chessboard’’ classification scheme of mineral deposits:mineralogy and geology from aluminum to zirconium. Earth-Science Reviews100,1-420.
    Dobretsov, N. L.,2005.250Ma large igneous province of Asia: Siberian andEmeishan traps (plateau basalts) and associated granitoids. Russ. Geol. Geophys46,879-890.
    Dong, Y., Zhang, G., Beubauer, F., et al.,2011. Syn-and post-collisional granitoids inthe Central Tianshan orogen: Geochemistry, geochronology and implications fortectonic evolution. Gondwana Res.20,568-581.
    Dorland, S.C, P., Sorensen, S. S., Richard D. A, et al.,2010. Lithium isotopes as atracer of fluids in a subduction zone mélange: Franciscan Complex, CA. Earthand Planetary Science Letters292,181-190.
    Dosso, L., Bougault, H., Joron, J.L.,1993. Geochemical morphology of the NorthMid-Atlantic ridge,10°-24°N: trace element-isotope complementarity. EarthPlanet. Sci. Letters.120,443-462.
    Downes, H., Balaganskaya, E., Beard, A., et al.,2005. Petrogenetic processes in theultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: Areview. Lithos85,48-75.
    Downes, H., Dupuy, C., Leyreloup, A.F.,1990. Crustal evolution of the Hercynianbelt of Western Europe: Evidence from lower-crustal granulitic xenoliths (FrenchMassif Central). Chemical Geology83,209-231.
    Downes, H., Thirlwall, M.F., Trayhorn, S.C.,2001. Miocene subduction-relatedmagmatism in southern Sardinia: Sr-Nd-and oxygen isotopic evidence formantle source enrichment. Journal of Volcanology and Geothermal Research106,1-21.
    Doyle, M.G., Allen, R.L.,2003. Subsea-floor replacement in volcanic-hosted massivesulfide deposits. Ore Geol. Rev.23,183-222.
    Duan, S., Zhang, Z., Jiang, Z., et al.,2013. Geology, geochemistry and age constraintson the Dunde iron-zinc deposit in Chinese western Tianshan. Ore GeologyReviews57,441-461.
    Duchesne, J.C.,1996. Liquid ilmenite or liquids ilmenite: a comment on the nature ofilmenite vein deposits. In: Demai.e D.(ed) Petrology and geochemistry ofmagnatic suites of rocks in the continental and oceanic crusts. A volumededicated to Professor Jean Michot, Universite Libre de Bruxelles, RoyalMuseum for Central Africa (Tezvuren),73-82.
    Duchesne, J.C.,1999. Fe-Ti deposits in Rogaland anorthosites (South Norway):geochemical characteristics and problems of interpretation. Mineralium Deposita34,182-198.
    Dunai, T. J., Baur, H.,1995. Helium, neon and argon systematics of the Europeansubcontinental mantle: implications for its geochemical evolution. Geochim.Cosmochim. Acta59,2767-2783.
    Dupre, B., Allegre, C.J.,1983. Pb–Sr isotope variation in Indian Ocean basalts andmixing phenomena. Nature303,142-146.
    Dymek, R. F., Owens, B. E.(2001). Petrogenesis of apatite-rich rocks (nelsonites andoxide-apatite gabbronorites) associated with massif anorthosites. EconomicGeology,96(4),797-815.
    Eales, H. V.,2000. Implications of the chromium budget of the Western Limb of theBushveld Complex. South African Journal of Geology103,141-150.
    Eales, H. V., Costin, G.,2012. Crustally contaminated komatiite: primary source of thechromitites and Marginal, Lower, and Critical Zone magmas in a stagingchamber beneath the Bushveld Complex. Economic Geology107,645-665.
    Eastoe, C.J.,1978. A fluid inclusion study of the Panguna porphyry copper deposit,Bougainville, Papua New Guinea: Economic Geology73,721-748.
    Edgar, A.D., Green, D.H., Hibberson, W.O.,1976. Experimental petrology of a highlypotassic magma. Journal of Petrology17,339-356.
    Einaudi, M. T., Burt, D. M.,1982. Introduction; terminology, classification, andcomposition of skarn deposits. Economic Geology77,745-754.
    Einaudi, M.T., Meinert, L.D., Newberry, R.J.,1981. Skarn Deposits. In: Skinner, B.J.(Ed.), Seventy-fifth Anniversary Volume,1906–1980: Economic Geology317-391.
    Esser, B.K., Turekian, K.K.,1993. The osmium isotopic composition of thecontinental crust. Geochim Cosmochim Acta57,3093-3104.
    Eugster, H.P., Chou, I.M.,1979. A model for the deposition of Cornwall-typemagnetite deposits. Economic Geology74,763-774.
    Evans, C.A., Castaneda, G., Franco, H.,1991. Geochemical complexities preserved inthe volcanic rocks of the Zambales ophiolite, Philippines. J. Geophys. Res.96,16251-16262.
    Farley, K. A., Natland, J. H., Craig, H.,1992. Binary mixing of enriched andundegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas.Earth Planet. Sci. Lett.111,183-199.
    Fenner, C.N.,1929. The crystallization of basalts. American Journal of Science18,225-253.
    Ferguson, J.,1964. Geology of the Ilímaussaq alkaline intrusion, South Greenland.Bulletin-Gr nlands Geologiske Unders gelse39(82pp., also Meddelelser omGr nland172(4)).
    Fisher, D. E.,1994. Mantle and atmospheric-like argon in vesicles of MORB glasses.Earth Planet Sci. Lett.123,199-204.
    Foley, S.F., Barth, M.G., Jenner, G.A.,2000. Rutile/melt partition coefficients for traceelements and an assessment of the influence of rutile on the trace elementcharacteristics of subduction zone magmas. Geochimica et Cosmochimica Acta64,933-938.
    Foley, S.F., Tiepolo, M., Vannucci, R.,2002. Growth of early continental crustcontrolled by melting of amphibolite in subduction zones. Nature417,637-640.
    F rster, H., Jafarzadeh, A.,1994. The Bafq mining district in central Iran a highlymineralized infracambrian volcanic field. Economic Geology89,1697-1721.
    Franco, Pirajno, F., Richard, Ernst, R.,.E., et al.,2009. Intraplate magmatism inCentral Asia and China and associated metallogeny. Ore Geology Reviews35,114-136.
    Franklin, J.M., Gibson, H.L., Galley, A.G., et al.,2005. Volcanogenic massive sulfidedeposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P.(Eds.), Economic Geology100th Anniversary Volume523-560.
    Frey, F.A., Green, D.H., Roy, S.D.,1978. Integrated model for basalt petrogenesis: astudy of quartz tholeiites to olivine melilite from southeastern Australia, utilizinggeochemical and experimental petrological data. J. Petrol.19,463-513.
    Frietsch, R.,1978. On the magmatic origin of iron ores of the Kiruna type. EconomicGeology73,478-485.
    Frietsch, R.,1991. New ore types in the northern part of the Fennoscandian shield.Geology113,46-48.
    Frietsch, R., Perdahl, J.A.,1995. Rare earth elements in apatite and magnetite inKiruna-type iron ores and some other iron ore types. Ore Geology Reviews9,489-510.
    Fyfe, W.S.,1976. Hydrosphere and continental crust. Geosci. Can.3,255-268.
    Gaetani, M., Jadoul, F., Erba, E., et al.,1993. Jurassic and Cretaceous orogenic eventsin the North Karakorum: age constraints from sedimentary rocks. In: HimalayanTectonics, ed. P.J. Treloar and M.P. Searle, Geological Society SpecialPublication74,39-52.
    Ganino, C., Arndt, N.T., Zhou, M.F., et al.,2008. Interaction of magma withsedimentary wall rock and magnetite ore genesis in the Panzhihua maficintrusion, SW China. Mineralium Deposita43,677-694.
    Ganino, C., Harris, C., Arndt, N.T., et al.,2013. Assimilation of carbonate countryrock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China):Evidence from stable isotopes. Geoscience Frontiers4,547-554.
    Gao, J., Long, L.L., Klemd, R., et al.,2009. Tectonic evolution of the South Tianshanorogen and adjacent regions, NW China: geochemical and age constraints ofgranitoid rocks. International Journal of Earth Sciences98,1221-1238.
    Gao, S., Ling, W. L., Qiu, Y. M., et al.,1999. Contrasting geochemical and Sm-Ndisotopic compositions of Archean metasediments from the Kongling high-gradeterrain of the Yangtze craton: evidence for cratonic evolution and redistributionof REE during crustal anatexis. Geochimica et Cosmochimica Acta63,2071-2088.
    Garavaglia, L., Bitencourt, M.F., Nardi, L.V.S.,2002. Cumulatic diorites related topostcollisional, Brasilianol Pan-African mafic magmatism in the Vila Nova Belt,Southern Brazil. Gondwana Research5,519-534.
    Gardner, J.E., Rutherford, M., Carey, S., et al.,1995. Experimental constraints onpre-eruptive water contents and changing magma storage prior to explosiveeruptions of Mount St. Helens Volcano. Bulletin of Volcanology57,1-17.
    Gautheron, C., Moreira, M., Allègre, C.,2005. He, Ne and Ar composition of theEuropean lithospheric mantle. Chem. Geol.217,97-112.
    Gemmell, J.B., Zantop, H., Meinert, L.D.,1992. Genesis of the Aguilarzinc–lead–silver deposit, Argentina; contact metasomatic vs. sedimentaryexhalative. Econ. Geol.87,2085-2112.
    Gen,.C., Tüysüz, O.,2010. Tectonic setting of the Jurassic bimodal magmatism inthe Sakarya Zone (Central and Western Pontides), Northern Turkey: Ageochemical and isotopic approach. Lithos118,95-111.
    Ghiorso, M.S., Sack, R.O.,1995. Chemical mass transfer in magmatic processes. IV.A revised and internally consistent thermodynamic model for the interpolationand extrapolation of liquid-solid equilibria in magmatic systems at elevatedtemperatures and pressures. Contributions to Mineralogy and Petrology119,197-212.
    Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., et al.,2002. The MELTS: Arevision of MELTS aimed at improving calculation of phase relations and majorelement partitioning involved in partial melting of the mantle at pressures up to3Gpa: Geochemistry, Geophysics, Geosystems33,1029.
    Gibson, S.A.,2002. Major element heterogeneity in Archean to recent mantle plumestarting-heads. Earth and Planetary Science Letters95,59-74.
    Gibson, S.A., Thompson, R.N., Dickin, A.P.,2000. Ferropicrites: geochemicalevidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet Sci Lett174,355-374.
    Gilder, S.A., Keller, G.R., Luo, M., et al.,1991. Timing and spatial-distribution ofrifting in China. Tectonophysics197,225-243.
    Gill, J.B.,1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin,189.
    Ginibre, C., W rner, G.,2007. Variable parent magmas and recharge regimes of theParinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning inplagioclase. Lithos98,118-140.
    Ginibre, C., W rner, G., Kronz, A.,2007. Crystal zoning as an archive for magmaevolution. Elements3,261-266.
    Gleason, J. D., Marikos, M. A., Barton, M. D., et al.,2000. Neodymium isotopicstudy of rare earth element sources and mobility in hydrothermal Fe oxide(Fe-P-REE) systems. Geochimica et Cosmochimica Acta64,1059-1068.
    Graham, D., Lupton, J., Albarède, F., et al.,1990. Extreme temporal homogeneity ofhelium isotopes at Piton de la Fournaise Re’union Island. Nature347,545-548.
    Graham, S.A., Hendrix, M.S., Johnson, C.L., et al.,2001. Sedimentary record andtectonic implications of Mesozoic rifting in southeast Mongolia. GeologicalSociety of America Bulletin113,1560-1579.
    Green, D.H., Ringwood, A.E.,1967. The genesis of basaltic magmas. Contributions toMineralogy and Petrology15,103-190.
    Green, D.H.,1973. Experimental mantle studies on a model upper mantlecomposition under water-saturated and water-unsaturated conditions. Earth andPlanetary Science Letters19,37-53.
    Green, D.H.,1976. Experimental studies on a modal upper mantle composition athigh pressure under water saturated and water undersaturated conditions. Can.Mineral.14,255-268.
    Green, N.L.,2006. Influence of slab thermal structure on basalt source regions andmelting conditions: REE and HFSE constraints form the Garibaldi volcanic belt,northern Cascadia subduction system. Lithos87,23-49.
    Greenough, J.D., Dostal, J., Mallory-Greenough, L.M.,2005. Igneous rockassociation5. Oceanic island volcanism II: mantle processes. Geoscience Canada32,77-90.
    Gribble, R.F., Stern, R.J., Bloomer, S.H., et al.,1996. MORB mantle and subductioncomponents interact to generate basalts in the southern Mariana Trough back-arcbasin. Geochim. Cosmochim. Acta60,2153-2166.
    Gribble, R.F., Stern, R.J., Newman, S., et al.,1998. Chemical and isotopiccomposition of lavas from the Northern Mariana Trough: implications formagmagenesis in back-arc–arc basins. J. Petrol.39,125-154.
    Griffin,W.L., Wang,X., Jackson, S.E., et al.,2002. Zircon chemistry and magmamixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneouscomplexes. Lithos61,237-269.
    Grove, T.L., Baker, M.B., Kinzler, R.J.,1984. Coupled CaAl–NaSi diffusion inplagioclase feldspar: Experiments and applications to cooling rate speedometry.Geochim Cosmochim Acta48,2113-2121.
    Grove, T.L., Walker, D., Longhi, J., et al.,1973. Petrology of rock12002and origin ofpicritic basalts at Oceanus Procellarum. Geochim Cosmochim Acta1,995-1011.
    Gu, L., Khin, Z., Hu,W., et al.,2007. Distinctive features of Late Palaeozoic massivesulphide deposits in South China. Ore Geol. Rev.31,107-138.
    Guilbert, J.M., Park, C.F.,1986. The Geology of Ore Deposits. W.H. Freeman, SanFrancisco, CA,985.
    Gurenko, A.A., Chaussidon, M.,1995. Enriched and depleted primitive meltsincluded on olivine from Icelandic thleiites: origin by continuous melting of asingle mantle column. Geochim. Cosmochim. Acta59,2905-2917.
    Halter, W.E., Webster, J.D.,2004. The magmatic to hydrothermal transition and itsbearing on ore-forming systems. Chemical Geology210,1-6.
