用户名: 密码: 验证码:
高放废物处置库北山预选区深部地下水成因机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国际上公认的技术上最为可行的高放废物安全处置方法为深地质处置,即以地质体作为天然屏障,并在地下处置库中设置多重人工屏障,从而实现高放废物与人类生存环境的长期或者永久隔离。基岩裂隙介质对核废物的屏障功能以及作为核素迁移载体的基岩裂隙水的水文地质特征对高放废物处置库的安全性能极为重要。鉴于高放废物具有强放射性、长半衰期及高释热率等特点,在场址筛选和安全评价中,往往更注重于处置库场址水文地质长时间尺度的系统特征。因此,开展高放废物处置库北山预选区深部地下水成因机制研究,获取地下水水化学与同位素等所蕴涵的水文地质信息,对理解和把握处置库场址地下水的补给来源和滞留时间、长时间尺度的地下水系统特征及深部地下水循环模式与动力学特征具有重要的意义。
     论文研究目标是揭示我国高放废物处置库甘肃北山预选区深部地下水成因机制,为我国高放废物地质处置库场址的选址提供依据。为此主要开展三个方面的研究工作:(1)地下水水化学与同位素分布特征研究;(2)浅部介质的渗透特性与地下水补给研究;(3)地下水测年及深部地下水的成因机制研究。
     论文研究以我国高放废物地质处置的工程需求及关键水文地质问题为导向,围绕北山预选区深部地下水成因机制这一核心问题开展研究。首先在收集和总结前人研究成果的基础上,详细分析研究区的水文地质背景;通过开展深部环境原状地下水取样、地下水的水化学与同位素分布特征、地下水的分层监测、氯质量平衡法的地下水补给估算、同位素测年等综合手段和方法,重点研究地下水的补给及水化学同位素特征、测定深部地下水的年龄、识别地下水的循环更新速率及补给来源,提出地下水补给机制和流动模式,深化研究区深部地下水的成因机制的认识,解决深部地下水的年龄和成因机制等关键水文地质问题,为我国高放废物地质处置研发工作提供了重要的科学依据。
     通过研究得出如下成果和认识:
     1.采用国际先进的双栓塞水文地质试验系统,历时近4个月的深部地下水分层连续抽水试验,在我国高放废物处置库甘肃北山预选区的BS15号钻孔,成功地采集到330m~340m和390m~400m两个深度段的原状地下水样,并开展了地下水的水化学、同位素及惰性气体测试工作。
     2.通过渗透性试验定量获得了区内不同地貌单元的渗透参数,平滩地带渗透性最弱,平均渗透系数为7.69×10-6m/s,沟谷和缓坡地带平均渗透系数分别为4.0×10-5m/s和1.6×10-5m/s,构造影响带的渗透性最强,渗透系数达10-4m/s的量级。基于包气带的氯质量平衡法估算的地下水补给量在第四系较厚的沟谷中仅1.57mm/a,基于饱和带氯质量平衡法估算的区域浅部地下水补给量为0.28mm/a,不足大气降水量的1%。
     3.重点阐明了区内大气降水、浅部和深部地下水的水化学及同位素特征,浅部地下水水化学类型以Na-Cl-SO4型和Na-Ca-Cl-SO4型为主,深部地下水水化学类型以Na-Cl-SO4型为主,深部地下水经历了相对较长的水流路径和更长时间的水岩作用,地下水循环速率较慢;地下水样中的δD和δ18O大部分位于降水线的右下侧,且沿着斜率为5的蒸发线分布;地下水的补给高程范围均落在研究区范围附近,研究区大气降水补给的平均月气温为13.6℃,浅部地下水的主要补给来源于本地雨季的大气降水,深部地下水的氚含量都小于5TU,氚含量较低,说明深部地下水并非现代成因为主的大气降水所补给。
     4.联合使用多种同位素(2H、18O、3H、14C、85Kr、81Kr)及环境示踪剂(4He),并结合研究区水文地质条件、水化学和同位素特征,对研究区BS15号孔深部地下水的年龄进行了综合分析与校正计算。其中,深部地下水的14C年龄分布在5.7ka~8.7ka;在国内首次测得了地下水中的81Kr的数据,其81Kr年龄达25ka和46ka;基于地下水溶解气体及深部原位岩石的取样和测试,采用4He积累法所估算的深部地下水平均滞留时间为3.8ka和5.0ka。定量评价了区内地下水的更新速率,其中浅部地下水的更新速率为0.28mm/a,深部地下水的流速为9.8×10-4m/a~9.5m/a,深部地下水的更新速率为0.006%~0.012%。
     5.结合地下水的水化学、同位素、水文地质试验及地下水动态监测等数据,提出了深部地下水同时接受侧向古地下水和浅部年轻水的补给机制,深部地下水以侧向补给的老水为主,所占比例大于80%的成因模式,且无深部壳源和幔源的补给来源,总结了研究区地下水的补给和流动模式,揭示了区内深部地下水的成因机制。
     本文的研究,不仅深化了对预选区场址水文地质条件的认识,而且在国内首次开展了81Kr同位素测年研究,根据地下水水化学演化特征、氯离子示踪估算及同位素测年研究,定量评价了地下水补给量及更新速率,从新老水混合的角度认识和提取同位素水文地质信息,认识了深部地下水的年龄属性,从水循环的角度提出了地下水的补给机制、流动模式及成因机制,在学术思路及研究方法上具有一定的创新性,为推动我国高放废物地质处置工作具有重要的研究意义。
Deep geological disposal of high-level radioactive waste is currently consideredas the most technically feasible method for the final safe isolation of high-levelradioactive waste from human environment. That is, select a natural geological barrierand set multiple engineered barriers in the underground repository in order to achievelong-term or permanent isolation of HLW from human environment. In