用户名: 密码: 验证码:
滇西南大盈江流域梁河、盈江盆地第四纪地层及活动构造特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西南大盈江流域位于喜马拉雅构造带向南东拐弯处,地处青藏高原与云贵高原的过渡地带,是解析云贵高原新生代隆升过程和新构造运动的关键区域。大盈江流域梁河、盈江盆地第四纪地层发育、地貌类型丰富、活动构造强烈、地震频发且震级较大,是研究第四纪沉积作用、地貌成因、新构造运动及活动构造的理想地区。但目前在该区开展的第四纪地质调查和相关研究工作不多,工作程度相对较低。
     本文在系统收集前人资料和详细野外地质调查工作基础上,通过深入研究和室内样品的分析测试,探讨了大盈江流域梁河、盈江盆地第四纪地层的建立和活动构造特征,取得了以下主要进展。
     采用地质调查和剖面测制,根据梁河、盈江两盆地第四纪沉积物类型、地貌特征、物质成分、时空分布、接触关系及产状特征,对本内广泛出露的第四纪沉积地层进行了详细划分,其中梁河盆地划分出4个统、3个组级、6个段级地层单位,盈江盆地划分出4个统、2个段级地层单位,初步搭建了梁河和盈江盆地第四纪地层层序。
     系统分析了梁河、盈江两个盆地的第四纪地貌特征与地貌演化。北部梁河盆地发育有七级阶地,其中第五、六级阶地为湖相沉积,其余为河流相特征;而南部盈江盆地发育为四级阶地,均为河流相沉积。梁河、盈江盆地均为部分继承性的第四纪断陷盆地,地貌演化过程可以分为谷地、湖盆、湖盆消亡和山间河流四个阶段,每一阶段的变化都紧密伴随有相应的构造运动。
     通过对大盈江活动断裂的几何学、运动学特征的研究和碳14与光释光年龄测试,将大盈江断裂分为南段盈江段和北段梁河段,其中盈江段为全新世北东向左旋走滑断层,其北段发育一条北北东向正断层与大盈江断裂相交;而梁河段为晚更新世北东向至近南北向弧形展布的正断层,兼有走滑特征,并在多处发育北西向正断层与梁河段形成共轭关系。通过计算拟合得到大盈江断裂第四纪以来长期水平滑动速率为3.18±1.23mm/a,长期垂直滑动速率为0.008±0.005mm/a。
     依据活动构造特征和碳14、光释光年龄测试结果,在大盈江流域梁河、盈江两个盆地识别出3次古地震事件,第一次古地震发生在距今2千年左右,发震段为南段盈江段,第二次古地震发生在距今7千年左右,发震段为南段盈江段,第三次古地震事件发生在距今3万年左右,发震段为南段盈江段和北段梁河段。
Dayingjiang valley, locating in the southwest of Yunnan Province and thesoutheast corner of Himalayan tectonic belt, is the key area for the neotectonicresearch of Yunnan-Guizhou plateau. Lianghe basin and Yingjiang basin, locating atthe Dayingjiang valley, is the ideal area for the research of Quaternary sedimentation,morphogenesis, neotectonic and active tectonic, for the thick Quaternary strata,variety geomorphic types, strong active tectonic and multiple violent earthquake. But,there is little research work about Quaternary for this area until now.
     Based on the previous data and field geological survey, this paper discusses theQuaternary strata and active tectonic characteristics of Lianghe basin and Yingjiangbasin, and achieves the main progress as follows.
     This paper uses geological survey and section measuring, and sets upstratigraphic sequence on the base of the characteristics of Quaternary sediment types,geomorphology, matrrial composition, space distributing law, contact relation andattitude. Studies have been conducted to devide the Quaternary sedimentary strata forthese two basins, with4series,3formations and6members for Lianghe basin, and4series and2members for Yingjiang basin.
     By carefully studying these two basins`geomorphic feature and evolution, wecan correctly identify7terraces for Lianghe basin and4terraces for Yingjiang basin.specifically, the fifth and sixth terraces of Lianghe basin are lacustrine sediment, andthe others are fluvial deposition. These two basins are part inheritance Quatrtnaryfault basin, evoluting with four stages (valley, lake basin, disappearing of lake-basin,intermontane river). Each stage is closely associated with tectonic movement.