    Hanski, E., Walker, R.J., Huhma, H., et al.,2004. Origin of the Permo-Triassickomatiites, northwestern Vietnam.Contributions to Mineralogy and Petrology147,453-469.
    Hanski, E.J., Smolkin, V.F.,1989. Pechenga ferropicrites and other early Proterozoicpicrites in the eastern part of the Baltic Shield. Precambrian Res45,63-82.
    Hanson, G.N., Langmuir, C.H.,1978. Modeling of major elements in mantle-meltssystems using trace element approaches. Geochim. Cosmochim. Acta42,725-742.
    Hanyu, T., Kaneoka, I.,1998. Open system behavior of helium in case of the HIMUsource area. Geophys. Res. Lett.25,687-690.
    Harney, D.M.W., Merkle, R.K.W., von Gruenewaldt, G.,1990. Platinum–groupelement behavior in the lower part of the Upper Zone, Eastern BushveldComplex—Implications for the formation of the main magnetite layer. EconGeol85,1777-1789.
    Hart, S.R., Allégre, C.J.,1980. Trace-elements constraints on magma genesis, in:Hargraves, R. B.(Ed.), Physics of Magmatic Processes, Princeton UniversityPress, Princeton,121-159.
    Hart, S.R.,1984. A large-scale isotope anomaly in the Southern Hemisphere mantle.Nature309,753-757.
    Hawkesworth, C. J., Turner, S.P., McDermott, F., et al.,1997. U-Th isotopes in arcmagmas: implications for element transfer from subducted crust. Science276,561-555.
    Hawkins, J.M., Lonsdale, P.E., MacDougall, J.D., et al.,1990. Petrology of the axialridge of the Mariana Trough backarc spreading center. Earth Planet Sci. Lett.100,226-250.
    Hawkins, J.W., Evans, C.A.,1983. Geology of the Zambales range Luzon, Philippineislands: ophiolite derived from an island arc-backarc pair. In: Hayes, D.E.(Ed.),The Tectonic and Geologic Evolution of Southeast Asian Sea and islands, Part2.Am. Geophys. Monogr. Ser.,27,95-123.
    He, B., Xu, Y.G., Chung, S.L., et al.,2003. Sedimentary evidence for a rapid,kilometer scale crustal doming prior to the eruption of the Emeishan floodbasalts. Earth Planet Sci Lett213,391-405.
    Heber, V.S., Brooker, R.A., Kelley, S.P., et al.,2007. Crystal-melt partitioning ofnoble gases (helium, neon, argon, krypton, and xenon) for olivine andclinopyroxene. Geochim. Cosmochim. Acta71,1041-1061.
    Heinrich, C.A., Günther, D., Audétat, A., et al.,1999. Metal fractionation betweenmagmatic brine and vapor, determined by microanalysis of fluid inclusions.Geology,27,755-758.
    Hildebrand, R.S.,1986. Kiruna-type deposits: Their origin and relationship tointermediate subvolcanic plutons in the Great Bear Magmatic Zone, northwestCanada. Economic Geology81,640-659.
    Hilton, D. R., Hammerschmidt, K., Loock G. et al.,1993. Helium and argon isotopesystematics of the central Lau Basin and Valu Fa Ridge: evidence of crust-mantleinteractions in a back-arc basin. Geochim. Cosmochim. Acta57,2819-2841.
    Hirschmann, M.M., Ghiorso, M.S., Wasylenki, L.E., et al.,1998. Calculation ofperidotite partial melting from thermodynamic models of minerals and melts. I.Method and composition to experiments. Journal of Petrology39,1091-1115.
    Hitzman, M.W.,2000. Iron oxide-Cu-Au deposits: What, where, when, and why,inPorter, T.M., ed., Hydrothermal iron oxide copper-gold&related deposits: Aglobal perspective. Adelaide, PGC Publishing,9-25.
    Hitzman, M.W., Oreskes, N., Einaudi, M.T.,1992. Geological characteristics andtectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits:Precambrian Research58,241-287.
    Holland, T., Blundy, J.,1994. Non-ideal interactions in calcite amphiboles and theirbearing on amphibole-plagioclase thermometry. Contrib. Mineral Petrol.116,433-447.
    Hollings, P., Kerrich, R.,2000. An Archean arc basalt-Enriched-enrichedbasalt-adakite association: the2.7Ga confederation assemblage of theBirch-Uchi greenstone belt, Superior Province. Contrib. Mineral Petrol.139,208-226.
    Holness, M.B., Nielsen, T.F.D., Tegner, C.,2007. Textural maturity of cumulates: Arecord of chamber filling, liquidus assemblage, cooling rate and large–scaleconvection in mafic layered intrusions. J. Petrol.48,141-157.
    Holness, M.B., Stripp, G., Humphreys, M.C.S., et al.,2011. Silicate liquidimmiscibility within the crystal mush: late–stage magmatic microstructures in theSkaergaard intrusion, East Greenland. J Petrol52,175-222.
    Holtz, F., Sato, H., Lewis, J., et al.,2005. Experimental petrology of the1991–1995Unzen dacite, Japan: part I, phase relations, phase compositions and pre-eruptiveconditions. J. Petrol.46,319-337.
    Honda, M., McDougall, I., Patterson, D.B., et al.,1993. Noble gases in submarinepillow basalt glasses from Loihi and Kilauea, Hawaii: a solar component in theEarth. Geochim. Cosmochim. Acta57,859-874.
    Horan, M.F., Walker, R.J., Fedorenko, V.A., et al.,1995. Osmium and neodymiumisotopic constraints on the temporal and spatial evolution of Siberian flood basaltsources. Geochim. Cosmochim. Acta59,5159-5168.
    Hoskin, P.W.O.,2005. Trace-element composition of hydrothermal zircon and thealteration of Hadean zircon from the Jack Hills, Australia. Geochim CosmochimActa69,637-648.
    Hou, T., Zhang, Z., Encarnacion, J., et al.,2012. Petrogenesis and metallogenesis ofthe Taihe gabbroic intrusion associated with Fe–Ti-oxide ores in the Panxidistrict, Emeishan Large Igneous Province, southwest China. Ore GeologyReviews,49,109-127.
    Hou, T., Zhang, Z.C., Du, Y.S., et al.,2009. Geology of the Gushan iron oxide depositassociated with dioritic porphyries, eastern Yangtze craton, SE China.International Geology Review51,520-541.
    Hou, T., Zhang, Z.C., Encarnacion, J., et al.,2010. Geochemistry of Late Mesozoicdioritic porphyries associated with Kiruna-style and strataboundcarbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, EasternChina: Constraints on petrogenesis and iron sources. Lithos119,330-344.
    Hou, T., Zhang, Z.C., Encarnacion, J., et al.,2013. The role of recycled oceanic crustin magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology andgeochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, centralEmeishan large igneous province, SW China. Contributions to Mineralogy andPetrology165,805-822.
    Hou, T., Zhang, Z.C., Kusky, T., et al.,2011. A reappraisal of the petrogenetic linkagebetween basalts and mafic-ultramafic intrusions in the Emeishan Large IgneousProvince, SW China. Ore Geology Reviews41,133-143.
    Hou, T., Zhang, Z.C., Pirajno, F.,2012. A new metallogenic model of the Panzhihuagiant V–Ti–iron oxide deposit (Emeishan Large Igneous Province) based onhigh–Mg olivine–bearing wehrlite and new field evidence. Int. Geol. Rev54,1721-1745.
    Hou, T., Zhang, Z.C., Pirajno, F., et al.,2013. Geology, tectonic settings and iron oremetallogenesis associated with submarine volcanism in China: An overview. OreGeology Reviews57,498-517.
    Hou, T., Zhang, Z.C., Santosh, M., et al.,2013. The Cihai diabase in the Beishanregion, NW China: Isotope geochronology, geochemistry and implications forCornwall-style iron mineralization. Journal of Asian Earth Sciences70,231-249.
    Hou, T., Zhang, Z.C., Santosh, M., et al.,2014. Geochronology and geochemistry ofsubmarine volcanic rocks in the Yamansu iron deposit, Eastern TianshanMountains, NW China: Constraints on the metallogenesis, Ore Geology Reviews56,487-502.
    Hou, T., Zhang, Z.C., Ye, X.R., et al.,2011. Noble gas isotopic systematics of Fe-Ti-Voxide ore-related mafic-ultramafic layered intrusions in the Panxi area, China:The role of recycled oceanic crust in their petrogenesis. Geochimica etCosmochimica Acta,75,6727-6741.
    Howarth, G.H., Prevec, S.A.,2013. Hydration vs. oxidation: Modelling implicationsfor Fe–Ti oxide crystallisation in mafic intrusions, with specific reference to thePanzhihua intrusion, SW China. Geoscience Frontiers4,555-569.
    Howarth, G.H., Prevec, S.A.,2013. Trace Element, PGE and Sr–Nd isotopegeochemistry of the Panzhihua mafic layered intrusion, SW China: Evidence forfractionated PGE–depleted picritic parent magma. Geochim Cosmochim Acta120,459-478.
    Howarth, G.H., Prevec, S.A., Zhou, M.F.,2013. Timing of Ti–magnetitecrystallisation and silicate disequilibrium at the Panzhihua Mafic LayeredIntrusion: implications for ore forming processes. Lithos170,73-89.
    Hu, F.F., Fan, H., Yang, J., et al.,2004. Mineralizing age of the Rushan lode golddeposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon.Chinese Sci. Bull.49,1629-1636.
    Hu, H., Li, J., Lentz, D., et al.,2013. Dissolution–reprecipitation process of magnetitefrom the Chengchao iron deposit: Insights into ore genesis and implication forin-situ chemical analysis of magnetite, Ore Geology Reviews57,93-405.
    Humphreys, M.C.S.,2009. Chemical evolution of intercumulus liquid, as recorded inplagioclase overgrowth rims from the Skaergaard Intrusion. J. Petrol.50,127-145.
    Humphreys, M.C.S.,2011. Silicate liquid immiscibility within the crystal mush:evidence from Ti in plagioclase from the Skaergaard intrusion. J. Petrol.52,147-174.
    Hunter, R.H., Sparks, R.S.J.,1987. The differentiation of the Skaergaard intrusion.Contributions to Mineralogy and Petrology95,451-461.
    Hutchinson, R.W.,1990. Precious metals in massive base metal sulfide deposits.Geologische Rundschau79,241-263.
    Ichiyama, Y., Ishiwatari, A., Hirahara, Y., et al.,2006. Geochemical and isotopicconstraints on the genesis of the Permian ferropicritic rocks from theMino-Tamba belt, SW Japan. Lithos89,47-65.
    Igarashi, G., Kodera, M., Ozima, M., et al.,1987. Noble gas elemental and isotopicabundances in deep-sea trenches in the western Pacific. Earth Planet. Sci. Lett.86,77-84.
    Iizuka, T., Hirata, T., Komiya, T., et al.,2005. U-Pb and Lu-Hf isotope systematics ofzircons from the Mississippi River sand: Implications for reworking and growthof continental crust. Geology33,485-488.
    Ikeda, Y., Nagao, K., Kagami, H.,2001. Effects of recycled materials involved in amantle source beneath the southwest Japan arc region: evidence from noble gas,Sr, and Nd isotopic systematics. Chem. Geol.175,509-522.
    Ikeda, Y., Nagao, K., Stern, R. J., et al.,1998. Noble gases in pillow basalt glassesfrom the northern Mariana Trough back-arc basin. Isl. Arc7,471-478.
    Ionov, D.A., Ashchepkov, I.V., Stosch, H.G., et al.,1993. Garnet peridotite xenolithsfrom the Vitim Volcanic Field, Baikal Region: the nature of the garnet–spinelperidotite transition zone in the continental mantle. J. Petrol.34,1141-1175.
    Ionov, D.A., Shirey, S.B., Weis, D., et al.,2006. Os-Hf-Sr-Nd isotope and PGEsystematics of spinel peridotite xenoliths from Tok, SE Siberian craton: effects ofpervasive metasomatism in shallow refractory mantle. Earth Planet Sci Lett241,47-64.
    Irvine, T.N.,1975. Crystallization sequences in Muskox intrusion and other layeredintrusions.2. Origin of chromitite layers and similar deposits of other magmaticores. Geochimica et Cosmochimica Acta39,991-1020.
    Ishihara, S.,2007. Origin of the Cenozoic–Mesozoic magnetite-series andilmenite-series granitoids in East Asia. Gondwana Research11,247-260.
    Ishihara, S., Li, W.D., Sasaki, A., et al.,1986. Characteristics of Cretaceousmagmatism and related mineralization of the Ningwu basin, Lower Yangtze area,eastern China. Geological Survey of Japan Bulletin37,201-231.
    Jakobsen, J.K., Veksler, I.V., Tegner, C., et al.,2005. Immiscible iron-and silica-richmelts in basalt petrogenesis documented in the Skaergaard intrusion. Geology33,885-888.
    Jakobsen, J.K., Veksler, I.V., Tegner, C., et al.,2011. Crystallization of the Skaergaardintrusion from an emulsion of immiscible ironand silica–rich liquids: evidencefrom melt inclusions in plagioclase. J. Petrol.52,345-373.
    Jami, M., Dunlop, A.C., Cohen, D.R.,2007. Fluid inclusion and stable isotope studyof the Esfordi apatite-magnetite deposit, central Iran. Economic Geology102,1111-1128.
    Jami, M., Dunlop, A.C., Cohen, D.R.,2009. Fluid inclusion and stable isotope studyof the Esfordi apatite-magnetite deposit, central Iran-a reply. Economic Geology104,140-143.
    Jamtveit, B.,1997. Crystal growth and intracrystalline zonation patterns inhydrothermal systems, in Jamtveit, B., and Meakin, P., eds., Growth anddissolution and pattern formation in geosystems: Netherland, Kluwer Academic,65–82.
    Jenner, G.A., Foley, S.F., Jackson, S.E., et al.,1993. Determination of partitioncoefficients for trace elements in high pressure-temperature experimental runproducts by laser ablation microprobe-inductively coupled plasma-massspectrometry (LA-ICP-MS). Geochimica et Cosmochimica Acta58,5099-5103.
    Jiang, N., Chu, X.L., Mizuta, T., et al.,2004. A magnetite–apatite deposit in theFanshan alkaline ultramafic complex, Northern China. Economic Geology99,397-408.
    Jiang, S.Y., Ma, F., Zhao, K.D., et al.,2006. Origin of iron deposits in the Ningwuvolcanic basin, Lower Yangtze River district, China: Geochemical and isotopicevidence, Goldschmidt Conference Abstracts A293.