safetyassessments, groundwater flow is the most important factor in transportingradionuclides released from wastes to the biosphere. Radioactive wastes should beplaced in a site where groundwater flow is very low or stagnant. As the high levelradioactive waste is characterized by highly radioactive, long half-life and high heatrelease, we often focus more on the long time-scale behavior and performance of thesite hydro-geological system in site selection and safety assessment. The chemical andisotopic compositions in groundwater contain a wealth of hydro-geologicalinformation, they can provide the most direct and effective means for the study ofgroundwater recharge sources and residence time, long time scales of regionalgroundwater system characteristics, cyclical pattern and dynamic characteristics of thedeep groundwater.
     The study aims to reveal the deep groundwater formation mechanism of HLWrepository in Beishan preselected area, and provide a basis for site selecting andevaluation. The thesis is mainly focused on the following aspects:(1) hydrochemistryand isotope distribution characteristics of groundwater;(2) penetration characteristicsof the medium and groundwater recharge;(3) groundwater dating and deepgroundwater formation mechanism research.
     In geological disposal of high level radioactive waste engineering requirementsand key hydro-geological problem-oriented, the thesis study on the issues about deepgroundwater formation mechanism of Beishan preselected area. In summing up theresults of previous research and progress, and based on regional hydro-geologicalbackground, it mainly through analysis bedrock fractures and permeabilitycharacteristics, groundwater chemistry and isotopic distribution of water, Multilevel groundwater monitoring, application of the chloride ion tracer method in estimation ofgroundwater recharge in unsaturated zone and saturated zone, groundwater datingtechniques to carry out the related research. It focuses on the study of groundwaterrecharge, groundwater cycle and its renewal characteristics, dating groundwater age,and proposed groundwater recharge and flow patterns.
     This study attains the following achievements:
     1. This study adopts the international advanced technology of the double-packerhydraulic test system, by pumping test for nearly four months and using the isolationof double packer, water-sampling campaign was conducted in the sections of330m~340m and390m~400m. The real groundwater samples were taken from differentdepth in deep environment of BS15, and the chemistry of groundwater, isotopes andnoble gas were tested.