     By carefully studying the geometric structure, kinematical characteristics and dating results (C14and OSL), we can correctly divide the Dayingjiang Fault to twosegments——Yingjiang fault in the south and Lianghe fault in the north. Yingjiangfault is a Holocene NE-SW sinistral stike-slip fault. But Lianghe fault is a latePleistocene normal fault, and the fault strike changes from NE-SW to N-S. Using theformula, we can calculate the horizontal slip rate3.18±1.23mm/a,the vertical slip rate0.008±0.005mm/a.
     By carefully studying the trench and dating results (C14and OSL), we cancorrectly identify three palaeoseismic events. The latest palaeoseismic event is about2ka from nowadays, occurring within Yingjiang fault. the second palaeoseismic eventis about7ka from nowadays, occurring within Yingjiang fault. And the thirdpalaeoseismic event is about30ka from nowadays, occurring within Yingjiang faultand Lianghe fault.
引文
Aki K.. Geometric features of a fault zone related to nucleation and termination of an earthquakerupture. US Geological Survey Open-File Report89~315,1989:1~9
    An Z.S., Kutzach J.E., Prellw W.L., et al. Evolution of Asian monsoons and phased up lift of thHimalaya-Tibetan plateau since Late Miocene times. Nature,2001,411:62~66
    Berryman K. Late Quaternary movement on the Wellington Fault in the Upper Hutt area, NewZealand. New Zealand Journal of Geology and Geophysics,1990,33(2):257~270
    Bull K. R. An introduction to critical loads. Environmental Pollution.1992,77(2-3):173~176
    Bull W. B. Geomorphic Responses to Climatic Change. Oxford city:Oxford University Press.1991:326
    Burbank D. W.,Anderson R.S. Tectonic Geomorphology. Massachusetts:Blackwell Science.2002:1~274
    Costa J.E., Baker V.R. Surface geology-Building with the earth. New York: Wiley.1981
    Cowgill E. Impact of riser reconstructions on estimation of secular in rates of strike-slip faultingrevisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and PlanetaryLetters,2007,254:239~255
    Cunningham W.D., Mann P.. Tectonics of strike-slip restraining and releasing bends. GeologicalSociety, London, Special Publication,2007,290:1~12
    Depolo C.M., Clark D.G., Slemmons B.D., et al. Historical surface faulting in the Basin andRange province, western north America: implications for fault segmentation. Journal ofStructural Geology,1991,13(2):123~136
    Ding Z.L., Xiong S.F., Sun J.M., et al. Pedostratigraphy and paleom agnetism of a~7.0Ma eolianloess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implication forpaleom on soon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,152:49~66
    England P. and Molnar P. Late Quaternary to decadal velocity fields in Asia. Journal ofGeophysical Research,2005,54(04):1037~1039