    Jiang, Z., Zhang, Z., Wang, Z., et al.,2013. Geology, geochemistry, andgeochronology of the Zhibo iron deposit in the Western Tianshan, NW China:constraints on metallogenesis and tectonic setting. Ore Geology Reviews57,406-424.
    Johnson, E.R., Wallace, P.J., Granados, H.D., et al.,2009. Subduction-relatedVolatileRecycling and Magma Generation beneath Central Mexico: Insights from MeltInclusions, Oxygen Isotopes and Geodynamic Models. Journal of Petrology50,1729-1764.
    Johnson, K.T.M.,1998. Experimental determination of partition coefficients for rareearth and high-field-strength elements between clinopyroxene, garnet, andbasaltic melt at high pressures. Contrib. Mineral. Petrol.133,60-68.
    Jonsson, E., Troll, V.R., H gdahl, K., et al.,2013. Magmatic origin of giant‘Kiruna-type’apatite-iron-oxide ores in Central Sweden. Scientific reports,3.
    Joyce, D.B., Holloway, J.R.,1993. An experimental determination of thethermodynamic properties of H2O–CO2–NaCl fluids at high pressures andtemperatures. Geochemica et Cosmochemical Acta57,733-746.
    Kalsbeek, F., Taylor, P.N.,1986. Age and origin of early Proterozoic dolerite dykes insouth-west Greenland. Contrib Miner Petrol,89,307-316.
    Kamenov, G.D., Perfit, M.R., Jonasson, I.R., et al.,2005. High-precision Pb isotopemeasurements reveal magma recharge as a mechanism for ore deposit formation:Examples from Lihir Island and Conical seamount, Papua New Guinea.Chemical Geology219,131-148.
    Kaneoka, I., Takaoka, N.,1985. Noble-gas state in the earth’s interior-someconstraints on the present state. Chem. Geol.52,75-95.
    Kapp, P., Yin, A., Harrison, T.M., et al.,2005. Cretaceous-Tertiary shortening, basindevelopment, and volcanism in central Tibet. Geological Society of AmericaBulletin117,865-878.
    Kepezhinskas, P., Mcdermott, F., Defant, M.J., et al.,1997. Trace element andSr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arcpetrogenesis. Geochimica et Cosmochimica Acta61,577-600.
    Kerr, R.C., Tait, S.R.,1986. Crystallization and compositional convection in a porousmedium with application to layered igneous intrusions. J Geophy Res91,3591-3608.
    Klein, E. M., Langmuir, C.H.,1987. Global correlations of ocean ridge basaltchemistry with axial depth and crustal thickness. J. Geophys. Res.92,8089-8115.
    Koepke, J., Berndt, J., Feig, S.T., et al.,2007. The formation of SiO2–rich meltswithin the deep oceanic crust by hydrous partial melting of gabbros. Contrib.Mineral. Pet.153,67-84.
    Koepke, J., Feig, S.T., Snow, J.,2005. Late–stage magmatic evolution of oceanicgabbros as a result of hydrous partial melting: Evidence from the ODP Leg153drilling at the Mid–Atlantic Ridge. Geochem Geophy Geosy6,1-27.
    Kogiso, T., Tatsumi, Y., Nakano, S.,1997. Trace element transport during dehydrationprocesses in the subducted oceanic crust:1. Experiments and implications for theorigin of ocean island basalts. Earth Planet. Sci. Lett.148,193-205.
    Kolker, A.,1982, Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite)deposits and evaluation of the liquid immiscibility hypothesis. EconomicGeology77,1146-1158.
    Konhauser, K.O., Amskold, L., Lalonde, S.V., et al.,2007. Decoupling photochemicalFe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett.258,87-100.
    Koster van Groos A.F., Wyllie, P.J.,1963. Experimental data bearing on role of liquidimmiscibility in genesis of carbonatites. Nature199,801-802.
    Kravchinsky, V.A., Cogne, J.P., Harbert, W.P., et al.,2002. Evolution of theMongol–Okhotsk Ocean as constrained by new palaeomagnetic data from theMongol–Okhotsk suture zone, Siberia. Geophysical Journal International148,34-57.
    Kr ner, A., Alexeiev, D.V., Hegner, E., et al.,2011. Zircon and muscovite ages,geochemistry, and Nd–Hf isotopes for the Aktyuz metamorphic terrane: evidencefor an Early Ordovician collisional belt in the northern Tianshan of Kyrgyztan.Gondwana Res.21,901-927.
    Kr ner, A., Kovach, V., Belousova, E., et al.,2013. Reassessment of continentalgrowth during the accretionary history of the Central Asian Orogenic Belt.Gondwana Res., http://dx.doi.org/10.1016/j.gr.2012.12.023.Kwak, T.A.P., Brown,W.M., Abeysinghe, P.B., Tan, T.H.,1986. Fe solubilities in very salinehydrothermal fluids: their relation to zoning in some ore deposits. Econ. Geol.81,447-465.
    Kurz, M.D.,1991. Noble gas isotopes in oceanic basalts: controversial constraints onmantle models. In Short Course Handbook on Applications of RadiogenicIsotope Systems to Problems in Geology (eds. L. Heaman and J. N. Ludden).Mineral. Assoc. Canada.
    Lago, M., Arranz, E., Pocovi, A., et al.,2004. Permian magmatism and basindynamics in the southern Pyrenees: a record of the transition from late Variscantranstension to early Alpine extension. Geological Society, London, SpecialPublications223,439-464.
    Langmuir, C.H.,1989. Geochemical consequences of in situ crystallization. Nature340,199-205.
    Lapham, D.M., Gray, C.,1973. Geology and origin of the Triassic magnetite depositsand diabase at Cornwall. Pennsylvania Geological Survey,4th series. MineralResources Report,56,343.
    Lapham, D.M., Gray, C.,1973. Geology and origin of the Triassic magnetite depositsand diabase at Cornwall, Pennsylvania. Pennsylvania Geological Survey BulletinM56,343.
    Lei, R.X., Wu, C.Z., Gu, L.X., et al.,2011. Zircon U-Pb chronology and Hf isotope ofthe Xingxingxia granodiorite from the Central Tianshan zone (NW China):Implications for the tectonic evolution of the southern Altaids. Gondwana Res.20,582-593.
    Li, C., Maier, W. D., de Waal, S. A.,2001. The role of magma mixing in the genesis ofPGE mineralization in the Bushveld Complex: thermodynamic calculations andnew interpretations. Economic Geology96,653-662.
    Li, J., Vasconcelos, P., Zhou, M., et al.,2014. Longevity of magmatic-hydrothermalsystems in the Daye Cu-Fe-Au District, eastern China with implications formineral exploration. Ore Geology Reviews57,375-392.
    Li, J., Xu, J. F., Suzuki, K., et al.,2010. Os, Nd and Sr isotope and trace elementgeochemistry of the Muli picrites: Insights into the mantle source of theEmeishan Large Igneous Province. Lithos119,108-122.
    Li, L., Zheng, Y.F., Zhou,J. B.,2001. Dynamic model for Pb isotope evolution in thecontinental crust of China. Acta Petrologica Sinica17,61-68(in Chinese withEnglish abstract).
    Li, Q., Zhang, Z., Geng, X., et al.,2013. Geology and geochemistry of theQiaoxiahala Fe–Cu–Au deposit, Junggar region, northwest China. Ore GeologyReviews57,462-481.
    Lindsley, D.H.,2003. Do Fe-Ti oxide magma exist? Geology: Yes; Experiment: No.NGU Special Publication,9,34-35.
    Lindsley, D.H., Smith, D.,1971. Chemical variations in the feldspars. Carnegie InstWashington Yearb69,274-278.
    Liu, P. P., Zhou, M. F., Wang, C. Y., et al.,2014. Open magma chamber processes inthe formation of the Permian Baima mafic–ultramafic layered intrusion, SWChina. Lithos,184,194-208.
    Ling, M.X., Wang, F.Y., Ding, X., et al.,2009. Cretaceous ridge subduction along theYangtze River Belt, eastern China. Economic Geology104,303-321.
    Liu, X.J., Liu, W., Liu, L.J.,2012. The generation of a stratiform skarn and volcanicexhalative Pb-Zn deposit (Sawusi) in the southern Chinese Altay Mountains: Theconstraints from petrography, mineral assemblage and chemistry. Gondwana Res.22,597-614.
    Liu, Y.S., Hu, Z.C., Gao, S., et al.,2008, In situ analysis of major and trace elementsof anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology257,34-43.
    Long, X., Yuan, C., Sun, M., et al.,2012. Geochemistry and U-Pb detrital zircondating of Paleozoic graywackes in East Junggar, NW China: Insights intosubduction-accretion processes in the southern Central Asian Orogenic Belt.Gondwana Res.21,637-653.
    Longhi, J.,1987. Liquidus equilibria and solid solution in the systemCaAl2Si2O8–Mg2SiO4–CaSiO3–SiO2at low pressure. Am J Sci287,265-331.
    Longhi, J., Walker, D., Hays, J.F.,1976. Fe and Mg in plagioclase. Proc7th Lunar SciConf,1281-1300.
    Lü, B.Q., Wang, H.G., Hu, W.S., et al.,2004. Relationship between Paleozoicupwelling facies and hydrocarbon in southeastern marginal Yangtze Block.Marine Geology&Quaternary Geology24,29-35(in Chinese with Englishabstract).
    Luais, B., Hawkesworth, C.J.,1994. The generation of continental crust: an integratedstudy of crust forming processes in the Archean Zimbabwe. J. Petrol.35,43-93.
    Ludden, J.N., Thompson, G.,1978. Behavior of rare earth elements during submarineweathering of tholeiitic basalts. Nature274,147-149.
    Ludwig, K.R.,2003. User’s manual for Isoplot3.00. A Geochronological Toolkit forMicrosoft Excel: Berkeley Geochronology Center, Special Publication No.4a,Berkeley, CA.
    Lugmair, G. W., Harti, K.,1978. Lunar initial143Nd/144Nd: differential evolution of thelunar crust and mantle. Earth and Planetary Science Letters39,349-357.
    Luguet, A., Horan, M.F., Shirey, S.B., et al.,2004. Partitioning of highly siderophileelements (HSE) in very refractory peridotites. Geochim Cosmochim Acta68,A549
    Lux, G.,1987. The behaviour of noble gases in silicate liquids: solution, diffusion,bubbles and surface effects, with applications to natural samples. Geochim.Cosmochim. Acta51,1549-1560.
    Lyons, J.I.,1988. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity,Durango, Mexico. Economic Geology83,1886-1906.
    Ma, C. Q., Ehlers, C., Xu, C. H., et al.,2000. The roots of the Dabieshanultrahigh-pressure metamorphic terrane: constraints from geochemistry andNd-Sr isotope systematics. Precambrian Research102,279-301.
    Maal e, S.,1976. The zoned plagioclase of the Skaergaard Intrusion, East Greenland.J Petrol17,398-419.
    Maclellan, K.L., Lentz, D.R., Mcclenaghan, S.H.,2006. Petrology, geochemistry, andgenesis of the copper zone at the Brunswick No.6volcanogenic massive deposit,Bathurst Mining Camp, New Brunswick, Canada. Explor. Min. Geol.15,53-75.
    Maheo, G., Blichert Toft, J., Pin, C., et al.,2009. Partial melting of mantle and crustalsources beneath South Karakorum, Pakistan: implications for the Miocenegeodynamic evolution of the India-Asia convergence zone. J. Petrol.50,427-449.
    Mahoney, J.J., Frei, R., Tejada, M.L.G., et al.,1998. Tracing the Indian Ocean mantledomain through time: isotopic results from old west Indian, east Tethyan, andSouth Pacific seafloor. J. Petrol.39,1285-1306.
    Mahoney, J.J., LeRoex, A.P., Peng, Z., et al.,1992. Western limits of the Indian OceanMORB mantle and the origin of low206Pb/207Pb MORB: Isotope systematicsof the central southwest Indian Ridge (17°-50°E). J. Geophys. Res.97,19771-19790.
    Mao, J., Goldfarb, R. J., Wang, Y., et al.,2005. Late Paleozoic base and preciousmetal deposits, East Tianshan, Xin-jiang, China: Characteristics and geodynamicsetting. Episodes-Newsmagazine of the International Union of GeologicalSciences28,23-30.
    Mao, J.W., Goldfarb, R.J., Wang, Y.T., et al.,2005. Late paleozoic base and preciousmetal deposits, East Tianshan, Xinjiang, China: characteristics and geodynamicsetting. Episodes28,1-14.
    Mao, J.W., Wang, Y.T., Lehmann, B., et al.,2006. Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the YangtzeRiver valley and metallogenic implications. Ore Geology Reviews29,307-324.
    Mao, J.W., Wang, Y.T., Lehmann, B., et al.,2006. Molybdenite Re–Os and albite40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the YangtzeRiver valley and metallogenic implications. Ore Geology Reviews29,307-324.
    Markl, G.,2001. A new type of silicate liquid immiscibility in peralkaline nephelinesyenites (lujavrites), the Ilímaussaq complex, South Greenland. Contributions toMineralogy and Petrology141,458-472.
    Marshall, L.A., Sparks, R.S.J.,1984. Origin of some mixed magma and net-veinedring intrusions. Journal of the Geological Society141,171-182.
    Martinsson, O.,1997. Tectonic setting and metallogeny of the Kiruna greenstones.Ph.D. thesis, Lule University of Technology, Lule, Sweden.
    Martinsson, O., Weihed, P.,1999. Metallogeny of juvenile palaeoproterozoic volcanicarcs and greenstone belts in rifted Achaean crust in the northern part of Sweden,Fennoscandian Shield: Fifth Biennial740SGA Meeting and the TenthQuadrennial IAGOD Symposium, Mineral Deposits–Processes to Processing,London.2,1329-1332.
    Marty, B., Ozima, M.,1986. Noble gas distribution in oceanic basalt glasses.Geochim. Cosmochim. Acta50,1093-1098.
    Marty, B., Pik, R., Gezahegn, Y.,1996. Helium isotopic variations in Ethiopian PlumeLavas: nature of magmatic sources and limit on lower mantle contribution. EarthPlanet. Sci. Lett.144,223-237.
    Maruyama, S., Isozaki, Y., Kimura, G.,1997. Plaeogeographyic maps of the Japaneseisland: Plate tectonic synthesia from750Ma to the present. Island Arc6,121-142.
