用户名: 密码: 验证码:
铀矿勘查中的车载伽玛能谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载伽玛能谱测量是将伽玛能谱仪安装在汽车上探测陆地介质放射的伽玛射线能量和强度,并计算其中所含放射性核素含量的方法,用来寻找放射性(或放射性伴生)矿产和监测辐射环境。在铀矿勘查中,车载伽玛能谱测量主要是用来测定岩(矿)石或土壤中所含铀、钍、钾的含量,圈定铀异常(矿化)范围和成矿远景区。仪器谱的谱分析是提高核素含量测量精度的关键问题,铀成矿有利信息提取是确定车载伽玛能谱找矿标志和圈定铀异常远景区的关键问题。目前,在铀矿勘查中,车载伽玛能谱数据处理和解释滞后于航空伽玛能谱,谱分析仅停留在“标准三窗”法,基于车载伽玛能谱的放射性统计噪声和大气氡的影响、谱分析及铀成矿有利信息提取研究较少。针对目前车载伽玛能谱测量研究的不足,本文在降噪、大气氡影响修正、谱分析、铀成矿有利信息提取及远景预测方面开展研究。
     1.采用离散余弦、小波变换和自适应神经网络模糊系统的方法组合,对车载伽玛能谱测量数据开展了降噪技术研究,提出了离散余弦神经网络模糊降噪和小波神经网络模糊降噪综合方法,研究结果表明采用小波神经网络模糊降噪对全谱数据低能段谱处理的效果较好。经过处理后的全谱低能谱段的特征峰能没有丢失,但是高能谱段的特征峰降噪效果明显差于采用离散余弦神经网络模糊降噪。两者相结合可有效降低统计噪声。
     2.提出了直接测氡法修正车载伽玛能谱测量中大气氡的影响。通过大量的实验结果对比分析,发现定点测量时,车载伽玛能谱实测当量铀含量与大气氡浓度呈线性关系,斜率为两者的关系系数,以车载伽马能谱测量系统和测氡仪器组成新系统,通过定点测量和函数拟合确定大气氡影响的修正系数,实现移动测量中修正大气氡的影响,研究结果表明该方法具有较高的科学价值。
     3.通过对车载伽玛全谱特征分析,提出了车载伽玛能谱全谱分析和214Pb低能铀窗方法,建立了全谱分析法,低能铀窗法、标准“三窗法”的车载伽玛能谱分析系统,充分挖掘了车载伽玛全谱信息。通过实例分析,表明全谱分析能有效地利用全谱信息,214Pb低能铀窗法好于214Bi-609低能铀窗法,具有较好的应用前景。
     4.基于车载伽玛能谱测量在内蒙古二连盆地和巴音戈壁盆地铀矿勘查中的应用研究,对铀矿勘查中的车载伽玛能谱成矿有利信息提取技术与远景预测系统进行开发、完善,建立了两个盆地铀矿找矿标志、模型和综合预测方法,使得车载伽玛能谱信息与地质、物化探、遥感等信息有机结合,弥补了单一方法的不足,提高了铀矿产预测成果的可信度。
     本研究在理论、技术和应用方面的突破和创新,提高了车载伽玛能谱数据处理和解释水平,为铀矿勘查提供了技术支持和基础信息数据。
Car-borne gamma-ray spectrometry survey is detecting the gamma-ray spectrumreleased from the shadow land and calculating the radionuclide content which fixedthe car-bore gamma-ray detector on or in car, in order to find radioactive minerals orradioactive associated minerals and monitor environmental radiation.
     In uranium exploration, car-borne gamma-ray spectrometry survey is mainlyused to calculate the content of uranium, thorium, potassium among the rock, ore, andsoil, and used to delineate the scope of anomaly or mineralization and metallogenicprospect areas.
     It is the key problem to improve the nuclide content measurement accuracy aboutspectrum analysis of instrument’s spectral. The technology of uranium mineralizationfavorable information extraction is very important to determine the car-borne gammaenergy spectrum prospecting marks and delineating uranium anomaly area.
     At present, in the field of uranium exploration, data processing and interpretationof car-borne gamma energy spectrum lags behind that of airborne gamma energyspectrum. Spectrum analysis is only stay in the standard three window method. Theresearch is less on radioactive statistical noise,the influence of atmospheric radon,spectrum analysis and uranium mineralization favorable information extraction. Sothis paper carried the study of related technologies.