    Hancock G.S. and Anderson R.S. Numerical modeling of fluvial strath-terrace formation inresponse to oscillating climate. Geological Society of America Bulletin,2002,114:1131~1142
    Hubert-Ferrari A.,Armigo R.,King G.,et al. Morphology, displacement, and slip rates along theNorth Anatolian fault, Turkey. Journal of Geophysical Research,2002,107(B10),2235,doi:10.1029/2001JB000393
    Kadinsky K, Barka A.A.. Effects of restraining bends on the rupture of strike-slip earthquake. USGeological Survey Open-File Report89~315,1989:181~192
    Kirby E., Nathan H., Erqi W., et al. Slip rate gradients along the eatern Kunlun Fault. Tectonics,2007,26,TC2010,doi:10.1029/2006TC002033
    Knuepfer P.L.K.. Implications of the characteristics of end-points of historical surface faultruptures for the nature of fault segmentation. US Geological Survey Open-File Report89~315,1989:193~228
    Lasserre C., Morel P.H., Gaudemer Y., et al. Postglacial left slip-rate and past occurrence of M≥8earthquakes on the western Haiyuan fault, Gansu, China. Journal of Geophysical Research,1999,104(17):633~652
    Lensen G. J. Analysis of Progressive Fault Displacement During Downcutting at the Branch RiverTerraces, South Island, New Zealand. Geological Society of America Bulletin,1968,79(5):545~556
    Mann P., Prentice C.S., Burr G., et al. Tectonic geomorphology and paleoseismology of theSeptentrional fault system, Dominican Republic. Geological Society of America SpecialPaper326,1998:63~68
    Meiraux A. S., Ryerson F. J., Tapponnier P., et al. Rapid slip along the central Altyn Tagh Fault:Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of GeophysicalResearch,2004,109,B06401,doi:10.1029/2003JB002558
    Meriaux A.S., Ryerson F.J., Xu X.W., et al. The Aksay segment of the northern Altyn Tagh Fault:Tectonic geomorphology, landscape evolution, and Holocene slip rate. Journal ofGeophysical Research,2005,110(B4),B04404,doi:10.1029/2004JB003210
    Morley C.K.. Variations in Late Cenozoic–Recent strike-slip and oblique-extensional geometries,within Indochina: The influence of pre-existing fabrics. Journal of Structural Geology,2007,29(1):36~58
    Ouchi S. Flume experiments on the horizontal stream offset by strike-slip faults. Earth SurfaceProcesses and Landforms.2004,29(2):161~173
    Schwartz D.P. and Lund W.R.. Paleoseismicity and earthquake recurrence at Little CottonwoodCanyon, Wasatch fault zone, Utah. In: the Footsteps of G.K. Gilbert-Lake Bonneville andNeotectonics of the Eastern Basin and Range Province (edited by Machette M.N.). Utah Geol.and Min. Surv. Misc. Publ.1987:82~85