    Matsuda, J., Nagao, K.,1986. Noble gas abundances in deep-sea sediment core fromeastern equatrorial Pacific. Geochem. J.20,71-80.
    Matsumoto, T., Chen, Y., Matsuda, J.,2001. Concomitant occurrence of primordialand recycled noble gases in the Earth’s mantle. Earth Planet. Sci. Lett.185,35-47.
    Matsumoto, T., Honda, M., McDougall, I., et al.,2000. Noble gases in pyroxenitesand metasomatised peridotites from the Newer Volcanics, southeastern Australia:implications for mantle metasomatism. Chem. Geol.168,49-73.
    Matte, P., Mattauer, M., Olivet, J.M., et al.,1997. Continental subductions beneathTibet and the Himalayan orogeny: a review. Terra Nova9,264-270.
    Mattey, D., Lowry, D., Macpherson, C.,1994. Oxygen isotope composition of mantleperidotite. Earth Planet. Sci. Lett.128,231-241.
    Maynard, J.B.,1983. Geochemistry of Sedimentary Ore Deposits. Springer Verlag,Heidelberg.305.
    McBirney, A.R., Nakamura, Y.,1974. Immiscibility in late–stage magmas of theSkaergaard intrusion. Carnegie Ins Wash Yrb73,348-352.
    McBirney, A.R.,2008. Comments on:‘Liquid immiscibility and the evolution ofbasaltic magma. Journal of Petrology48,2187-2210.
    McBirney, A.R., NOYES, R.M.,1979. Crystallization and layering of the Skaergaardintrusion. Journal of Petrology20,487-554.
    McBirney, A. R.,1996. The Skaergaard intrusion. In: Cawthorn, R. G.(ed.) LayeredIntrusions. Amsterdam: Elsevier,147-180.
    McCulloch, M.T., Gamble, J.A.,1991. Geochemical and geodynamical constraints onsubduction zone magmatism. Earth Planet Sci. Lett.102,358-374.
    McCulloch, M.T., Gregory, R.T., Wasserburg, G.J., et al.,1981. Sm–Nd, Rb–Sr, and18O/16O isotopic systematics in an oceanic crustal section: evidence from theSamail ophiolites. J. Geophys. Res.86,2721-2735.
    McKenzie, D., Bickle, M.J.,1988. The volume and composition of melt generated byextension of the lithosphere. J. Petrol.29,625-679.
    Meinert, L.D., Dipple, G.M., Nicolescu, S.,2005. World Skarn Deposits: inHedenquist J W et al.(eds) Economic Geology100th Anniversary Volume,Society of Economic Geologists, Littleton, Colorado, USA,299-336.
    Meinert, L.D.,1984. Mineralogy and Petrology of Iron Skarns in Western BritishColumbia, Canada. Economic Geology79,869-882.
    Meinert, L.D.,1992. Skarns and skarn deposits. Geosci. Can.19,145-162.
    Meinert, L.D., Dipple, G.M., Nicolescu, S.,2005. World skarn deposits. EconomicGeology100th Anniversary Volume,299-405.
    Melson, W.T., Thompson, G., Van Andel, T.H.,1968. Volcanism and metamorphism inthe Mid-Atlantic ridge22°N latitude. J. Geophys. Res.73,5925-5941.
    Mengel, K., Green, D.H.,1989. Stability of amphibole and phlogopite inmetasomatized peridotite under water-saturated and water-undersaturatedconditions. Kimberlites and related rocks. In: Ross, J.(Ed.), GeologicalSocietyof Australia, vol.14. Special Publication,571-581.
    Menzies, M.A., Long, A., Ingeram, G., et al.,1993. MORB periodotite-sea waterinteraction: experimental constrains on the behavior of trace elements,87Sr/86Srand143Nd/144Nd ratios. In: Prichard, H.M., Alabaster, T., Harris, N.B.W., Neary,C.R.(Eds.), Magmatic Processes and Plate Tectonics: Geological Society,London, Special Publications,76, pp.309-322.
    Meschede, M.,1986. A method of discriminating between different types ofmid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram.Chem. Geol.56,207-218.
    Meurer, W.P., Boudreau, A.E.,1998. Compaction of igneous cumulates Part II:Compaction and the development of igneous foliations. J Geol106,293-304.
    Mitchell, A.A., Eales, H.V., Kruger, F.J.,1998. Magma replenishment, and thesignificance of poikilitic textures, in the Lower Main Zone of the westernBushveld Complex, South Africa. Miner Mag62,435-450.
    Miyashiro, A.,1975.Classification, characteristics and origin of ophiolites. Joumal ofGeology83,249-281.
    Mohr, P.,1987. Patterns of faulting in the Ethiopian rift valley. Tectonophysics143,169-179
    Mondal, S. K., Mathez, E. A.,2007. Origin of the UG2chromitite layer, BushveldComplex. J. Petrol.48,495-510.
    Morey, G.B.,1999. High-grade iron ore deposits of the Mesabi Range,Minnesota—product of a continental-scale Proterozoic ground-water flowsystem. Economic Geology94,133-142.
    Morse, S.A.,1986. Convection in aid of adcumulus growth. J. Petrol.27,1183-1214.
    Morse, S.A., Lindsley, D.H., William, R.J.,1980. Concerning intensive parameters inthe Skaergaard Intrusion. Am J Sci280,159-170.
    Morse, S. A.,2008. Compositional Convection Trumps Silicate Liquid Immisciblityin Layered Intrusions: a Discussion of ‘Liquid immiscibility and the evolution ofbasaltic magma’by Veksler et al., Journal of Petrology48,2187–2210. Journal ofPetrology49,2157-2168.
    Münker, C.,2000. The isotope and trace element budget of the Cambrian Devil RiverArc System, New Zealand: identification of four source components. J. Petrol.41,759-788.
    Nagao, K., Takahashi, E.,1993. Noble gases in the mantle wedge and lower crust: aninference from the isotopic analyses of xenoliths from Oki-Dogo andIchinomegata Japan. Geochem. J.27,229-240.
    Nagaseki, H., Hayashi, K.,2008. Experimental study of the behavior of copper andzinc in a boiling hydrothermal system. Geology36,27-30.
    Namur, O., Charlier, B.,2012. Efficiency of compaction and compositionalconvection during mafic crystal mush solidification: The Sept Iles layeredintrusion, Canada. Contrib Mineral Pet163,1049-1068.
    Namur, O., Charlier, B., Holness, M.B.,2012. Dual origin of Fe–Ti–P gabbros byimmiscibility and fractional crystallization of evolved tholeiitic basalts in theSept Iles layered intrusion. Lithos154,100-114.
    Nasdala, L., Hofmeister,W., Norberg, N., et al.,2008. Zircon M257-a homogeneousnatural reference material for the ion microprobe U–Pb analysis of zircon.Geostandards and Geoanalytical Research32,247-265.
    Naslund, H.R.,1983. The effects of oxygen fugacity on liquid immiscibility iniron-bearing silicate melts. American Journal of Science283,1034-1059.
    Naslund, H.R., Aguirre, R., Dobbs, F.M., et al.,2000. The origin, emplacement, anderuption of ore magmas. IX Congreso Geologico Chileno, vol.2, Sociedadgeológica de Chile,135-139.
    Naslund, H.R., Henriquez, F., Nystr m, J.O., et al.,2002. Magmatic iron ores andassociated mineralization: Examples from the Chilean high Andes and coastalcordillera. In: Porter, T.M.(Ed.), Hydrothermal iron oxide copper-gold andrelated deposits—a global perspective, vol.2. PGC Publishing, Adelaide,207-226.
    Neal,C.R., Mahoney, J.J., Chazey, W.J.,2002. Mantle sources and the highly variablerole of continental lithosphere in basalt petrogenesis of the Kerguelen Plateauand Broken Ridge LIP: results from ODP Leg183. J. Petrol.43,1177-1205.
    Newton, R.C., Manning, C.E.,2002. Experimental determination of calcite solubilityin H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures:Implications for metasomatic processes in shear zones. Am. Mineral.87,1401-1409.
    Nielsen, R.L., Davidson, P.M., Grove, T.L.,1988. Pyroxene–melt equilibria: anupdated model. Contrib Mineral Pet100,361-373.
    Nier, A.O.,1950. A redetermination of the relative abundances of the isotopes ofcarbon, nitrogen, oxygen, argon and potassium. Phys. Rev.77,789-793.
    Niu, X., Chen, B., Liu, A., et al.,2012. Petrological and Sr–Nd–Os isotopicconstraints on the origin of the Fanshan ultrapotassic complex from the NorthChina Craton. Lithos149,146-158.
    Nystr m, J.O., Henriquez, F.,1994. Magmatic features of iron ores of the Kiruna typein Chile and Sweden: Ore textures and magnetite geochemistry. EconomicGeology89,820-839.
    Ohmoto, H.,1986, Stable isotope geochemistry of ore deposits. Reviews inMineralogy16,491-559.
    Osborn, E.F.,1959. Role of oxygen partial pressure in the crystallization anddifferentation of basaltic magma. American Journal of Science257,609-647.
    Ozima, M., Podosek, F.A.,1983. Noble Gas Geochemistry. Cambridge UniversityPress, Cambridge.
    Ozima, M., Podosek, F.A.,2002. Noble Gas Geochemistry,2nded. CambridgeUniversity Press, Cambridge.
    Pan, Y.M., Dong, P.,1999. The Lower Changjiang (Yangzi/Yangtze River)metallogenic belt, east central China: Intrusion-and wall rockhosted Cu-Fe-Au,Mo, Zn, Pb, Ag deposits. Ore Geology Reviews15,177-242.
    Pang, K.N., Zhou, M.F., Lindsley, D., et al.,2008. Origin of Fe–Ti oxide ores in maficintrusions: evidence from the Panzhihua Intrusion, SW China. J. Petrol.49,295-313.
    Pang, K.N., Zhou, M.F., Qi, L., et al.,2013. Petrology and geochemistry at the Lowerzone-Middle zone transition of the Panzhihua intrusion, SW China: Implicationsfor differentiation and oxide ore genesis. Geoscience Frontiers4,517-533.
    Pang, K.N., Zhou, M.F., Qi, L., et al.,2010. Flood basalt-related Fe–Ti oxide depositsin the Emeishan large igneous province, SW China. Lithos119,123-136.
    Pang, K.N., Li, C., Zhou, M.F., et al.,2009. Mineral compositional constraints onpetrogenesis and oxide ore genesis of the late Permian Panzhihua layeredgabbroic intrusion, SW China. Lithos110,199-214.
    Parák, T.,1975. Kiruna iron ores are not "intrusive-magmatic ores of the Kiruna type".Economic Geology70,1242-1258.
    Park, C.F.,1961. A magnetite "flow" in northern Chile. Economic Geology,56,431-436.
    Parks, J., Hill, R.E.T.,1986. Phase compositions and cryptic variation in a2.2-kmsection of the Windimurra layered gabbroic intrusion, Yilgarn block, WesternAustralia—a comparison with the Stillwater complex. Economic Geology81,1196-1202.
    Pearce, J.A.,1982. Trace elements characteristics of lavas from destructive plateboundaries. In: Thorpe, R.S.(Ed.), Andesites: Orogenic Andesites and RelatedRocks. John Wiley and Sons, New York,525-548.
    Pearce, J.A., Baker, P.E., Harvey, P.K., et al.,1995. Geochemical evidence forsubduction fluxes, mantle melting and fractional crystallization beneath theSouth Sandwich island arc. J. Petrol.36,1073-1109.
    Pearce, J.A., Cann, J.R.,1973. Tectonic setting of basic volcanic rocks determinedusing trace element analyses. Earth Planet. Sci. Lett.19,290-300.
    Pearce, J.A., Norry, M.J.,1979. Petrogenetic implications of Ti, Zr, Y and Nbvariations in volcanic rocks. Contributions to Mineralogy and Petrology69,33-47.
    Pearce, J.W., Peate, D.W.,1995. Tectonic implications of the composition of volcanicarc magmas. Annu. Rev. Earth Planet. Sci.23,251-285.
    Pearson, D.G., Carlson, R.W., Shirey, S.B., et al.,1995. The stabilisation of Archaeanlithospheric mantle: a Re–Os isotope study of peridotite xenoliths from theKaapvaal craton. Earth Planet Sci Lett134,341-357.
    Pearson, D.G., Nowell, G.M.,2003. Re–Os and Lu–Hf isotope constraints on theorigin and age of pyroxenites from the Beni Bousera peridotite massif:implications for mixed peridotite–pyroxenite mantle sources. J. Petrol.45,439-455.
    Pearson, D. G., Shirey, S. B., Carlson, R. W., et al.,1995. Re-Os, Sm-Nd, and Rb-Srisotope evidence for thick Archaean lithospheric mantle beneath the Siberiancraton modified by multistage metasomatism. Geochimica et CosmochimicaActa,59,959-977.
    Pei, R.F., Hong, D.W.,1995. The granites of South China and their metallogeny.Episodes18,77-86.
    Perfit, M.R., Gust, D.A., Bence, A.E., et al.,1980. Chemical characteristics of islandarc basalts: implications for mantle sources. Chem. Geol.30,227-256.
    Petford, N., Gallagher, K.2001. Partial melting of mafic (amphibolitic) lower crust byperiodic influx of basaltic magma. Earth and Planetary Science Letters193,483-499.
    Peucker, E. B., Hanghoj, K., Atwood, T., et al.,2012. Rhenium-osmium isotopesystematics and platinum group element concentrations in oceanic crust.Geology40,199-202.
    Philpots, A.R.,2008. Comments on: Liquid Immiscibility and the Evolution ofBasaltic Magma. J. Petrol.49,2171-2175.
    Philpotts, A.R., Philpotts, D.E.,2005. Crystal–mush compaction in the Cohassettflood–basalt flow, Hanford,Washington. J Volcanol Geoth Res145,192-206.
    Philpotts, A.R.,1982. Compositions of immiscible liquids in volcanic rocks. ContribMineral Pet80,201-218.
    Philpotts, A.R.,1967. Origin of certain iron–titanium oxide and apatite rocks.Economic Geology62,303-315.
    Philpotts, A.R.,2008. Comments on: Liquid immiscibility and the evolution ofbasaltic magma. J. Petrol.49,2171-2175.
    Philpotts, A.R.,1967. Origin of certain iron titanium oxide and apatite rocks.Economic Geology62,303-316.