     1. Research on noise reduction technology of car-borne gamma-ray spectrometrysurvey using method or method combination of discrete cosine transform, wavelettransform, adaptive neural network fuzzy system, the nose reduction method arepresented as the discrete cosine neural network fuzzy and wavelet neural networkfuzzy synthesis method. The results show that low energy spectrum processing isbetter using the wavelet neural network fuzzy technology, but high energy spectrumprocessing is better using the discrete cosine neural network fuzzy technology. So,statistical noise can be reduced by the combination of these two.
     2. A method of measuring radon concentration to modified influence ofatmospheric radon.By analyzing the results of a large number of experiments,when fixed-point measurement, the equivalent uranium content of car-borne gamma-rayspectrometry survey has a linear relation with atmospheric radon concentration. Theslope is the relation coefficient for them. A new system combined by Car-bornegamma-ray spectrometry survey and radon measurement, atmospheric radoncorrection coefficient is determined by fixed-point measure and function fitting,which used to correct the influence of atmospheric radon. The results show that themethod has high scientific value.
     3. Study on the gamma spectral characteristics of Car-borne gamma-rayspectrometry survey, and full spectrum analysis and low-energy uranium windowanalysis method were proposed, so car-borne gamma energy spectrum analysis systemis established including the full spectrum analysis, the low-energy uranium windowmethod and the standard of "three window method". Through case analysis, itshows that the full spectrum analysis can effectively use spectrum information,214Pblow-energy uranium window method is better than214Bi-609low-energy uraniumwindow method, and has a good application prospect.
     4. Based on the car-borne gamma-ray spectrometry survey, the car-bornegamma energy spectrum metallogenic information extraction technology and prospectforecast system was developed by the application of uranium exploration in Erlianbasin and Bayingebi basin, Inner Mongolia. The uranium prospecting marks, modelsand comprehensive prediction method were established for the two basins, whichintegrated with the car-borne gamma energy spectrum information, geologicalinformation, geophysical and geochemical information and remote sensinginformation, and made up for the deficiencies of a single method, improve thecredibility of uranium production forecast results.
     This study made a breakthrough and innovation in the aspects of theory,technology and application, which improve the level of the car-borne gamma energyspectrum data processing and interpretation, and provide technical support and basicinformation for uranium exploration.
引文
[1].石玉春,吴燕玉.放射性物探.北京:原子能出版社,1986.
    [2].章晔,华荣洲,石柏慎.放射性方法勘查.北京:原子能出版社,1990.
    [3].马根和,莫撼.场论.北京:原子能出版社,1995.
    [4].王懋基,张文斌,王守坦,等.航空物探解释方法及应用.北京:地质出版社,1992.
    [5].卢存恒.铀矿物探伽玛场理论计算和应用.北京:原子能出版社,1991.
    [6].王平,熊盛青.油气放射性勘查原理方法与应用.北京:地质出版社,1997.
    [7].卢存恒,刘庆成,韩长青.空间γ场的弹性变化及应用.北京:原子能出版社,2006.
    [8].田东风,龚健,伍均,胡思得.核材料γ特征谱的探测和分析技术.北京:国防工业出版社,2005.
    [9].程业勋,王南萍,侯胜利.核辐射场与放射性勘查.北京:地质出版社,2005.
    [10].鲁挑建,姜启明.放射性地球物理勘查.哈尔滨:哈尔滨工业大学出版社,2009.
    [11].丁富荣,班勇,夏宗璜.辐射物理.北京:北京大学出版社,2004.
    [12].陈永清,何建国,等.基于GIS矿产资源综合定量评价技术.北京:地质出版社,2008.
    [13].徐增亮,隆盛银,徐绍谱,等.铀矿找矿勘探地质学.北京:原子能出版社,1990.
    [14].张锦由,黎春华.铀矿物化探数据处理方法.北京:原子能出版社,2001
    [15].王志雄.铀矿物研究方法.北京:原子能出版社,1989.
    [16].胡昌华,张军波,等.基于MATLAB的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999.
    [17].飞思科技产品研发中心. MATLAB6.5辅助小波分析与应用.北京:电子工业出版社,2003.
    [18].卫平生,张虎权,陈启林.银根—额济纳旗盆地油气地质特征及勘探前景.北京:石油工业出版社,2006.
    [19].蒋慧勤,王言幸.内蒙古二连盆地北缘汽车伽玛能谱测量区调:[内部报告].核工业西北地勘局二0八大队一分队,1992.
    [20].张云宜,赵翠萍,李继安.内蒙古二连盆地东部伽玛能谱资料研究及其应用:[内部报告].西北地质局二0三研究所物化探室,1997.