    Sieh K.E. and Jahns R.H. Holocene activity of the San Andreas Fault at Wallace Creek, California.Geological Society of America Bulletin,1984,95:883~896
    Sklar L.S. and Dietrich W.E. Amechanistic model for river incision into bedrock by saltating bedload. Water Resources Research,2004,40W06301,doi10.1029/2003WR002496
    Socquet A, Pubellier M. Cenozoic deformation in western Yunnan (China-Myanmar border).Journal of Asian Earth Sciences,2005,24:495~515
    Taponnier P., Molnar P. Slip-line field theory and large-scale continental tectonics. Nature.1976,264:319~324
    Tapponnier P., Xu Z. Q., Roger F., et al. Geology-Oblique stepwise rise and growth of the TibetPlateau. Science.2001,294(5547):1671~1677
    Van Der Woerd J., Ryerson F.J., Tapponnier P., et al. Holocene left-slip rate determined bycosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China).Geology,1998,26:695~698
    Van Der Woerd J., Tapponnier P., Ryerson F. J., et al. Uniform postglacial slip-rate along thecentral600km of the Kunlun fault, from26Al,10Be, and14C dating of riser offsets, andclimate origin of the regional morphology. Geophysical Journal International,2002,148(3):356~388
    Wallace R.E.. Active faults, paleoseismology, and earthquake hazards in the western United States.In Earthquake Prediction: An international review (D.W Simpson and P.G Richards, eds)Maurice Ewing. Am. Geophys Union, Washington DC,1981, Ser.4:209~216
    Wan Y.G., Shen Z.K., Zeng Y.H., et al. Evolution of cumulative Coulomb failure stress innortheastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence.Acta Seismologica Sinica,2007,20(2):117~132
    Weldon R.J. and Sieh K.E. Holocenen rate of slip and tentative recurrence interval for largeearthquakes on the San Andreas Fault, Cajon Pass, Southern California. Geological Societyof America Bulletin,1985,96:793~812
    Yang Z., Waldhauser F., Chen Y., et al. Double difference relocation of earthquakes incentral-western China. J Seismology,2005,9:241~264
    Yin H.T., Zhang P.Z., Gan W.J., et al. Near-field surface movement during the Wenchuan M s8.0earthquake measured by high-rate GPS. Chinese Science Bulletin,2010,55(23):2529~2534
    Zachos J., Pagani M., Sloan L., et al. Trends, rhythms, and aberrations in global climate65Ma topresent. Science,2001,292:686~693
    Zhang P.Z., Mao F., Slemmons D.B.. Rupture terminations and size of segment boundaries fromhistorical earthquake ruptures in the basin and range province. Tecotonophysics,1999,308(1999):37~52
    Zhang P.Z., Molnar P. and Downs W. Increased sedimentation rates and grainsizea2~4Myr agodue to the influence of climate changes on erosion rates. Nature,2001,410:891~897