    Phinney, W.C.,1992. Partition coefficients for iron between plagioclase and basalt asa function of oxygen fugacity–implications for Archean and lunar anorthosites.Geochim Cosmochim Acta56,1885-1895.
    Pickard, A.L.,2003. SHRIMP U-Pb zircon ages for the Palaeoproterozoic KurumanIron Formation, Northern Cape Province, South Africa: evidence forsimultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambrian Res.125,275-315.
    Pirajno, F.,2009. Hydrothermal Processes and Mineral System. Springer Press, Perth,Australia.1250.
    Pirajno, F.,2010. Intracontinental strike–slip faults, associated magmatism, mineralsystems and mantle dynamics: examples from NW China and Altay–Sayan(Siberia). J. Geodyn.50,325-346.
    Plank, T., Langmuir, C.H.,1998. The chemical composition of subducting sedimentand its consequences for the crust and mantle. Chem. Geol.145,325-394.
    Plimer, I.R.,1986. Sediment-hosted exhalative Pb-Zn deposits–products ofcontrasting ensialic rifting. Trans. Geol. Soc. South Africa89,57-73.
    Polat, A., Appel, P.W.U., Fryer, B., et al.,2009. Trace element systematics of theNeoarchean Fisken sset anorthosite complex and associated meta-volcanic rocks,SW Greenland: evidence for a magmatic arc origin. Precambrian Res.175,87-115.
    Poreda, R.J., Farley, K.A.,1992. Rare gases in Samoan xenoliths. Earth Planet. Sci.Lett.113,129-144.
    Poreda, R., Schilling, J.G., Craig, H.,1986. Helium and hydrogen isotopes inocean-ridge basalts north and south of Iceland. Earth Planet. Sci. Lett.78,1-17.
    Powell, C.M., Oliver, N.S., Li, Z.X., et al.,1999. Hypogenic hydrothermal origin forgiant Hamersley iron oxide ore bodies: Geology27,175-178.
    Prestvik, T., Goles, G.G.,1985. Comments on the petrogenesis and the tectonic settingof Columbia River Basalts. Earth Planetary Science Letters72,65-73.
    Putirka, K.D., Mikaelian, H., Ryerson, F., et al.,2003. New clinopyroxene-liquidthermobarometers for mafic, evolved,and volatile-bearing lava compositions,with applications to lavas from Tibet and the Snake River Plain, Idaho. AmericanMineralogist88,1542-1554.
    Qi, L., Grégoire, D.C.,2000. Determination of trace elements in twenty-six Chinesegeochemistry reference materials by inductively coupled plasma massspectrometry. Geostandard Newsletter24,51-63.
    Qin, K.Z., Zhang, L.C., Xiao, W.J.,2003. Overview of major Au, Cu, Ni and Fedeposits and metallogenic evolution of the eastern Tianshan Mountains,Northwestern China. In: Mao, J.W., Goldfarb, Seltrnan (Eds.), Tectonic evolutionand metallogeny of the Chinese Altay and Tianshan, London,227-249.
    Ray, G.E., Webster, I.C.L., Ettlinger, A.D.,1995. The distribution of skarns in BritishColumbia and the chemistry and ages of their related plutonic rocks. EconomicGeology,90,920-937.
    Reiners, P.W., Nelson, B.K., Ghiorso, M.S.,1995. Assimilation of felsic crust bybasaltic magma: Thermal limits and extents of crustal contamination ofmantle-derived magmas. Geology23,563-566.
    Reisberg, L., Rouxel, O., Ludden, J., et al.,2008. Re-Os results from ODP Site801:evidence for extensive Re uptake during alteration of oceanic crust. Chem. Geol.248,256-271.
    Ren, J.Y., Tamaki, K., Li, S.T., et al.,2002. Late Mesozoic and Cenozoic rifting andits dynamic setting in Eastern China and adjacent areas. Tectonophysics344,175-205.
    Reynolds, I.M.,1985. The nature and origin of titaniferous magnetite-rich layers inthe upper zone of the Bushveld complex: a review and synthesis. EconomicGeology80,1089-1108.
    Riley, T.R., Curtis, M.L., Leat, P.T., et al.,2006. Overlap of Karoo and Ferrar magmatypes in KwaZulu-Natal, South Africa. J. Petrol.47,541-566.
    Ripa, M.,1988. Geochemistry of wall-rock alteration and of mixed volcanicexhalative facies at the Proterozoic Stollberg Fe-Pb-Zn-Mn(-Ag) deposit,Bergslagen, Sweden. Geol. Mijnbouw67,443-457.
    Ripley, E.M., Severson, M.J., Hauck, S.E.,1998. Evidence for sulfide and Fe–Ti–Prich liquid immiscibility in the Duluth Complex, Minnesota. Econ. Geol.93,1052-1062.
    Roedder, E.,1971. Fluid inclusion studies on the porphyry-type ore deposits atBingham, Utah, Butte.
    Roedder, E.,1979. Silicate Liquid Immiscibility in Magmas. In: Yoder, H.S.J.(Ed.),The Evolution of the Igneous Rocks,50thAnniversary Perspectives. PrincetonUniversity Press,15-57.
    Roedder, E.,1984. Fluid Inclusions. Reviews in Mineralogy,12. MineralogicalSociety of America, Washington, D.C.
    Roeder, P.L., Emslie, R.F.,1970. Olivine-liquid equilibrium. Contrib. Miner. Petrol.29,275-289.
    Roelofse, F., Ashwal, L.D., Pineda–Vargas, C.A., Przybylowicz, W.J.,2009.Enigmatic textures developed along plagioclase–augite grain boundaries at thebase of the Main Zone, Northern Limb, Bushveld Complex–evidence for latestage melt infiltration into a nearly solidified crystal mush. S. Afr. J. Geol.112,39-46.
    Rojas-Agramonte, Y., Kr er, A., Demoux, A., et al.,2011. Detrital and xenocrysticzircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia:Significance for the origin of crustal fragments in the Central Asian OrogenicBelt. Gondwana Res.19,751-763.
    Rona, P.A.,1984. Hydrothermal mineralization at seafloor spreading centers. EarthScience Reviews20,1-104.
    Rose, A.W., Herrick, D.C., Deines, P.,1985. An oxygen and sulfur isotope study ofskarn-type magnetite deposits of the Cornwall type, Southeastern Pennsylvania.Economic Geology80,418-443.
    Ryerson, F.J., Hess, P. C.,1980. The role of P2O5in silicate melts. GeochimicCosmochimica Acta44,611-624.
    Sano, Y., Nishio, Y., Gamo, T., et al.,1998. Noble gas and carbon isotopes in MarianaTrough basalt glasses. Appl. Geochem.13,441-449.
    Sano, A., Oberhansli, R., Romer, R.L., et al.,2002. Petrological, geochemical andisotopic constraints on the origin of Harzburg intrusion, Germany. Journal ofPetrology43,1529-1549.
    Sarda, P., Moreira, M., Staudacher, T.,1999. Argon-lead isotopic correlation inMid-atlantic ridge basalts. Science283,666-668.
    Sarda, P., Moreira, M., Staudacher, T., et al.,2000. Rare gas systematics on thesouthernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupalsource. J. Geophys. Res.105,5973-5996.
    Saunders, A.D., Storey, M., Kent, R., et al.,1992. Consequences of plume–lithosphereinteractions. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and thecauses of continental break-up. Geol. Soc. Spec. Publ.68,41-60.
    Saunders, A.D., Tarney, J.,1984. Geochemical characteristics of basalts volcanismwithin back-arc basin. In: Kokelaar, B.P., Howell, M.F.(Eds.), Marginal BasinsGeology: Volcanism and Associated Sedimentary and Tectonics Processes inModern and Ancient Marginal Basins. BlackWell Scientific Publication,Geological Society, London,57-76.
    Saunders, A.D., Storey, M., Kent, R.W., et al.,1992. Consequences ofplume-lithosphere interactions, in Storey, B.C., Alabaster, T. and Pankhurst, R.T.,eds., Magmatism and the Causes of Continental Break-up. London, GeologicalSociety of London Special Publication68,41-60.
    Schaefer, B.F., Parkinson, I.J., Hawkesworth, C.J.,2000a. Deep mantle plumeosmium isotope signature from West Greenland Tertiary picrites. Earth Planet Sci.Lett.175,105-118.
    Schaefer, B.F., Turner, S.P., Rogers, N.W., et al.,2000b. Re-Os isotope characteristicsof postorogenic lavas: implications for the nature of young lithospheric mantleand its contribution to basaltic magmas. Geology28,563-566.
    Scoon, R.N., Mitchell, A.A.,1994. Discordant iron-rich ultramafic pegmatites in theBushveld complex and their relationship to ironrich intercumulus and residualliquids. Journal of Petrology35,881-917.
    Seghedi, I., Downes, H., Pecskay, Z., et al.,2001. Magmagenesis in asubduction-related post-collisional volcanic arc segment: The UkrainianCarpathians. Lithos57,237-262.
    Seng r, A.M.C., Cin, A., Rowley, D.B., Nie, S.Y.,1993. Space-time patterns ofmagmatism along the Tethysides: A preliminary study. The Journal of Geology101,51-84.
    Shao, Q.H., Liu, S.F., Liu, X.Q., Tian, J.Q.,2011. Geological characteristics of theMotuosala Fe-Mn deposits. West-china Exploration Engineering,131-135(inChinese).
    Sharma, M.A.,1997. Siberian Traps. In Large Igneous Provinces: Continental,Oceanic, and Planetary Flood Volcanism (eds. J. J. Mahoney and M. F. Coffin).Geophysical Monographs, American Geophysical Union100.273-295.
    Shaw, A.M., Hilton, D.R., Fisher T.P., et al.,2006. Helium isotope variations inmineral separates from Costa Rica and Nicaragua: assessing crustal contribution,timescale variations and diffusion-related mechanism. Chem. Geol.230,124-139.
    Shellnutt, J.G., Zhou, M.F.,2007. Permian peralkaline, peraluminous andmetaluminous A-type granites in the Panxi district, SW China: their relationshipto the Emeishan mantle plume. Chem. Geol.243,286-313.
    Shellnutt, J.G., Zhou, M.F., Zellmer, G.,2009. Formation of peralkaline A-typegranitoids: insights from the Permian Fe-Ti oxide bearing Baima IgneousComplex(China). Chem. Geol.259,204-217.
    Shellnutt, J.G., Denyszyn, S.W., Mundil, R.,2012. Precise age determination of maficand felsic intrusive rocks from the Permian Emeishan large igneous province(SW China). Gondwana Res22,118-126.
    Shellnutt, J.G., Jahn, B.M.,2011. Origin of Late Permian Emeishan basaltic rocksfrom the Panxi region (SW China): implications for the Ti-classification andspatial-compositional distribution of the Emeishan flood basalts. J. Volcanol.Geotherm. Res.199,85-95.
    Shellnutt, J.G., Zhou, M.F., Yan, D.P., et al.,2008. Longevity of the PermianEmeishan mantle plume (SW China):1Ma,8Ma or18Ma? GeologicalMagazine145,373-388.
    Sheng, J.F.,1985. Mineralization and alteration of the Cihai iron deposit. Bulletin ofthe Institute of Mineral Deposits, Chinese Academy of Geological Sciences3,89-109(in Chinese with English abstract).
    Shi, P.,1993. Low–pressure phase relationships in the systemNa2O–CaO–FeO–MgO–Al2O3–SiO2at1100°C, with implications for thedifferentiation of basaltic magmas. J. Petrol.34,743-762.
    Shirey, S. B., Walker, R. J.,1998. The Re-Os isotope system in cosmochemistry andhigh-temperature geochemistry. Annual Review of Earth and PlanetarySciences,26,423-500.
    Sillitoe, R. H., Burrows, D. R.,2002. New field evidence bearing on the origin of theEl Laco magnetite deposit, northern Chile. Economic Geology97,1101-1109.
    Simon, A.C., Pettke, T., Candela, P.A., et al.,2007. The partitioning behavior of Asand Au in S-free and S-bearing magmatic assemblages. Geochimica etCosmochimica Acta71,1764-1782.
    Sinton, J.M., Ford, L.L., Chappell, B., et al.,2003. Magma genesis and mantleheterogeneity in the Manus back-arc basin, Papua New Guinea. J. Petrol.44,159-195.
    Sisson, T.W., Grove, T.L.,1993. Temperatures and H2O contents of low–MgOhigh–alumina basalts. Contrib. Mineral Pet.113,167-184.
    Sláma, J., Kosler, J., Condon, D.J., et al.,2008. Plesovice zircon–A new naturalreference material for U-Pb and Hf isotopic microanalysis. Chemical Geology249,1-35.
    Smith, J.V., Brown, W.L.,1987. Feldspar minerals. Springer Heidelberg.
    Smith, R.C., Rose, A.W., Lanning, R.M.,1975. Geology and geochemistry of Triassicdiabase in Pennsylvania. Geological Society of America Bulletin,86,943-955.
    Smith, R.E., Smith, S.E.,1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Na inclassification of basaltic magmas. Earth and Planetary Science Letters32,114-120.
    Smith, R.C., II,1973. Geochemistry of Triassic diabase from southeasternPennsylvania [Ph.D. thesis], University Park, Pennsylvania State University262.
    Smith, R.C., II, Rose, A.W., Lanning, R.M.,1975. Geology and geochemistry ofTriassic diabase in Pennsylvania. Geological Society of America Bulletin86,943-955.
    Smith, R.E., Smith, S.E.,1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Na inclassification of basaltic magmas. Earth and Planetary Science Letters32,114-120.
    Smoliar, M.I., Walker, R.J., Morgan, J.W.,1996. Re–Os ages of Group IIA, IIIA, IVAand IVB iron meteorites. Science271,1099-1102.
    Snyder, D., Carmichael, I.S., Wiebe, R.A.,1993. Experimental study of liquidevolution in an Fe–rich layered mafic intrusion: Constraints of Fe–Ti oxideprecipitation on the T–fO2and T–ρ paths of tholeiitic magmas. Contrib. MineralPet.113,73-86.
    Song, X.Y., Qi, H., Hu, R.Z., et al.,2013. Formation of thick stratiform Fe-Ti oxidelayers in layered intrusion and frequent replenishment of fractionated maficmagma: Evidence from the Panzhihua intrusion, SW China. GeochemistryGeophysics Geosystems,14,712-732.