    [21].李保侠,郑克文,魏观辉.二连盆地川井坳陷可地浸砂岩型铀成矿有利地段选择研究:[内部报告].西北地质局二0三研究所四室,1997.
    [22].秦明宽,等.二连盆地地浸砂岩型铀矿资源潜力综合评价:[内部报告].北京:核工业北京地质研究院,2005.
    [23].陈安平,申科峰,郝进庭,等.内蒙古二连盆地赛汉高毕—巴彦乌拉地区铀矿预查:[内部报告].包头:核工业208大队,2006.
    [24].聂逢君,陈安平,彭云彪.二连盆地古河道砂岩型铀矿.北京:地质出版社,2010.
    [25].刘武生,贾立城,陈戴生,等.二连盆地砂岩型铀矿资源潜力评价:[内部报告].北京:核工业北京地质研究院,2010.
    [26].刘武生,贾立成等.巴丹吉林-巴音戈壁盆地铀资源潜力评价:[内部报告].北京:核工业北京地质研究院,2011.
    [27].罗毅,何中波等.内蒙古巴音戈壁盆地砂岩型铀矿成矿条件分析及铀资源潜力评价:[内部报告].北京:核工业北京地质研究院,2008.
    [28].侯树仁,王强等.内蒙古巴音戈壁盆地地浸砂岩型铀资源调查评价:[内部报告].包头:核工业208大队,2005.
    [29].侯树仁,李西得等.内蒙古巴音戈壁盆地塔木素—银根地区1:25万铀资源区域评价:
    [内部报告].包头:核工业208大队,2007.
    [30].王强,侯树仁等.内蒙古巴音戈壁盆地地浸砂岩型铀资源调查评价:[内部报告].包头:核工业208大队,2009.
    [31].陆士立,韩绍阳,李必红,等.内蒙古满洲里-额尔古纳地区车载伽玛能谱调查及综合预测:[内部报告].北京:核工业北京地质研究院,2007.
    [32].李必红,陆士立,罗毅,等.巴音戈壁盆地车载伽玛能谱调查及异常评价:[内部报告].北京:核工业北京地质研究院,2011.
    [33].李必红,陆士立,王明太,等.内蒙古二连盆地车载伽玛能谱调查及异常评价:[内部报告].北京:核工业北京地质研究院,2013
    [34].方方.野外地面伽玛射线全谱测量技术研究:[博士论文].成都:成都理工大学,2001.
    [35].高宝龙.利用蒙特卡罗方法进行伽玛能谱全谱重叠峰模拟分解初步研究:[硕士论文].北京:中国地质大学,2006.
    [36].张庆贤.航空γ能谱特征和仪器谱解析方法研究:[博士论文].成都:成都理工大学,2010.
    [37].王南萍,熊盛青,周锡华.航空伽玛能谱仪对137Cs点源响应特征及全谱数据的提取技术.核技术.2005,28(4):313~318.
    [38].王南萍,付辰,裴少英,等.伽玛能谱全谱数据高斯拟合分解方法.中国地球物理.2008:212.
    [39].裴少英,王南萍.航空伽玛能谱全谱数据的高斯分解方法.科技导报.2006,24(11):10~11.
    [40].曾立军,王南萍,田贵.NaI(Tl)伽玛能谱全谱数据高斯分解软件的实现与应用.核电子学与探测技术.2011,31(12):1345~1349.
    [41].葛良全,谷懿,张庆贤,等.航空γ能谱测量谱线比法大气氡校正的理论研究.核技术.2010,33(11):844~848.
    [42].李继安,贺建国.伽玛能谱测量的应用及资料处理的讨论.铀矿地质.2008,24(6):363~368.
    [43].杨建军,吴汉宁,赵希刚,等.航空伽玛能谱测量数据微弱信息处理方法研究.西北大学学报(自然科学版).2006,36(4):628~634.
    [44].胡明考,蔡根庆,沈正新,等.应用航空伽玛能谱全谱信息预测铀成矿远景区.中国核科学技术进展报告(第一卷)铀矿地质分卷.2009.11:160~163.
    [45].马永红,葛良全,周四春,等.航空伽玛低能谱段规律初步研究.中国核科学技术进展报告(第一卷)铀矿地质分卷.2009.11:53~55.
    [46].李兵海,等.航空伽玛低能谱段规律初步研究.中国核科学技术进展报告(第一卷)铀矿地质分卷.2009.11:53~55.
    [47].杨建军,吴汉宁,赵希刚,等.航空能谱测量数据微弱信息处理方法研究.西北大学学报(自然科学版).2006,36(4):628~634.