     2. The permeability characters under different geomorphic units wereobtained by permeability tests, the permeability coefficient is minimum inlow-lying land, the average permeability coefficient of low-lying land is7.69×10-6m/s, the average permeability coefficient of the valley and gentleslope zone is1.6×10-5m/s and4.0×10-5m/s, the impact structure zone has thestrongest permeability, and the coefficient can reach to10-4m/s. The chloride iontracer method was used to estimate groundwater recharge in unsaturated zone andsaturated zone, The results showed that the recharge rate in valley zone is only1.57mm/a, and the recharge rate in shallow groundwater is0.28mm/a, less than1%ofprecipitation.
     3. The study focus to illustrate the chemistry and isotopic characteristics ofprecipitation, shallow groundwater and deep groundwater in the region, the shallowgroundwater chemical mainly type is Na-Cl-SO4-and Na-Ca-Cl-SO4, and the deepgroundwater chemical mainly type is Na-Cl-SO4. The deep groundwater flow wasthrough a relatively longer path and longer water-rock interaction, the groundwatercirculation rate was slower. Hydrogen and oxygen isotope data line in the vicinity ofthe meteoric water line, indicating the shallow groundwater originates from the localprecipitation.
     4. Through the groundwater chemistry and isotopic analysis, with considerationof hydro-geological conditions, the age of deep groundwater in BS15was analyze byusing a variety of isotopes (2H,18O,3H,14C,81Kr,85Kr) and environmental tracer(4He).According to the result of carbon-14age dating, the deep groundwater age between5.7ka to8.7ka.Krypton-81data of groundwater were first got from checkout in home,and the result of krypton-81age dating were25ka and46ka.The groundwaterresidence time estimated from the4He accumulation rate were3.8ka and5.0ka. Thegroundwater renewal rate for shallow groundwater was0.28mm/a, and the deepgroundwater flow rate was between9.8×10-4m/a and9.5m/a, the deep groundwaterrenewal rate was between0.006%and0.012%.
     5. Combined with groundwater data of chemistry, isotope, penetration testing andgroundwater monitoring, it proposed formation mechanism of deep groundwater, asthe recharge of deep groundwater is lateral deep ancient groundwater and the youngshallow groundwater, the recharge from fossil groundwater is greater than80%and ithas no deep crust and mantle sources, shallow groundwater recharge is mainly fromprecipitation during the rainy season. It revealed the formation mechanism of the deepgroundwater and provided realistic basis for selecting and evaluating potential sites.
     The study would deepen the understanding of hydro-geology conditions in thepreselected area; this investigation on krypton-81dating of groundwater was firstcarried out in our country. The integrated quantitative evaluation on recharge andrenewal rate of groundwater was made by isotope analysis and chloride ion tracermethod. We tested three methods for dating the deep groundwater, the mechanism ofgroundwater recharge, groundwater flow pattern and formation mechanism wasproposed. In conclusion, the studies of this dissertation reach the anticipate targetswith some innovation and integrity, and has important significance in promotingChina's HLW geological disposal.
引文
[1]潘自强,钱七虎.高放废物地质处置战略研究[M].北京:原子能出版社,2009.
    [2]王驹.高放废物处置:进展与挑战[J].中国工程科学,2008,10(3):58-65.
    [3]王驹,范显华,徐国庆,等.中国高放废物地质处置十年进展[M].北京:原子能出版社,2004.
    [4]郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究[J].铀矿地质.2001,17(3):184-189.
    [5]苏锐.低渗透裂隙介质渗透特征评价技术及其应用研究[D].核工业北京地质研究院博士学位论文,2007.
    [6]刘国昌.地质力学及其在水文地质工程地质方面的应用[M].北京:地质出版社,1979.
    [7]谷德振.岩体工程地质力学基础[M].北京科学出版社1979.
    [8]肖楠森,林凤勋.山区基岩裂隙水资源的开发利用与新构造断裂特性的关系[J].工程勘察,1982(5):31-36.