    Song, X.Y., Zhou, M.F., Cao, Z.M., et al.,2004. Late Permian rifting of the SouthChina Craton caused by the Emeishan mantle plume? J. Geol. Soc.161,773-781.
    S rensen, H., Bailey, J. C., Kogarko, L. N., et al.,2003. Spheroidal structures inarfvedsonite lujavrite, Ilímaussaq alkaline complex, South Greenland-an exampleof macro-scale liquid immiscibility. Lithos70,1-20.
    Sparks, R.S.J., Huppert, H.E., Turner, J.S.,1984. The fluid dynamics of evolvingmagma chambers. Philos Trans Roy Soc London Ser A310,511-534.
    Spencer, A.C.,1908. Magnetite deposits of the Cornwall type in Pennsylvania: UnitedStates Geological Survey Bulletin359,1-102.
    Stanton, R.L.,1987. Constitutional features, and some exploration implications, ofthree zinc-bearing stratiform skarns of eastern Australia. Institution of Miningand Metallurgy Transactions. Section B, Applied Earth Science96, B37–B57.
    Starkey, N.A., Stuart, F.M., Ellam, R.M., et al.,2009. Helium isotopes in early Icelandplume picrites: constraints on the composition of high3He/4He mantle. EarthPlanet Sci. Lett.277,91-100.
    Staudacher, T., Allègre, C.J.,1988. Recycling of oceanic crust and sediments: thenoble gas subduction barrier. Earth Planet Sci. Lett.89,173-183.
    Staudacher, T., Sarda, P., Richardson, S.H., et al.,1989. Noble gases in basalt glassesfrom a Mid-Atlantic Ridge topographic high at140N: geodynamic consequences.Earth Planet. Sci. Lett.96,119-133.
    Steiger, R.H., J ger, E.,1977. Subcommission on geochronology: Convention on theuse of decay constants in geochronology and cosmochronology. Earth Planet. Sci.Lett.36,359-362.
    Stern, R.J., Lin, P., Morris, J.D., et al.,1990. Enriched back-arc basin basalts from thenorthern Mariana Trough: implications for the magmatic evolution of back-arcbasins. Earth Planet Sci. Lett.100,210-225.
    Stone, W.E., Crocket, J.H., Dickin, A.P., et al.,1995. Origin of Archean ferropicrites:geochemical constraints from the Boston Creek Flow, Abitibi greenstone belt,Ontario, Canada. Chem. Geol.121,51-71.
    Stormer, J.C., Nicolls, J.,1978. XLFRAC: A program for the interactive testing ofmagmatic differentiation models. Computer&Geosciences4,143-159.
    Streck, M. J.,2008. Mineral textures and Zoning as evidence for Open SystemProcesses. Reviews in Mineralogy and Geochemistry69,595-622.
    Su, B.X., Qin, K.Z., Sakyi, P.A., et al.,2011. U-Pb ages and Hf-O isotopes of zirconsfrom Late Paleozoic mafic-ultramafic units in the southern Central AsianOrogenic Belt: tectonic implications and evidence for an Early-Permian mantleplume. Gondwana Research20,516-531.
    Su, B.X., Qin, K.Z., Sun, H., et al.,2012. Subduction-induced mantle heterogeneitybeneath Eastern Tianshan and Beishan: insights from Nd-Sr-Hf-O isotopicmapping of Late Paleozoic mafic-ultramafic complexes. Lithos134-135,41-51.
    Su, L.H.,1984. The importance of liquid immiscibility in petrology and mineraldeposits. Earth Science Journal of China University of Geosciences1,1-12(inChinese with English abstract).
    Suk, N.I.,1998. Distribution of ore elements between immiscible liquids insilicate-phosphate systems (experimental investigation). Acta UniversitatisCarolinae Geologica42,138-140.
    Sun, W.D., Arculus, R.J., Bennett, V.C., et al.,2003. Evidence for rhenium enrichmentin the mantle wedge from submarine arc–like volcanic glasses (Papua NewGuinea). Geology31,845-848.
    Sun, S. S., McDonough, W.,1989. Chemical and isotopic systematics of oceanicbasalts: implications for mantle composition and processes. Geological Society,London, Special Publications,42,313-345.
    Sun, W.D., Ding, X., Hu, Y.H., et al.,2007. The golden transformation of theCretaceous plate subduction in the west Pacific. Earth and Planetary ScienceLetters262,533-542.
    Sun, W.D., Xie, Z., Chen, J.F., et al.,2003. Os-Os dating of copper and molybdenumdeposits along the Middle and Lower reaches of the Yangtze River, China.Economic Geology98,175-180.
    Tait, S.R., Jaupart, C.,1992. Compositional convection in a reactive crystalline mushand melt differentiation. J. Geophy. Res.97,6735-6756.
    Tait, S.R., Huppert, H.E., Sparks, R.S.J.,1984. The role of compositional convectionin the formation of adcumulate rocks. Lithos17,139-146.
    Tang, D.M., Qin, K.Z., Sun, H., et al.,2012. The role of crustal contamination in theformation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, NorthwestChina: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O,and sulfur isotopes. Journal of Asian Earth Sciences49,145-160.
    Tao, Y., Li, C., Hu, R., et al.,2010. Re-Os isotopic constraints on the genesis of theLimahe Ni-Cu deposit in the Emeishan large igneous province, SW China.Lithos119,137-146.
    Tatsumi, Y., Eggins, S.,1995. Subduction Zone Magmatism. Blackwell Science,Oxford, England, pp.211.
    Taylor, D., Dalstra, H.J., Harding, A.E., et al.,2001. Genesis of high-grade hematiteore bodies of the Hamersley province, Western Australia. Economic Geology96,837-873.
    Taylor, R.N., Murton, B.J., Nesbitt, R.W.,1992. Chemical transects acrossintra-oceanic arcs: implications for the tectonic setting of ophiolites. GeologicalSociety of London, Special Publication60,117-132.
    Taylor, S.R., McLennan, S.M.,1985. The Continental Crust: its Composition andEvolution. Blackwell Scientific, Oxford.
    Tegner, C.,1997. Iron in plagioclase as a monitor of the differentiation of theSkaergaard intrusion. Contrib. Mineral Pet.128,45-51.
    Tegner, C., Cawthorn, R.G.,2010. Iron in plagioclase in the Bushveld and Skaergaardintrusions: implications for iron contents in evolving basic magmas. Contrib.Mineral Pet.159,719-730.
    Tegner, C., Cawthorn, R.G.,2010. Iron in plagioclase in the Bushveld and Skaergaardintrusions: implications for iron contents in evolving basic magmas. Contrib.Mineral Pet.159,719-730.
    Tegner, C., Thy, P., Holness, M.B., et al.,2009. Differentiation and compaction in theSkaergaard intrusion. Journal of Petrology,50,813-840.
    Tepley, F.J., Davidson, J., Tilling, R.I., et al.,2000. Magma mixing, recharge anderuptive histories recorded in plagioclase phenocrysts from El Chichón Volcano,Mexico. Journal of Petrology41,1397-1411.
    Thompson, A. B., Aerts, M., Hack, A. C.,2007. Liquid immiscibility in silicate meltsand related systems. Reviews in Mineralogy&Geochemistry65,99-127.
    Thy, P., Lesher, C.E., Tegner, C.,2009. The Skaergaard liquid line of descent revisited.Contrib. Mineral Pet.157,735-747.
    Tollari, N., Baker, D.R., Barnes, S.J.,2008. Experimental effects of pressure andfluorine on apatite saturation in mafic magmas, with reference to layeredintrusions and massif anorthosites. Contrib. Mineral Pet.156,161-175.
    Tollari, N., Toplis, M.J., Barnes, S.J.,2006. Predicting phosphate saturation in silicatemagmas: an experimental study of the effects of melt composition andtemperature. Geochimica et Cosmochimica Acta,70,1518-1536.
    Tolstikhin, I., Kamensky, I., Tarakanov, S., et al.,2010. Noble gas isotope sites andmobility in mafic rocks and olivine. Geochim. Cosmochim. Acta74,1436-1447.
    Tomurtogoo, O., Windley, B.F., Kroner, A., et al.,2005. Zircon age and occurrence ofthe Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints onthe evolution of the Mongol–Okhotsk ocean, suture and orogen. Journal of theGeological Society, London162,125-134.
    Toplis, M.J., Brown, W.L., Pupier, E.,2008. Plagioclase in the Skaergaard intrusion.Part1: Core and rim compositions in the layered series. Contrib. Mineral. Pet.155,329-340.
    Torab, F.M., Lehmann, B.,2007. Magnetite-apatite deposits of the Bafq district,Central Iran: apatite geochemistry and monazite geochronology. MineralogicalMagazine71,347-363.
    Trull, T.W., Kurz, M.D.,1993. Experimental measurements of3He and4He mobilityin olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim.Acta57,1313-1324.
    Tsuchiyama, A., Takahashi, E.,1983. Melting kinetics of a plagioclase feldspar.Contrib. Mineral. Pet.84,345-354.
    Tuff, J., Takahashi, E., Gibson, S.A.,2005. Experimental Constraints on the Role ofGarnet Pyroxenite in the Genesis of High-Fe Mantle Plume Derived Melts.Journal of Petrology,46,2023-2058.
    Turner, M. B., Cronin, S. J., Smith, I.E., et al.,2008. Journal of Volcanology andGeothermal Research177,1063-1076.
    Valbracht, P.J., Staudacher, T., Malahoff, A., et al.,1997. Noble gas systematics ofdeep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett.150,399-411.
    VanTongeren, J., Mathez, E.A.,2012. Large–scale liquid immiscibility at the top ofthe Bushveld Complex, South Africa. Geology40,491-494.
    Veksler, I.V., K hn, J., Franz, G., et al.,2010. Interfacial tension between immiscibleliquids in the system K2O–FeO–Fe2O3–Al2O3–SiO2and implications for thekinetics of silicate melt unmixing. Am. Miner.95,1679-1685.
    Veksler, I.V., Dorfman, A.M., Borisov, A.A., et al.,2007. Liquid immiscibility and theevolution of basaltic magma. Journal of Petrology48,2187-2210.
    Veksler, I.V., Dorfman, A.M., Borisov, A.A., et al.,2008. Liquid immiscibility andevolution of basaltic magma: Reply to SA Morse, AR McBirney and ARPhilpotts. Journal of Petrology49,2177-2186.
    Veksler, I.V., Dorfman, A.M., Danyushevsky, L.V., et al.,2006. Immiscible silicateliquid partition coefficients: implications for crystal-melt element partitioningand basalt petrogenesis. Contributions to Mineralogy and Petrology152,685-702.
    Veksler, I.V.,2009. Extreme iron enrichment and liquid immiscibility in maficintrusions: Experimental evidence revisited. Lithos111,72-82.
    Vervoort, J.D., Patchett, P.J., Soderlund, U., et al.,2004. Isotopic composition of Yband the determination of Lu concentrations and Lu/Hf ratios by isotopic dilutionusing MC-ICPMS: Geochem. Geophy. Geosy.5, Q11002.doi:10.1029/2004GC000721.
    Visser, W., Koster van Groos, A.F.,1979a. Effect of pressure on liquid immiscibilityin the system K2O-FeO-Al2O3-SiO2-P2O5. American Journal of Science279,1160-1175.
    Visser, W., Koster van Groos, A.F.,1979b. Effects of P2O5and TiO2on liquid-liquidequilibria in the system K2O-FeO-Al2O3-SiO2. American Journal of Science279,970-988.
    Visser, W., Koster van Groos, A.F.,1979c. Phase relations in the systemK2O-FeO-Al2O3-SiO2at1atmosphere with special emphasis on low temperatureliquid immiscibility. American Journal of Science279,70-91.
    Volpe, A.M., Macdougall, J.D., Hawkins, J.W.,1987. Mariana Trough basalts (MTB):trace element and Sr–Nd isotopic evidence for mixing between MORB-like andarc-like melts. Earth Planet Sci. Lett.82,241-254.
    Wager, L.R., Brown, G.M.,1968. Layered igneous rocks. Oliver and Boyd,Edinburgh.
    Walker, R.J., Morgan, J.W., Beary, E.S., et al.,1997. Applications of the190Pt-186Osisotope system to geochemistry and cosmochemistry. Geochimica etCosmochimica Acta61,4799-4807.
    Wallin, E.T., Metcalfe, R.V.,1998. Supra-subduction zone ophiolite formed in anextensional forearc: Trinity Terrane, Klamath Mountains, California. J. Geol.106,591-608.
    Wan, B., Xiao, W.J., Zhang, L.C., et al.,2012. Iron mineralization associated with amajor strike-slip shear zone: Radiometric and oxygen isotope evidence from theMengku deposit, NW China. Ore Geol. Rev.44,136-147.
    Wang, M., Zhang, Z.C., Santosh, M., et al.,2014. Geochemistry of Late Permianpicritic porphyries associated with Pingchuan iron ores, Emeishan Large IgneousProvince, Southwest China: Constraints on petrogenesis and iron sources. OreGeology Reviews57,602-617
    Wang, Y., Fan, W., Zhang, G., et al.2013. Phanerozoic tectonics of the South ChinaBlock: key observations and controversies. Gondwana Research23,1273-1305.
    Wang, K., Plank, T., Walker, J.D., et al.,2002. A mantle melting profile across theBasin and Range, SW USA. J. Geophys. Res.107. doi:10.1029/2001JB000209.
    Watson, E.B.,1976. Two–liquid partition coefficients: Experimental data andgeochemical implications. Contrib. Mineral Pet.56,119-134.
    Weaver, B.L., Wood, D.A., Tarney, J., et al.,1986. Role of subducted sediments in thegenesis of ocean island basalt: geochemical evidence from South Atlantic oceanislands. Geology14,275-278.
    Weaver, B.L.,1991. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints. Earth and Planetary Science Letters104,381-397.
    Webster, J.D,2004. The exsolution of magmatic hydrosaline chloride liquids.Chemical Geology210,33-48.
    Webster, J.D., Holloway, J.R., Hervig, R.L.,1989. Partitioning of lithophile traceelements between topaz rhyolite melt and H2O and H2O+CO2fluids. EconomicGeology84,116-134.
    Webster, J.D., Kinzler, R.J., Mathez, E.A.,1999. Chloride and water solubility inbasalt and andesite melts and implications for magmatic degassing. Geochimicaet Cosmochimica Acta63,729-738.
    Webster, J.D., Tappen, C.M., Mandeville, C.W.,2009. Partitioning behavior ofchlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systemsat200MPa. Geochimica et Cosmochimica Acta73,559-581.