    Zhang P.Z., Molnar P. and Xu X. W. Late Quaternary and present-day rates of slip along the AlynTagh Fault northern margin of the Tibetan Plateau. Tectonics,2007,26TC5010,24PP,doi:1029/2006TC002014
    Zhang P.Z., Shen Z.K., et al. Continuous deformation of the Tibet plateau from global positionsystem data. Geology,2004,32(9):809~812
    安晓文,常祖峰,石静芳.大盈江断裂西南段晚第四纪活动研究.地震研究,2009,32(2):193~198
    常祖峰,陈刚,余建强.大盈江断裂晚更新世以来活动的地质证据.地震地质,2011,33(4):877~888
    陈华慧,何科昭,何浩生,等.腾冲-梁河地区砂锡矿形成条件及富集规律研究.云南地质,1991,10(4):337~361
    陈吉琛,陈良忠,林文信.腾冲-梁河地区花岗岩单元-序列的划分及其意义.青藏高原地质文集,1990,20:24~33
    程捷,刘学清,高振纪,等.青藏高原隆升对云南高原环境的影响.现代地质,2001,15(3):290~296
    邓菲,刘杰.2008年盈江地震序列的震源参数和震源机制相关系数研究.见:中国地球物理学会.中国地球物理2013——第十分会场论文集.2013.380
    邓起东,陈立春,冉勇康.活动构造定量研究与应用.地学前缘,2004,11(4):383~392
    邓起东,张维岐,张培震,等.海原走滑断裂带及其尾端挤压构造.地震地质,1989,11(1):1~14
    丁国瑜,田勤俭,孔凡臣,等.活断层分段原则、方法及应用.北京:地震出版社,1993
    杜国云,王竹华,李晓燕.构造地貌分析体系及相关的构造地貌标志.烟台师范学院学报(自然科学版),2002,18(2):105~112
    房立华,吴建平,张天中,等.2011年云南盈江M_S5.8地震及其余震序列重定位.地震学报,2011,33(2):262~267
    符必昌.云南腾冲地热成因及水化学特征.云南工业大学学报,1998,14(3):48~52
    付虹,黄浩,李丽,等.2011年3月10日云南盈江5.8级地震序列研究.地震研究,2011,34(4):414~419+566
    傅竹武,刘建华,胥颐,等.利用接收函数方法研究大盈江断裂两侧S波速度结构.云南大学学报(自然科学版),2007,29(6):607~612+616
    虢顺民,向宏发,徐锡伟,等.滇西大盈江断裂带晚第四纪活动的初步研究.见:中国地震局地质研究所编.活动断裂研究(7).北京:地震出版社,1999,58~66
    国家地震局地质研究所、云南省地震局,滇西北地区活动断裂.北京:地震出版社,1990,33-48。
    韩慕康.构造地貌学.地球科学进展,1992,7(5):61~62
    何浩生,何科昭.滇西地区夷平面变形及其反映的第四纪构造运动.现代地质,1993,7(1):31~39
    何科昭,赵崇贺,何浩生,等.滇西陆内裂谷与造山作用—滇西地区印支期后的构造演化.1996,北京:中国地质大学出版社
    计凤桔,郑荣章,李建平,等.滇东-滇西地区主要河流低阶地地貌面的年代学研究.地震地质,2000,22(3):265~276
    季建清.滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义.地质科学,2000,35(3):336~349
    姜朝松.以腾冲玉壁山地震为例再论腾冲火山地震.地震研究,1985,8(3):351~358
    李陈侠.东昆仑断裂带东段(玛沁-玛曲)晚第四纪长期滑动习性研究:[博士学位论文].北京:中国地震局地质研究所,2009
    李传友.青藏高原东北部几条主要断裂带的定量研究:[博士学位论文].北京:中国地震局地质所,2005
    李大明,李齐,陈文寄.腾冲火山区上新世以来的火山活动.岩石学报,2000,16(3):362~370
    李峰,段嘉瑞.滇西地区板块-地体构造.昆明理工大学学报,1999,01:35~41,60
    李恒忠,杨存宝.腾冲热海地下流体观测研究.地震研究,2000,23(2):231~238
    李龙吟.云南省腾冲县北部盆地第四纪地层研究:[硕士学位论文].北京:中国地质大学,1988
    李舜贤,陆永潮,马进德.腾冲山寨盆地特征及砂锡矿物质成分研究.云南地质,1991,10(4):362~384
    罗改,贾小川,杨学俊,等.滇西腾冲地区勐连花岗岩体南段LA-ICP-MS锆石U-Pb定年及其构造意义.地质通报,2012,31(2~3):287~296
    罗文行,胡祥云,李德威,等.南北地震带南段震源空间分布特征及其构造意义.吉林大学学报(地球科学版),2012,42(6):1944~1958
    穆桂春,刘淑珍,戴鹤之,等.腾冲火山地貌.西南师范学院学报(自然科学版),1982,4:97~143+147
    钱晓东,刘祖荫.腾冲火山活动区的地震活动性研究.地震研究,1998,21(4):337~342
    钱晓东,苏有锦,付虹,等.2011年云南盈江5.8级地震及震前短临跟踪预测.地震研究,2011,04:403~413
    苏有锦,秦嘉政.川滇地区强地震活动与区域新构造运动的关系.中国地震,2001,01:24~34
    孙尧,冯梅,安美建,等.2011年5.8级盈江地震前后区域地震活动特征及其地质学意义.见:中国地球物理学会.中国地球物理学会第二十七届年会论文集.2011.358
    田明中,程捷.第四纪地质学与地貌学.北京:地质出版社,2009
    王锋.阿尔金断裂带晚第四纪滑动速率及其地震地表破裂分段特征:[博士学位论文].北京:中国地震局地质研究所,2003
    王铠元,孙克祥,段彦学.滇西地区新构造运动几个问题的探讨.见:青藏高原地质文集(12)——“三江”构造地质.1982.201~212
    王铠元,孙克祥,卢瑞甫.滇西地区大地构造演化.青藏高原地质文集,1983,04:187~199