    [9]刘光亚.基岩地下水[M].北京:地质出版社,1979.
    [10]胡海涛,许贵森.论构造体系与地下水的网络[J].水文地质工程地质,1980,7(3):1-7.
    [11]王大纯,张人权.水文地质学基础[M].北京:地质出版社,1995.
    [12]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,1995.
    [13] Papadopulos, I, S. Non-steady flow to a well in an infinite anisotropic aquifer [C]. Intern.Assoc.Sci.Hydrol.Proc Dubrounik Symposium on the Hydrology of Fractured Rocks.1965,1(73):21-31.
    [14] Hantush M S. Amethod for analyzing a drawdown test in anisotropic aquifers [J].Water Resour.Res.1966,2(2):281-285.
    [15]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989.
    [16]周志芳.任意各向异性岩体渗透系数张量的半解析计算[J].水利学报,1999(3):65-70.
    [17]孙蓉琳,梁杏,靳孟贵.裂隙岩体渗透系数确定方法综述[J].水文地质工程地质,2006(6).
    [18]董海洲,陈建生,徐洋.孔中同位素示踪方法研究裂隙岩体渗流[J].水利水运工程学报,2002(3):20-24.
    [19]张世殊,梁杏.平硐声波孔渗水试验确定岩体渗透系数[J].水电站设计,2002,18(1):80-82.
    [20]黄勇,陈静.岩体裂隙介质各向异性耦合模型研究[J].河海大学学报(自然科学版),2009,31(2):171-174.
    [21] Snow D T. Anisotropic permeability of fractured media[J].Water Resour.Res.1969,5(6):1273-1289.
    [22]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [23] Rocha M, F Franciss. Determination of permeability in anisotropic rock-masses from integralsamples [J]. Rock Mechanics,1977,9:67-93.
    [24]陈洪凯.裂隙岩体渗流研究现状(Ⅰ)[J].重庆交通学院学报,1996,(01).
    [25]王鹏,蔡美峰,周汝弟.裂隙岩体渗透张量的确定和修正[J].金属矿山,2003,(8):32-37.
    [26] Long J C S, Remer J S,Wils on C R, et al. Porous media equivalents for networks ofdiscontinuous fractures [J].Water Resour. Res.1982,18(3):645-658.
    [27] M Wang,P H S W Kulatilake. Estimation of REV size and three-dimensional hydraulicconductivity tens or of a fractured rock mass through a single well packer test and discrete fracturefluid flow modeling [J].International Journal of Rock Mechanics&Mining Sciences,2002,39:887-904.
    [28] Ki-Bok Min,Lanru Jing,Ove Stephanss on. Determining the equivalent permeability tens or forfractured rock masses using a stochastic REV approach: Method and application to the field datafrom Sella field, UK [J].Hydrogeology Journal,2004,12:497-510.
    [29]纪成亮,李晓昭,王驹,等.裂隙岩体渗透系数确定方法研究[J].工程地质学报,2010,18(2):235-240.
    [30]谭春,陈剑平.基于三维裂隙网络模拟和灰色理论的岩体表征单元体研究[J].水利学报,2012,43(6):709-716.
    [31] Dirk Schulze Makuch, Doughlas A Carlson, Douglas SCherkauer, et al.Scale dependency ofhydraulic conductivity in heterogeneous media[J]. Ground water,1999,37(6):904-919.
    [32] M Nastev, M M Savard, P Lapcevic, et al. Martel Hydraulic properties and scale effectsinvestigation in regional rock aquifers, south-western Quebec, Canada[J].HydrogeologyJournal,2004,12:257-269.
    [33]万力,蒋小伟,王旭升.含水层的一种普遍规律:渗透系数随深度衰减[J].高校地质学报,2010.16(1):7-12.
    [34] TSANG Y W, TSANG C F, Channel model of flow through fractured media[J]. WaterResources Research,1987,23(3):467-479.
    [35]周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2007.
    [36]胡云进.裂隙岩体非饱和渗流分析及其工程应用[M].杭州,浙江大学出版社,2009.