    Wedepohl, K.H.,1969. Handbook of Geochemistry-Springer Verlag, New York,Heidelberg, Berlin.
    Wei, J.X.,1987. A study of fluid inclusions, thermal halos and genesis of theBaixiangshan iron deposit. Bulletin of the Institute of Mineral Deposits, ChineseAcademy of Geological Sciences2,111-128(in Chinese with English abstract).
    Widom, E., Hoernle, K.A., Shirey, S.B., et al.,1999. Os isotope systematics in theCanary Islands and Madeira: lithospheric contamination and mantle plumesignatures. J. Petrol.40,279-296.
    Wilkinson, J.F.G., Le Maitre, R.W.,1987. Upper mantle amphiboles and micas andTiO2, K2O and P2O5abundances and100Mg/(Mg+Fe2+) ratios of commonbasalts and undepleted mantle compositions. J. Petrol.28,37-73.
    Wilson, M.,1989, Igneous petrogenesis: London, Uniwin Hyman.
    Winchester, J.A., Floyd, P.A.,1976. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks. Earth Planet Sci.Lett.28,459-469.
    Windley, B.F., Alexeiev, D., Xiao, W.J., et al.,2007. Tectonic models for accretion ofthe Central Asian Orogenic Belt. J. Geol. Soc.164,311-374.
    Wong, K., Sun, M., Zhao, G.C., et al.,2010. Geochemical andgeochronologicalstudies of the Alegedayi Ophiolitic Complex and its implicationfor the evolution of the Chinese Altai. Gondwana Res.18,438-454.
    Wood, D.A.,1980. The application of a Th-Hf/Ta diagram to problems oftectonomagmatic classification and to establishing the nature of crustalcontamination of basaltic lavas of the British Tertiary volcanic province. EarthPlanet Sci. Lett.50,11-30.
    Wood, D.A., Tarneu, J., Varet, J., et al.,1979. Geochemistry of basalts drills in theNorth Atlantic by IPOD Leg49: implications for mantle heterogeneity. EarthPlanet Sci. Lett.42,77-97.
    Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., et al.1993. Isotopic andtrace-element constraints on mantle and crustal contributions to Siberiancontinental flood basalts, Noril'sk area, Siberia. Geochimica et CosmochimicaActa57,3677-3704.
    Woodhead, J.D., Eggins, S.M., Johnson, R.W.,1998. Magma genesis in the NewBritain island arc: Further insights into melting and mass transfer processes. J.Petrol.39,1641-1668.
    Woods, A.W., Pyle, D.M.,1997. The control of chamber geometry on triggeringvolcanic eruptions. Earth Planet Sci. Lett.151,155-166.
    Wright, T.L., Doherty, P.C.,1970. A linear programming and least squares computermethod for solving petrologic mixing problems. Geological Society of AmericaBulletin81,1995-2000.
    Wu, J., Zhang, Z.,2012. Spatial distribution of seismic layer, crustal thickness, andVp/Vs ratio in the Permian Emeishan Mantle Plume region. Gondwana Res.22,127-139.
    Xiao, L., Xu, Y.G., Mei, H.J., Zheng, Y.F., et al.,2004. Distinct mantle sources oflow-Ti and high-Ti basalts from the western Emeishan large igneous province,SW China: implications for plume-lithosphere interaction. Earth Planet. Sci. Lett.228,525-546.
    Xiao, W.J., Huang, B.C., Han, C.M., et al.,2010. A review of the western part of theAltaids: a key to understanding the architecture of accretionary orogens.Gondwana Res.18,253-273.
    Xiao, W.J., Windley, B.F., Allen, M.B., et al.,2012. Paleozoic multiple accretionaryand collisional tectonics of the Chinese Tianshan orogenic collage. GondwanaResearch, http://dx.doi.org/10.1016/j.gr.2012.01.012
    Xiao, W.J., Windley, B.F., Allen, M.B., et al.,2013. Paleozoic multiple accretionaryand collisional tectonics of the Chinese Tianshan orogenic collage. GondwanaRes.23,1316-1341.
    Xiao, W.J., Windley, B.F., Badarch, G., et al.,2004. Paleozoic accretionary andconvergent tectonics of the southern Altaids: implications for the growth ofcentral Asia. J. Geol. Soc.161,339-342.
    Xiao, W.J., Windley, B.F., Yuan, C., et al.,2009. Paleozoic multiplesubduction–accretion processes of the southern Altaids. American Journal ofScience309,221-270.
    Xiao, W.J., Zhang, L.C., Qin, K.Z., et al.,2004. Paleozoic accretionary and collisionaltectonics of the Eastern Tianshan (China): Implications for the continentalgrowth of Central Asia. Am. J. Sci.304,370-395.
    Xing, F.M.,1999. The magmatic metallogenetic belt around the Yangtze River inAnhui. Geology of Anhui9,272-279(in Chinese with English abstract).
    Xu, L., Mao, J., Yang, F., et al.,2010. Geology, geochemistry and age constraints onthe Mengku skarn iron deposit in Xinjiang Altai, NW China. Journal of AsianEarth Sciences39,423-440.
    Xu, J., Castillo, P., Chen, F., et al.,2003. Geochemistry of late Paleozoic maficigneous rocks from the Kuerti area, Xinjiang, northwest China: implications forbackarc mantle evolution. Chem. Geol.193,137-154.
    Xu, L.G., Mao, J.W., Yang, F.Q., et al.,2010. Geology, geochemistry and ageconstraints on the Mengku skarn iron deposit in Xinjiang Altai, NW China. J.Asian Earth Sci.39,423-440.
    Xu, X., Xing, F.M.,1994. Whole-rock and mineral Rb–Sr isochron ages of the threegabbros in Nanjing-Wuhu area, China. Scientia Geologia Sinica29,309-312.(inChinese with English abstract).
    Xu, Y.G.,2001. Thermo-tectonic destruction of the Archean lithospheric keel beneaththe Sino-Korean Craton in China: evidence, timing and mechanism. Physics andChemistry of the Earth (A)26,747-757.
    Xu, Y., Chung, S. L., Jahn, B. M., et al.,2001. Petrologic and geochemical constraintson the petrogenesis of Permian–Triassic Emeishan flood basalts in southwesternChina. Lithos58,145-168.
    Xu, Z.G.,1990. Mesozoic volcanism and volcanogenic iron-ore deposits in easternChina. Geological Society of America. Special Paper237,32-34.
    Xue, S., Morse, S.A.,1994. Chemical characteristics of plagioclase and pyroxenemegacrysts and their significance to the petrogenesis of the Nain anorthosites.Geochim Cosmochim Acta58,4317-4331.
    Yamamoto, J., Kaneoka, I., Nakai, S., et al.,2004. Evidence for subduction-relatedcomponents in the subcontinental mantle from low3He/4He and40Ar/36Ar ratio inmantle xenoliths from Far Eastern Russia. Chem. Geol.207,237-259.
    Yamamoto, J., Kaneoka, I., Nakai, S., et al.,2004. Evidence for subduction-relatedcomponents in the subcontinental mantle from low3He/4He and40Ar/36Ar ratio inmantle xenoliths from Far Eastern Russia. Chem. Geol.207,237-259.
    Yamamoto, J., Nishimura, K., Sugimoto, T., et al.,2009. Diffusive fractionation ofnoble gases in mantle with magma channels: Origin of low He/Ar inmantle-derived rocks. Earth Planet Sci. Lett.280,167-174.
    Yan, D.P., Zhou, M.F., Song, H.L., et al.,2003. Origin and tectonic significance of aMesozoic multilayer over-thrust system within the Yangtze Block (South China).Tectonophysics361,239-254.
    Yan, J., Chen, J.F., Xu, X.S.,2008. Geochemistry of Cretaceous mafic rocks from theLower Yangtze region, eastern China: Characteristics and evolution of thelithospheric mantle. Journal of Asian Earth Sciences33,177-193.
    Yan, J., Liu, H.Q., Song, C.Z., et al.,2009. Zircon U-Pb geochronology of thevolcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtzeregion and its geological implications. Chinese Science Bulletin54,1716-1724.
    Yan, J., Liu, H.Q., Song, C.Z., et al.,2009. Zircon U-Pb geochronology of thevolcanic rocks from Fanchang–Ningwu volcanic basins in the Lower Yangtzeregion and its geological implications. Chinese Science Bulletin54,1716-1724.
    Yang, C.H., Xu, W.L., Yang, D.B., et al.,2006. Hig-Mg diorites in west Shandongprovince: Evidences from chronology and petro-geochemistry. EarthScience-Journal of China University of Geosciences,31,81-92.
    Yang, F., Mao, J., Pirajno, F., et al.,2012. A review of the geological characteristicsand geodynamic setting of Late Paleozoic porphyry copper deposits in theJunggar region, Xinjiang Uygur Autonomous Region, Northwest China. Journalof Asian Earth Sciences49,80-98.
    Yang, F., Mao, J., Liu, F., et al.,2013. A review of the geological characteristics andmineralization history of iron deposits in the Altay orogenic belt of the Xinjiang,Northwest China. Ore Geology Reviews54,1-16.
    Yang, F., Mao, J., Pirajno, F., et al.,2012. A review of the geological characteristicsand geodynamic setting of Late Paleozoic porphyry copper deposits in theJunggar region, Xinjiang Uygur Autonomous Region, Northwest China. Journalof Asian Earth Sciences49,80-98.
    Yang, F.Q., Mao, J.W., Liu, F., et al.,2010. Geochronology and geochemistry of thegranites from the Mengku iron deposit, Altay Mountains, northwest China:implications for its tectonic setting and metallogenesis. Aust. J. Earth Sci.57,803-818.
    Yang, J.H., Sun, J.F., Chen, F.K., et al.,2007. Sources and petrogenesis of late Triassicdolerite dikes in the Liaoning Peninsula: Implications for Post-collisionallithosphere thinning of the Eastern North China Craton. J. Petrol.48,1973-1997.
    Yang, W.B., Niu, H.C., Shan, Q., et al.,2012. Late Paleozoic calc-alkaline toshoshonitic magmatism and its geodynamic implications, Yuximolegai area,western Tianshan, Xinjiang. Gondwana Res.22,325-340.
    Yaxley, G.M., Green, D.H.,1998. Reactions between eclogite and peridotite: mantlerefertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt.78,243-255.
    Yaxley, G.M.,2000. Experimental study of the phase and melting relations ofhomogeneous basalt t peridotite mixtures and implications for the petrogenesis offlood basalts. Contrib. Mineral Pet.139,326-338.
    Yellappa, T., Santosh, M., Chetty, T.R.K., et al.,2012. A Neoarhcean dismemberedophiolite complex from southern India: Geochemical and geochronologicalconstraints on its suprasubduction origin. Gondwana Research21,246-265.
    Yin, A., Harrison, T.M.,2000. Geologic evolution of the Himalayan-Tibetan orogen.Annu. Rev. Earth Planet Sci.28,211-280.
    Yu, J., Chen, Y., Mao, J., et al.2011. Review of geology, alteration and origin of ironoxide–apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze RiverValley, eastern China: implications for ore genesis and geodynamic setting. OreGeology Reviews43,170-181.
    Yu, J.J., Mao, J.W., Zhang, C. Q.,2008. The possible contribution of a mantle-derivedfluid to the Ningwu porphyry iron deposits–Evidence from carbon and strontiumisotopes of apatites. Progress in Natural Science18,167-172.
    Zhai, Y.S., Xiong, Y.L., Yao, S.Z., et al.,1996. Metallogeny of copper and irondeposits in the Eastern Yangtse Craton, east-central China. Ore Geology Reviews11,229-248.
    Zhang, C. L., Xu, Y. G., Li, Z. X., et al.,2010. Diverse Permian magmatism in theTarim Block, NW China: Genetically linked to the Permian Tarim mantleplume?. Lithos,119(3),537-552.
    Zhang, S.B. Zheng, Y.F.,2012. Formation and evolution of Precambrian continentallithosphere in South China. Gondwana Res.http://dx.doi.org/10.1016/j.gr.2012.09.005
    Zhang, Z., Mao, J., Saunders, A.D., et al.,2009. Petrogenetic modeling of threemafic-ultramafic layered intrusions in the Emeishan large igneous province, SWChina, based on isotopic and bulk chemical constraints. Lithos113,369-392.
    Zhang, Z.C., Zhi, X., Chen, L., et al.,2008. Re-Os isotopic compositions of picritesfrom the Emeishan flood basalt province, China. Earth Planet. Sci. Lett.276,30–39.
    Zhang, L.F., Ellis, D.J., Jiang, W.,2002. Ultrahigh pressure metamorphism in westernTianshan, China, part I: evidences from the inclusion of coesite pseudomorphs ingarnet and quartz exsolution lamellae in omphacite in eclogites. AmericanMineralogist87,853-860.
    Zhang, X., Zhang, H., Tang, Y., et al.,2008. Geochemistry of Permian bimodalvolcanic rocks from central Inner Mongolia, North China: Implication fortectonic setting and Phanerozoic continental growth in Central Asian OrogenicBelt. Chem. Geol.249,262-281.
    Zhang, Z., Mahoney, J. J., Mao, J., et al.,2006. Geochemistry of picritic andassociated basalt flows of the western Emeishan flood basalt province, China.Journal of Petrology47,1997-2019.
    Zhang, Z., Mao, J., Saunders, A. D., et al.,2009. Petrogenetic modeling of threemafic–ultramafic layered intrusions in the Emeishan large igneous province, SWChina, based on isotopic and bulk chemical constraints. Lithos113,369-392.
    Zhang, Z., Zhi, X., Chen, L., et al.,2008. Re-Os isotopic compositions of picritesfrom the Emeishan flood basalt province, China. Earth and Planetary ScienceLetters276,30-39.
    Zhang, Z.C., Hou, T., Santosh, M., et al.,2014. Spatio-temporal distribution andtectonic settings of the major iron deposits in China: An overview. Ore GeologyReviews57,247-263.
    Zhang, Z.C., Mao, J.W., Saunders, A.D., et al.,2009. Petrogenetic modeling of threemafic–ultramafic layered intrusions in the Emeishan large igneous province, SWChina, based on isotopic and bulk chemical constraints. Lithos113,369-392.
    Zhang, Z.H., Hong, W., Jiang, Z.S., et al.,2012. Geological Characteristics and ZirconU-Pb Dating of Volcanic Rocks from the Beizhan Iron Deposit in WesternTianshan Mountains, Xinjiang, NW China. Acta Geol. Sin-Engl.86,737-747.