    [48].韩绍阳,侯惠群,翟玉贵,等.GR-660全能谱信息挖掘及应用技术研究.物探化探计算技术.2004,26(1):53~60.
    [49].成秋明.多维分形理论与地球化学分布规律.地球科学.2000,25(3):311~316.
    [50].陈永清,王世称.综合信息成矿系列预测的基本原理和方法.山东地质.1995,11(1):55~62.
    [51].张万良.内蒙古查干德勒苏地区下白垩统巴音戈壁组沉积体系及其对可地浸砂岩型铀矿的制约.铀矿地质.2002,18(3):144~149.
    [52].吴仁贵,周万蓬,刘平华,等.巴音戈壁盆地塔木素地段砂岩型铀矿成矿条件及找矿前景分析.铀矿地质.2008,24(1):24~31.
    [53].刘德长,孙茂荣,何建国,等.以航放为主的多源地学信息数字图像综合技术在连山关地区铀成矿预测中的应用.铀矿地质.1992,8(2):65~92.
    [54].裴钰,任国浩. LnX3型稀土卤化物闪烁晶体的闪烁性能.人工晶体学报.2004,33(6):1004~1010.
    [55].桂强,张春生,张明荣,等.大尺寸掺氯化铈的溴化镧晶体生长及闪烁性能研究.核电子学与探测技术.2011,31(11):1195~1197.
    [56].高鑫,何元金. LaBr3+3:Ce闪烁晶体研究进展.核电子学与探测技术.2010,30(1):5~11.
    [57].李必红,陆士立,韩绍阳.车载伽玛能谱数据的小波降噪方法分析.铀矿地质.2010,26(4):233~236.
    [58].李必红,陆士立,韩绍阳.采用ANFIS降低车载伽玛能谱测量数据的统计噪声.铀矿地质.2008,24(3):193~197.
    [59].李必红,陆士立,韩绍阳.车载伽玛能谱测量数据处理新方法探讨.东华理工大学学报.2008,36(3):
    [60].李必红,张琪,赵丹.铀成矿伽玛谱信息探讨.中国核科学技术进展报告(第二卷).中国原子能出版社.2011.10:302~308.
    [61].李必红,陆士立,韩绍阳,等.核探测中的车载伽玛能谱技术.原子能科学技术.2012,46(suppl):560~564.
    [62].李必红,陆士立.铀弱信息伽玛全谱分解分形方法.中国地球物理.2012.10:
    [63].李必红.我国铀矿核物探发展与未来.世界核地质科学.2012,29(3):156~163.
    [64].李必红.一种车载伽玛能谱大气氡消除装置.中国专利.201220721862.X.2012
    [65].李必红.一种核探测数据的离散余弦神经网络模糊降噪方法.中国专利.201210490799.8.2012
    [66].Luke P N, Amman M, Tindal C, Lee J S. Recent developments in semiconductor gamma-raydetectors. USA: Lawrence Berkeley National Laboratory,1994.
    [67].Butler J F, Lingren C L, Doty F P.IEEE Trans.nucl.Sci.,1992,39:605.
    [68].Knoll G F. Radiation Detection and Measurement. New York:Third Edition, John Wiley andSons,Inc.,2000.
    [69].Shah K S, Glodo J, Klugerm M, et al. LaBr3: Ce Scintillators for Gamma Ray Spectroscopy.IEEE Transactions on Nuclear Science.2003,50:2410~2413.
    [70].Dorenbos P J, Haas T M, vanEijk C W E."Gamma Ray Spectroscopy With a φ19×19mm3LaBr3:0.5%Ce3+Scintillator ". IEEE Trans. Nucl. sci.2004,51:1289~1296.
    [71].Grasty R L, Wilkes P G, Kooyman R. Back-ground measurements in gamma-ray surveys.Geological Survey of Canada.1988:88~11.
    [72].Minty B R S. Airborne gamma-ray spectrometric background estimation using full spectrumanalysis. Geophysics,1992,57(2):279~287.
    [73].Minty B R S. The analysis of multichannel airborne gamma-ray spectra. PhD Thesis,Australian National University,1996.
    [74].Grasty R L. Utilizing Uranium Exploration Method: proceedings. IAEA Symposium.Paris.1982:653~668.
    [75].Pavel, Campbell, Philip, et al. Use of214Pb photo peaks for radon removal: utilizing currentairborne gamma-ray spectrometer technology and data processing. ExplorationGeophysics.2005,36:322~328.