    [37] Krasny J,Sharp JM(eds)(2008).Groundwater in Fractured Rocks.IAH Selected PapersSeries,Volume9,CRC Press,Boca Raton,FL.
    [38] B.B.S.Singhal,R.P.Gupta(2010). Applied Hydrogeology of Fractured Rocks(SecondEdition)[M].Springer.
    [39] U.S. Department of Energy.2007. Supplemental Environmental Impact Statement for aGeologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste atYucca Mountain, Nye County, Nevada. DOE/EIS-0250F-S1.
    [40] SKB,2009. Final repository for spent fuel in Forsmark–basis for decision and reasons for siteselection, SKB Document1221293, June2009.
    [41] ANDRA,2005c. Dossier2005Argile,Safety evaluation of a geological repository,ANDRA,Chatenay-Malabry, France.
    [42] NAB,2009. Assessment Report No.3on Research Studies and the Studies in to theManagement of Radioactive Waste and Materials, French National Assessment Board, Paris,France.
    [43] BMWi,2008. Final Disposal of High-Level Radioactive Waste in Germany–The GorlebenRepository Project, Federal Ministry of Economics and Technology, Berlin.
    [44] BMU,2009. Safety Requirements Governing the Final Disposal of Heat-GeneratingRadioactive Waste, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety,Berlin, Germany.
    [45] Posiva,2003b. ONKALO Underground Characterization and Research Program (UCRP).Posiva Oy, Olkiluoto, Finland. Posiva Report POSIVA2003-03.
    [46] Posiva,2007a. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto-Summary Report. POSIVA2007-06Posiva Oy, Olkiluoto, Finland.
    [47] Bel, J.J.,Wickham, S.M. and Gens, R.M.F.,2006. Development of the Super container designfor deep geological disposal of high-level heat emitting radioactive waste in Belgium, in: NuclearWaste XXIX, Proc. International Radioactive Waste Management Conference, October2006.
    [48] Chandler, N.A.,2003.Twenty years of underground research at Canada’s URL, WM’03,Proceedings of International Radioactive Waste Management Conference, Tucson, Arizona,February23-27,2003.
    [49]王驹,陈伟明,张鹏,等.钻孔雷达在高放废物处置库场址评价中的应用-以北山1号孔为例[J].铀矿地质.2005,21(6):360-363.
    [50]王驹,陈伟明,苏锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报,2006,25(4):801-812.
    [51]郭永海,刘淑芬,吕川河.高放废物处置系统地下水同位素特征[J].地球学报,2003,24(6):525-528.
    [52]郭永海,王驹,刘淑芬,等.高放废物处置库野马泉预选场址地下水放射性同位素特征[J].原子能科学技术,2008,42(s1):72-76.
    [53]郭永海,王驹,萧丰,等.高放废物处置库北山预选区地下水同位素组成特征及其意义[J].地球学报,2008,29(6):735-739.
    [54]郭永海,王驹,肖丰,等.高放废物处置库甘肃北山预选区地下水的形成[J].高校地质学报.2010,16(1):13-18.
    [55]郭永海,刘淑芬,吕川河.高放废物地质处置库选址中的水文地质调查[J].铀矿地质,2005,22(2):63-67.
    [56]郭永海,王海龙,肖丰,等.马鬃山地区侵入岩体渗透性能分析[J].铀矿地质,2011,27(6):363-369..
    [57]苏锐,宗自华,王驹,等.高分辨率声波钻孔电视及其在核废物地质处置深部岩体研究中的应用[J].岩石力学与工程学报,2005,24(6):2922-2928.
    [58]苏锐.低渗透裂隙介质渗透特征评价技术及其应用研究[D].北京:核工业北京地质研究院,2007.
    [59]苏锐,宗自华,季瑞利,等.综合钻孔测量技术在导水构造水文地质特征评价中的应用[J].岩石力学与工程学报,2007,26(s2):3866-3873.