    Zhao, J.H., Zhou, M.F., Yan, D.P., et al.,2008. Zircon Lu-Hf isotopic constraints onNeoproterozoic subduction-related crustal growth along the western margin ofthe Yangtze Block, South China. Precambrian Res.163,189-209.
    Zhao, X.F.,2010. Paleoproterozoic crustal evolution and Fe-Cu metallogeny of theWestern Yangtze block, SW China. Ph.D Thesis, The University of Hong Kong.
    Zhao, X.F., Zhou, M.F.,2011. Fe-Cu deposits in the Kangdian region, SW China: aProterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Miner.Deposita,46,731-747.
    Zhao, X.F., Zhou, M.F.,2011. Fe-Cu deposits in the Kangdian region, SW China: aProterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Miner.Deposita,46,731-747.
    Zhao, Y.X.,1993. Mechanism of formation of the contact iron deposits along theMiddle-Lower Reaches of the Yangtze River. China University of GeosciencesPress, Wuhan (in Chinese with English abstract).
    Zhong, H., Qi, L., Hu, R., et al.,2011. Rhenium-Osmium isotope and platinum-groupelements in the Xinjie layered intrusion, SW China: implications for sourcemantle composition, mantle evolution, PGE fractionation andmineralization.Geochemica et Cosmochemical Acta75,1621-1641.
    Zhong, H., Zhu, W.G.,2006. Geochronology of layered mafic intrusions from thePan–Xi area in the Emeishan large igneous province, SW China. Miner. Deposita,41,599-606.
    Zhong, H., Campbell, I.H., Zhu, W.G., et al.,2011. Timing and source constraints onthe relationship between mafic and felsic intrusions in the Emeishan largeigneous province. Geochimica et Cosmochimica Acta75,1374-1395.
    Zhong, H., Yao, Y., Prevec, S.A., et al.,2004. Trace-element and Sr-Nd isotopicgeochemistry of the PGE-bearing Xinjie layered intrusion in SW China.Chemical Geology203,237-252.
    Zhou, J.X.,1999. Geochemistry and petrogenesis of igneous rocks containingamphibole and mica: a case study of plate collision involving Scotland andHimalayas. Science Press, New York,41-72.
    Zhou, M.F., Robinson, P.T., Lesher, C.M., et al.,2005. Geochemistry, petrogenesisand metallogenesis of the Panzhihua gabbroic layered intrusion and associatedFe-Ti-V oxide deposits, Sichuan province, SW China. J. Petrol.46,2253-2280.
    Zhou, M.F., Chen, W.T., Wang, C.Y., et al.,2013. Two stages of immiscible liquidseparation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China.Geoscience Frontiers4,481-502.
    Zhou, M.F., Malpas, J., Song, X.Y., et al.,2002. A temporal link between theEmeishan large igneous province (SW China) and the end-Guadalupian massextinction. Earth and Planetary Science Letters196,113-122.
    Zhou, M.F., Lesher, C.M., Yang, Z.X., et al.,2004. Geochemistry and petrogenesis of270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district,Eastern Xinjiang, Northwest China: implications for the tectonic evolution of theCentral Asian Orogenic Belt. Chemical Geology209,233-257.
    Zhou, T.F., Fan, Y., Yuan, F., et al.,2008. Geochronology of the volcanic rocks in theLu-Zong basin and its significance. Science in China (Series D-Earth Sciences)51,1470-1482.
    Zindler, A., Hart, S.R.,1986. Helium: problematic primordial signals. Earth Planet Sci.Lett.79,1-8.
    Zou, H.B., Zindler, A., Xu, X.S., et al.,2000. Major, trace element, and Nd, Sr and Pbisotope studies of Cenozoic basalts in SE China: mantle sources, regionalvariations, and tectonic significance. Chemical Geology171,33-47.
    陈柏林,蒋荣宝,李丽,等.2009.阿尔金山东段喀腊大湾地区铁矿带的发现及其意义.地球学报,30(2):143-154.
    邓晋福.1987.岩石相平衡与岩石成因.武汉:武汉地质学院出版社,198.
    杜杨松,曹毅,张智宇,等.2011.安徽沿江地区中生代原地和异地矽卡岩岩浆-热液成矿作用.地质学报,85(5):699-711.
    范裕,周涛发,郝麟,等.2012.安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示.岩石学报,28(10):3113-3124.
    高道明,赵云佳.玢岩铁矿再认识.安徽地质,2008,18(3):164-168.
    高山,张本仁.1990.扬子地台北部太古宙TTG片麻岩的发现及其意义.地球科学,15(6):675-679.
    顾连兴,胡受奚.2001.博格达陆内碰撞造山带挤压—拉张构造转折期的侵入活动.岩石学报,17(2):187-198.
    洪为,张作衡,蒋宗胜,等.2012.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约.岩石学报,28(7).
    侯广顺,唐红峰,刘丛强.2007.东天山觉罗塔格构造带雅满苏组火山岩的矿物学研究.矿物学报,27(2):189-194.
    侯可军,李延河,田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481-492.
    侯可军,李延河,邹天人,等.2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604.
    胡浩,段壮,Yan Luo,等.2014.长江中下游成矿带鄂东南矿集区程潮铁矿床磁铁矿的微量元素组成及其对矿床成因的制约.岩石学报,30.
    胡秀军,陈文革.2010.新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因.资源调查与环境,31:185-193.
    黄清涛,尹恭沛.1989.安徽庐江罗河铁矿.北京:地质出版社,131-167.
    姜福芝.1983.我国海相火山铁铜矿床的成因类型及其某些成矿特征的讨论.矿床地质,2(4):11-18.
    蒋宗胜,张作衡,侯可军,等.2012.西天山查岗诺尔和智博铁矿区火山岩地球化学特征,锆石U-Pb年龄及地质意义.岩石学报,28(7):2074-2088.
    李秉伦,谢奕汉.1984.宁芜地区宁芜型铁矿的成因,分类和成矿模式.中国科学B辑,1:10.
    李德惠,陈之萱,韩昭文.1981.西昌太和层状侵入体的韵律层及岩石学特征.成都地质学院学报,03,9-21.
    李厚民,陈毓川,李立兴,等.2012.中国铁矿成矿规律.北京:地质出版社,1-246.
    李锦轶,宋彪,王克卓,等.2006.东天山吐哈盆地南缘二叠纪幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录.地球学报,(5):424-446.
    李九玲,张桂兰,苏良赫.1986.与矿浆成矿有关的FeO-Ca5(PO4)3-NaAlSiO4-CaMgSi2O6模拟实验研究.中国地质科学院矿床地质研究所所刊,(2):198-204.
    李延河,谢桂青,段超,等.2013.膏盐层在矽卡岩型铁矿成矿中的作用.地质学报,87(9):1324-1334.
    刘家铎.2007.攀西地区金属成矿系统.北京地质出版社
    吕炳全,王红罡,胡望水,等.扬子地块东南古生代上升流沉积相及其与烃源岩的关系.海洋地质与第四纪地质,2005,24(4):29-35.
    马芳,蒋少涌,姜耀辉,等.2006.宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究.岩石学报,22(10):2581-2589.
    马玉孝,纪相田,李金成,等.2003.攀枝花矿产资源.成都:成都理工大学出版社,1-275.
    孟庆丽.1988.论山东莱芜岩浆杂岩的多源成因.长春地质学院学报,18(1):43-52.
    宁芜项目编写小组.宁芜玢岩铁矿.北京:地质出版社,1978:160-162
    裴荣富,李进文,王永磊,等.2011.长江中下游成矿带构造岩浆侵位的接触构造体系与成矿.地质与资源,20(6):401-412.
    齐天骄.新疆磁海大规模铁成矿过程研究.硕士学位论文.中国地质大学(北京),2013.
    钱锦和,沈远仁.1990.云南大红山古火山岩铁铜矿床.北京:地质出版社,1-236.
    秦克章,方同辉,王书来,等.2002.东天山板块构造分区,演化与成矿地质背景研究.新疆地质,20(4),302-308.
    秦克章.2000.新疆北部中亚型造山与成矿作用.北京:中国科学院地质与地球物理研究所博士后研究工作报告.
    任纪舜,王作勋,陈炳蔚,等1999.从全球看中国大地构造——中国及邻区大地构造简要说明.北京:地质出版社,1-50.
    任启江.1991.火成岩及其有关矿床中钛铁氧化物研究.北京:科学出版社,1-235
    盛继福.1985.新疆磁海铁矿蚀变特征.中国地质科学院矿产地质研究所所刊,(3):89,109.
    邵青红,刘铭峰,刘兴忠,等.2011.莫托萨拉铁锰矿床地质特征.西部探矿工程,(2):131-135.
    宋学信,陈毓川,盛继福,等.1981.论火山一浅成矿浆铁矿床.地质学报,(1):51-54
    汤华云,郑建平,余淳梅.2007.华北东部新生代玄武岩中橄榄岩捕虏体的流体及稀有气体组成研究.岩石学报,23(6),1531-1542.
    唐萍芝,王京彬,王玉往,等.2010.新疆磁海铁矿区镁铁-超镁铁岩地球化学特征及其地质意义.地球化学,39(006):542-552.
    唐永成,吴言昌,储国正,等.1998.安徽沿江地区铜多金属矿床地质.北京:地质出版社.1-351.
    汪帮耀,胡秀军,王江涛,等.2011.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究.矿床地质,30(3):385-402.
    汪帮耀和姜常义.2011.西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因.地质科技情报,30(6):18-27.
    王春龙,王义天,董连慧,等.2012.新疆西天山松湖铁矿床稀土和微量元素地球化学特征及其意义.矿床地质,31(5):1038-1050.
    王京彬,王玉往,何志军.2006.东天山大地构造演化的成矿示踪.中国地质,33(3):461-469.
    王坤,邢长明,任钟元,等.2013.攀枝花镁铁质层状岩体磷灰石中的熔融包裹体:岩浆不混熔的证据.岩石学报,29(10):3503-3518.
    王强,赵振华,许继峰,等.2006.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报,22:11-30.
    王玉荣,樊文答,郁云妹.1981.碱交代与铁矿形成的地球化学机理探讨.地球化学,(1):95-103.
    王玉往,沙建明,程春.2006.新疆磁海铁(钴)矿床磁铁矿成分及其成因意义.矿床地质,25:321-324.
    王玉往,王京彬,王莉娟,等.2008.新疆尾亚含矿岩体锆石U-Pb年龄, Sr-Nd同位素组成及其地质意义.岩石学报,24(4):781-792.
    吴才来.1996.铜陵地区中酸性侵入岩年代学研究[J].岩石矿物学杂志,15(4):299-306.
    新疆维吾尔自治区地矿局,1993.新疆维吾尔自治区区域地质志.
    新疆维吾尔自治区地矿局,2010.新疆哈密雅满苏铁矿地质报告.
    邢凤鸣,徐祥.1998.安徽沿江地区橄榄安粗岩系的特点和成因——大陆橄榄安粗岩系一例.安徽地质,8(2):8-20.
    邢凤鸣,徐祥.1995.安徽沿江地区中生代岩浆岩的基本特点[J].岩石学报,11(4):409-422.
    邢凤鸣.1998.安徽沿江地区岩浆岩的深部构造信息.中国区域地质,17(2):195-200.
    邢凤鸣.1998.扬子岩浆岩带东段基性岩地球化学.地球化学,27(3):258-268.
    徐祥,邢凤鸣.1994.宁芜地区三个辉长岩的全岩的矿物Rb—Sr等时线年龄.地质科学,29(3):309-312..
    薛春纪,姬金生.2000.新疆磁海铁(钴)矿床次火山热液成矿学.矿床地质,19(2):156-164..
    闫峻,陈江峰,谢智,等.2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,34(5):455-469.
    杨承海,许文良,杨德彬,等.2006.鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据.地球科学,31(1):81-92.
    杨富全,张志欣,屈文俊,等.2011.新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义.地质学报,85(3):396-404.
    于景林和赵云佳.1977.姑山式铁矿成因探讨.地质与勘探,(1):22-24.
    余金杰和毛景文.2002.宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质,21(1):65-73
    喻学慧.1984.常压高温下,方铁矿(FeO)—氟—金云母(KMg3(AlSi3O (10))F2)—透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义.地球科学-中国地质大学学报,1,001.
    张连昌,秦克章,英基丰,等.2004.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报,20(2):259-268.
    张旗,简平,刘敦一,等.2003.宁芜火山岩的锆石SHRIMP定年及其意义[J].中国科学: D辑,33(4):309-314.
    张云湘,骆耀南,杨崇喜.1988.攀西裂谷.北京:地质出版社.1-466.
    张招崇,李莹,赵莉,等.2007.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束.岩石学报,23(10):2339-2352.
    张招崇.2009.关于峨眉山大火成岩省一些重要问题的讨论.中国地质,26(3):634-646.
    张作衡,洪为,蒋宗胜,等.2012.新疆西天山晚古生代铁矿床的地质特征,矿化类型及形成环境.矿床地质,31(5):941-964.
    张作衡,洪为,蒋宗胜,等.2012.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境.矿床地质,31:941-964.
    长江中下游火山岩区铁矿研究组.1977.纷岩铁矿—安山质火山岩地区铁矿床的一组成因模式.地质学报,(1):1-18.
    赵一鸣,吴良士,白鸽,等.2004.中国主要金属矿床成矿规律.北京:地质出版社,13-62.
    赵一鸣.2013.中国主要富铁矿床类型及地质特征.矿床地质,32(4):685-704.
    赵玉琛.1993.宁芜玢岩铁矿中伴生磷灰石矿的地质特征和应用前景.地质与勘探,29(12):6-12.
    赵振明,陈守建,计文化,等.2013.东昆仑小南川中-新元古界万保沟群地层中富磁铁矿层的发现及意义.地质通报,31(12):1991-2000.
    赵振明,陈守建,计文化,等.2013.青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析.大地构造与成矿学,37:422-439.
    郑建民,毛景文,陈懋弘,等.2007.冀南邯郸—邢台地区矽卡岩铁矿的地质特征及成矿模式.地质通报,26(2):1501-54.
    周振华,刘宏伟,常帼雄,等.2011.内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义.岩石矿物学杂志,30(001):97-112.
    周振华,王挨顺,李涛.2011.内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究.矿床地质,30(5):867-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700