    [76].Minty B R S. Multi-channel models for the estimation of radon background in airbornegamma ray spectrometry. Geophysics.1998,63(6):1986~1996.
    [77].Hovgaard, Grasty. Reducing statistical noise in airborne gamma ray data through spectralcomponent analysis. In "Proceeding of Exploration97: Fourth Decennial Conference onMineral Exploration" edit by Gubins A G.1997.753~764.
    [78].Green A A, Berman M, Switzer P, Craig M D.A transformation for ordering multispectraldata in terms of image quality with implications for noise removal. IEEE Trans.Geosci. andRemote Sensing,GE-26.1988:65~74.
    [79].Lee J B. Woodyatt A S. Berman M. Enhancement of high spectral resolution remote-sensingdata by noise-adjusted principal components transform: IEEE Trans. Geosci. and RemoteSensing.1990,28(3),295~304.
    [80].IAEA. Guidelines for radioelement mapping using gamma ray spectrometry data.Vienna,Austria.2003.
    [81].Minty B R S, Mc Fadden P, Kennet B L N. Multichannel processing for airborne gamma-rayspectrometry. Geophysics.1999.63(6):1971~1985.
    [82].Ilfan A, Slavic. Nonlinear Least Squares Fitting Without Matrix Inversion Applied toComplex Gaussian Spectra Analysis.Nuclear Instruments and Methods.1976,134:285~289.
    [83].Straker E A. Morse Code: Anultigroup neutron and gamma-ray Monte Carlo transport code.USAEC Report ORNL-4585.1970.
    [84].Walte R, Nelson. The EGS4Code System. SLAC-265,UC-32(E/T/A).1985.
    [85].LANL Group X-6. MCNP-a general Monte Carlo Code for neutron and photontransport.LA-7396-M.1979.
    [86].Hendriks P H G M, Maushcec M, deMeijer R J. MCNP modeling of scintillation-detectorgamma-ray spectra from natural radio nuclides. Applied Radiation and Isotopes,2002,57:449~457.
    [87].Nguyen H V, Campbell J M, Couchell G P. Programs in C for parameterizing measured5〃×5〃NaI gamma response functions and unfolding of continuous gamma spectra.ComputerPhysics Communications.1996,93:303.
    [88].Fayez H H. Development of a computer code using the EGS4Monte Carlo simulation systemto evaluate the response of a NaI(Tl) detector to photons with energies below300keV.Applied Radiation and Isotopes2006,64:85.
    [89].Kovarch A, Flood P G, Tyne E. Geographical information systems for regional scalegeological analysis: the Manilla1:250000map area, a case study. Proceedings of the7thAustralian Remote Sensing Conference.1994:1076~1083.
    [90].Wellman P. Mapping of a granite batholiths using geological and remotely sensed data: theMount Edgar Batholith, Pilbara Craton. Exploration Geophysics.1998,29:643~648.
    [91].Marmier P,Sheldon E. Physics of Nuclear and Particles,Vol.1.New York: Academic PressInc.,1969.
    [92].Smith,H.H.,Robbins,C.A.,Arnold,D.V.,Gadokan,L.L.,&Cealon,J.G.(1983).A multi-functioncompensated spectral natural gamma ray logging system.Society of petroleum engineers SPE12050.
    [93].Minty,B.R.S., Mc Fadden,P.,&Kennet,B.L.N..Multichannel processing for airbornegamma-ray spectrometry.Geophysics.1999,63(6):1971~1985.
    [94].Hendriks P H G.M., J.Limburg, R.J.de Meijer. Full-spectrum analysis of natural γ-ray spectra.Journal of environmental radioactivity.53(2001)365~380.
    [95].Crossley D J,&Reid A B. Inversion of gamma ray data for element abundances. Geophysics.1982,47:117~126.
    [96].Benoit B. Mandelbrot. The fractal geometry of nature(updated and augmented edition). NewYork: W. H. Freeman and Company,1983.
    [97].Turcotte D L. Implication of chaos, scale–invariance and fractal statistics in geology. Globaland Planetary Change.1990,3(3):301~308.
    [98].Cheng Q, Agterberg F P, and Ballantyne, S. B.,1994.The separation of geochemicalanomalies from background by fractal methods. Journal of ExplorationGeochemistry,51(2):109~130.
    [99].Paredes C, Elorza F J.Fractal and multifractal analysis of fractured geological media:surface-subsurface correlation. Computers and Geosciences.1999,25:1081~1096.
    [100].Cheng Q. Multifractality and spatial statistics. Computers&Geosciences.1999,25(9):949~961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700