    [60]肖丰,郭永海,王志明.高放废物处置库甘肃北山预选区同位素水文学研究及设想[J].铀矿地质.2012,28(2):114-119.
    [61]赵宏刚,王驹,苏锐,等.甘肃北山旧井地段三维地质建模及RockFlow在核素迁移研究中的应用.见:中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流大会论文集.北京:中国岩石力学与工程学会废物地下处置专业委员会,2006:41-47.
    [62]庞忠和,郭永海,苏锐,等.北山花岗岩裂隙地下水循环属性试验研究[J].岩石力学与工程学报,2007,26(s2):3954-3958.
    [63]李国敏,赵春虎,郭永海,等.高放废物地质处置场甘肃北山预选区区域地下水循环模式与意义[J].矿物岩石地球化学通.2010,18(2):235-240.
    [64]董艳辉,李国敏,黎明.甘肃北山大区域地下水流动模拟[J].科学通报,2009,54(23):3790-3792.
    [65]罗兴章,闵茂中,郑正,等.高放废物深地质处置库预选场址的古温度环境[J].地质评论,2004,50(5):548-553.
    [66]钟霞,王驹,黄树桃,等.基于GIS技术的岩体裂隙分形特征研究[J].铀矿地质,2011,27(1):61-64.
    [67]宗自华.高放废物地质处置工程岩体分级体系研究-以甘肃北山预选区为例[D].北京:核工业北京地质研究院,2012.
    [68]李亚萍,许建东,于红梅.甘肃北山花岗岩裂隙几何学特征研究及岩石质量初探[J].地震地质,2006,28(1):129-136.
    [69]杨春和,王贵宾,王驹,等.甘肃北山预选区岩体力学与渗流特性研究[J].岩石力学与工程,2006,25(4):825-832.
    [70]殷黎明,杨春和,王贵宾,等.甘肃北山花岗岩节理表面形态特性研究[J].岩土力学,2009,30(4):1046-1050.
    [71]纪成亮,李晓昭,王驹,等.裂隙岩体渗透系数确定方法研究[J].工程地质学报,2010,18(2):235-240.
    [72]左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版杜,1990.
    [73]任秉琛,何世平,姚文光,等.甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J].西北地质,2001,34(2):21-27.
    [74]左国朝,李红诚.北山北带早石炭世火山沉积组合及大陆坡型火山带岩石化学特征[J].甘肃地质科技情报,1989(2):2-9.
    [75]左国朝,刘义科,刘春燕.甘新蒙北山地区构造格局与演化[J].甘肃地质学报,2003,12(1):1-15.
    [76]刘雪亚,王荃.中国西部北山造山带的大地构造及其演化[J].地学研究,1995,28,37-48.
    [77]江思宏.北山地区岩浆活动与金的成矿作用[D].北京:中国地质科学院,2004.
    [78]胡朋,北山南带构造岩浆演化与金的成矿作用[D].北京:中国地质科学院,2007.
    [79]郭召杰,张志诚,张臣,等.甘肃北山预选区1:25万区域地质特征研究[R].核工业北京地质研究院,中国国防科学技术报告,2007.
    [80]杨晓平,宋方敏,李建平,等.甘肃北山高放废物处置库预选区断裂活动性研究[R].核工业北京地质研究院,中国国防科学技术报告,2011.
    [81]马金珠,李丁,陈发虎,等.干旱区地下水补给与气候变化的包气带地球化学记录-以巴丹吉林沙漠为例[J].地球学报,2003,24(Sup.):190-195.
    [82]聂振龙,连英立,段宝谦,等.利用包气带环境示踪剂评估张掖盆地降水入渗速率[J].地球学报,2011,32(01):117-122.
    [83]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J].现代地质,2007,21(04):624-631.
    [84]张宁,张武平,张萌,等.沙尘暴降尘对甘肃大气环境背景值的影响研究[J].环境科学研究,2005,18(5):6-10.