    王西川.云南腾冲-梁河盆地新构造运动基本特征:[硕士学位论文].北京:中国地质大学,1988
    汪一鹏,马瑾,李传友.南北地震带强震迁移特征及其与南亚地震带的联系.地震地质,2007,29(1):1~14
    闻学泽.活动断裂地震潜势的定量评估.北京:地震出版社,1995
    伍跃中,陈守建,毛耀保,等.云南腾冲-瑞丽地区构造控煤及煤层聚积特征分析.中国煤田地质,2003,12(6):85~87
    孙泽轩,陈洪德,朱西养,等.滇西新生代盆山耦合与砂岩型铀矿找矿方向.铀矿地质,2007,05:289~297
    谢韬,林仕良,丛峰,等.滇西梁河地区钾长花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.大地构造与成矿学,2010,34(3):419~428
    徐锡伟,Tapponnier P.,Van Der Woerd J.,等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学(D),2003,33(10):967~974
    徐锡伟,闻学泽,于贵华,等.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征.中国科学(D辑),2005,35(6):540~551
    徐锡伟,于贵华,马文涛,等.活断层地震地表破裂“避让带”宽度确定的依据与方法.地震地质,2002,24(4):470~483
    徐彦.盈江序列地震震源机制解分析.见:中国地球物理学会.中国地球物理学会第二十七届年会论文集.2011.390
    徐彦,高洋,李丹宁,等.盈江中强地震序列震源机制及区域地壳流变特征和断层性质研究.地球物理学进展,2012,27(6):2358~2368
    熊昌利,贾小川,杨学俊,等.滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境.地质通报,2012,31(2~3):277~286
    颜丹平.云南省保山-腾冲地区喜马拉雅构造运动特征:[硕士学位论文].北京:中国地质大学,1988
    闫伟,武艳强,牛安福,等.基于择优的块体模型解算南北地震带中南段主要断层滑动速率.中国地震,2013,29(1):81~90
    杨景春,李有利.活动构造地貌学.北京:北京大学出版社,2011:1~8
    杨宝嘉,吕伟.滇西北三江地区新构造运动特征.成都大学学报(自然科学版),2006,25(3):214~218
    杨晶琼,杨周胜,刘丽芳,等.2008年盈江5.9级地震序列震源参数研究.地震研究,2010,33(4):308~312+376
    姚鑫,张加桂,张永双,等..2011年3月10日盈江5.8级地震诱发砂土液化灾害特征研究.工程地质学报,2011,19(2):152~161
    虞光复.腾冲火山及其地热.昆明师范学院学报,1979,3:75~76+69
    云南省梁河县南林煤矿普查地质报告.云南一九九煤田地质勘探队,1991
    云南省区域地质志.云南省地质矿产局.北京:地质出版社,1990
    云南省腾冲地区地热资源考察报告.腾冲地热资源联合调查组,1974
    张晁军.云南盈江地区历史地震活动性.http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/_content/11_03/11/1299834265277.html.2011
    张广伟,雷建设.2011年盈江地震序列重定位研究.见:中国地球物理学会.中国地球物理学会第二十七届年会论文集.2011.335
    张宏伟.云南省梁河盆地第四纪地层及其沉积环境的研究:[硕士学位论文].北京:中国地质大学,1988
    张加桂,黄体庄,雷伟志,等..2008年云南盈江地震震害特点及抗震防灾启示.地质通报,2009,28(8):1077~1084
    张家声,李燕,韩竹均.青藏高原向东挤出的变形响应及南北地震带构造组成.地学前缘(中国地质大学,北京),2003,10(supp.):168~175
    张培震,李传友,毛凤英.河流阶地演化与走滑断裂滑动速率.地震地质,2008,30(1):44~57
    张培震,徐锡伟,闻学泽,等.512汶川8.0级大地震的特点与成因:低速率、长周期、高强度的新地震类型.地球物理学报,2008,51(4):1066~1073
    张绪教.滇西高原隆升及环境变迁:[硕士学位论文].北京:中国地质大学,1996
    张绪教,何科昭.利用新近系煤的镜质组反射率计算滇西高原的隆升幅度.地质通报,2012,31(2~3):235~240
    张绪教,何科昭,秦尊丽.煤的镜质组反射率在滇西高原隆升幅度计算中的应用.第四纪研究,2000,20(4):392
    赵小艳,韩立波,龙锋.2011年盈江M_s≥4.0地震序列震源机制解与发震构造研究.地震研究,2012,35(4):477-484
    郑荣章.阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制:[博士学位论文].北京:中国地震局地质所,2005
    中华人民共和国1:200000地质图及说明书潞西幅(G-47-ⅩⅩⅩⅢ).云南省地质局第一区域地质测量大队,1905
    中华人民共和国1:200000地质图及说明书瑞丽幅(G-47-ⅩⅩⅩⅡ).云南省地质局第一区域地质测量大队,1965
    中华人民共和国1:200000地质图及说明书腾冲幅(G-47-ⅩⅩⅦ).云南省地质局区域地质调查队,1982
    中华人民共和国1:200000地质图及说明书盈江幅(G-47-ⅩⅩⅠ).云南省地质矿产局区域地质调查队,1982
    中华人民共和国1:200000区域水文地质普查报告腾冲幅(G-47-[27]).中国人民解放军00933部队,1980
    中华人民共和国1:1000000地质图及说明书下关幅.云南省地质局区域地质调查队,1965
    卓维荣,朱西养.腾冲-梁河地区的上第三系.云南地质,1990,9(4):321~331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700