    [85]刘淑芬,郭永海,苏锐,等.新场-向阳山地段区域水文地球化学及同位素水文地质研究[R].核工业北京地质研究院,中国国防科学技术报告,2012.
    [86]郭永海,苏锐,季瑞利,等.甘肃北山新场-向阳山地段深部水文地质特征研究[R].核工业北京地质研究院,中国国防科学技术报告,2012.
    [87]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [88] GIBBS R J. Water chemistry of the Amazon River [J].Geochim Cosmochim Acta,1972,36:1061-1066.
    [89]陈宗宇,齐继祥,张兆吉,等.北方典型盆地同位素水文地质学方法应用[M].北京:科学出版社,2010.
    [90]赵琦经,顾慰祖,顾文燕,等.中国降水同位素站网[J].水文,1995,(5):25-27.
    [91]于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980(2):113-121.
    [92]卫克勤.同位素水文地球化学[J].地球科学进展,1992,7(5):67-68.
    [93]顾慰祖,庞忠和,王全九,等.同位素水文学[M].北京:科学出版社,2011.
    [94] Dansgaard W. Stable isotopes in meteoric waters. Science,1964,16:438-468.
    [95]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008,22(8):76-81.
    [96] Davis S.N.,and Bentley H.W.1982.Dating Groundwater,A short Review.In Nuclear andChemical Dating Techniques: Interpreting the Environmental Record, ed. L.A. Cutrie, pp.187-222.Washington, D.C.: American Chemical Society Symposium Series, No.176.
    [97] Vogel,J.C.,1nvestigation of groundwater flow with radioearbon.In:Isotoes in Hydrology.IAEA,Vienna,1967,355-369.
    [98] Volgel,J.C.Carbon-14dating of groundwater.In: Isotope Hydrology1970,IAEA SymPosium129,March1970, Vienna:225-239..
    [99] Tarmers. M A.Radiocarbon ages of groundwater in n arid me uneonfined aquik[C]∥Stout GE.Isotope techniques in the hrdrologic cycle,geophysics. Washilgton D C:AGU.1967:143-152.
    [100]陈宗宇.从华北平原地下水系统中古环境信息研究地下水资源演化[D].吉林大学博士学位论文,2001.
    [101]刘存富.地下水.14C年龄校正方法-以河北平原为例[J],水文地质工程地质,1990,3:4-8.
    [102] Ingerson E,Person F J.Estimation of age and rate of motion of the groundwater by the14Cmethod[C]∥Prooeeding of sugawara Festival on recentresearches in the fields ofatmosphere,hydrosphere,and nuclear geoehemisrtry.Tokyo:Manlm.1964:237-266.
    [103] PearsonJr.F.J.,and white,D.E.,C-14ages and flow rates ofwater in Carrizo Sand, AtascosaCounty,TX[J]. water Resources Research,1967,3(l):251-26.
    [104] PearsonJr.F.J.,and Hanshaw,B.B.,Sources of dissolved carbonate species in groundwater andtheir effect on C-14Dating.In:Isotope Hydrology,1970,(Proc.SymP.9-13March,1970).IAEA,Vienna,1970,271-286.
    [105] Fontes, J. Ch. Chemical and isotopic constraints on.14C dating of groundwater. In:R.E.Tav1or,A. Long and R.5.Kra (Eds).Radiocarbon After Four Decades,Springer-Verlag, NewYork,1992:242-261.
    [106] Fontes,J,Ch.Dating of groundwater. In:Guide book on Nuclear Techniques in Hydrology,1983Edition. IAEA,Vienna,1983,PP.285-317.
    [107] H. H. Loosli, H. Oeschger.37Ar and81Kr in the atmosphere [J].Earth Planet, Sci. Lett.1969,7:67-71.
    [108] V. V. Kuzminov and A. A.Pomansky.81Kr production rate in the atmosphere [J]. Proc.18thInt. Cosmic Ray Conf,Bangalore, Indis, IUPAP,1983,2:357..
    [109] P. collon, D. Cole, B. Davids, etc. Measurement of the longlived radionuclide81Kr inpre-nuclear and Present-day atmospheric krypton [J]. Radiochim. Acta,1999,85:13-19.
    [110]周志超,云龙,王驹,等.古地下水测年方法在高放废物地质处置中的应用[J].铀矿地质,2014,30(1):57-64.
    [111] B.E. Lehmann,A. Love,R. Purtschert, et al. A comparison of groundwater dating with81Kr,36Cl and4Hein four wells of the Great Artesian Basin, Australia[J]. Earth and Planetary Science Letters,211(2003)237-250.
    [112] W. Jiang, K. Bailey, Z.-T. Lu, et al.An atom counter for measuring81Kr and85Kr inenvironmental samples [J]. Geochimica et Cosmochimica Acta,2012,91:1-6.
    [113] Collon, P., Kutschera, W.&Lu, Z. T. Tracing noble gas radionuclides in the environment.Ann. Rev. Nuc. Part. Sci.2004,54:39–67.
    [114] C. F. Cheng, l G. M. Yang, l W. Jiang. et al. Normalization of the single atom counting ratein an atom trap[J]. OPTICS LETTERS.2013,38(1):31-33.
    [115]蒋蔚,成国胜,孙羽,等.激光囚禁放射性氪同位素技术测量地下水年代[J].第四纪研究,2010,30(1):224-227.
    [116] Andrews JN, Goldbrunner J E, DarlingW G, et al. A radio-chemical hydrochemical anddissolved gas study in the Molasse basin of Upper Austria [J].Earth and Planetary Science Letters,1985,73:317-332.
    [117] Torgersen T,Clarke W B.Helium accumulation in groundwater:an evaluation of sources andthe continental flux of crustal4He in the Great Artesian.1985,49:1211-1218.
    [118] Heaton THE, Talma AS, Vogel JC. Origin and history of nitrate in confined groundwater inthe western Kalahari. J Hydrol,1983,62:243-262.
    [119] Isotope methods for dating old groundwater:-Vienna: International Atomic.Energy Agency,2013.
    [120] WeissR F. Solubility of helium and neon in water and seawater [J].Journal ChemicalEngineering Data,1971,16:235-241.
    [121]KIPfEr, r., AEScHBAcH-HErTIg, w., PEETErS, f., STUTE, m.,Noble gases in lakes and groundwaters”, noble gases in geochemistry and cosmochemistry, rev. Mineral. geochem.2002,47(1)615–700.
    [122] WeIse, s.M., Moser, h.,“groundwater dating with helium isotopes”, Int. symp. on Isotopetechniques in water resources development, Vienna (1987).
    [123] STUTE, m., SoNNTAg, c., dEAK, j., ScHLoSSEr, P., helium in deep circulating groundwaterin the great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes, geochimcosmochim Acta.1992,56:2051-2067.
    [124] CraigH, Lupton JE. Primordialneon, helium, and hydrogen in oceanic basalts[J].Earth andPlanetary Science Letters,1976,31:369-385.
    [125] Ballentinel CJ, O’Nions RK, Oxburgh ER et al. Kare has constraints on hydrocarbonaccumulation, crustal degassing and ground water flow in the Pannonian Basin. Earth and PlanetaryScience Letters,1991,105:229-246.
    [126] Zhou Z, Ballentine C J.4He dating of groundwater associated with hydrocarbonreservoirs[J].Chemical Geology,2006,226:309-327.
    [127]宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J].中国科学D辑:地球科学,20107,37(1):102-110.
    [128]翟远征,王金生,滕彦国,等.地下水更新能力评价指标问题刍议-更新周期和补给速率的适用性[J].水科学进展,2013,24(1):56-60.
    [129] LeGalLasalle,C., Marlin,C., Ledue,C.,et.al., Renewal rate estimation of groundwater based onradioaetive tracers(3H,14C) in an uneonfined aquifer in a semi-arid area,IullemedenBasin,Niger.Journal of Hydrology,2001,254:145-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700