用户名: 密码: 验证码:
中国南方夏季区域持续性强降水与大气季节内振荡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国南方地区大范围持续性的强降水过程是造成该地区洪涝灾害的主要原因。这种持续性灾害天气,与稳定、异常的大气环流形势有关,而以两周到两个月为周期的大气季节内振荡在其中扮演了关键性的角色。同时,季节内振荡这种大尺度、准周期性的变化为延伸预报的开展提供了有利条件。本文从中国南方区域持续性强降水的定义和时空分布特征出发,首先分析了区域持续性强降水与降水30-60天季节内振荡的关系以及影响降水季节内振荡的低、中、高纬度环流系统;然后进一步探讨了造成中国南方夏季降水季节内振荡的原因和机制,以及这种机制与区域持续性强降水的联系;最后,利用NCEP/CFSv2的回报产品,验证了上述机制在海气耦合气候预报模式中的体现,并采用统计和动力相结合的方法开展了中国南方地区夏季降水季节内振荡延伸预报试验。主要结论概括如下:
     (1)在明确区域持续性强降水事件性质的基础上,定义了中国南方地区区域持续性强降水。该定义综合考虑了降水强度、持续性和区域性特征。基于该定义统计并分析了1981-2013年发生在中国南方的区域持续性强降水事件,发现:①区域持续性强降水过程的发生受季风系统和地形的影响,主要出现在华南、江南和江淮三个典型区域;②南方区域持续性强降水的平均持续时间为4.8天,其中江南地区平均持续时间最长;③夏季是区域持续性强降水事件的高发期,并且三个区域的夏季区域持续性强降水事件发生频率接近。
     (2)中国南方夏季降水30-60天季节内振荡分量的空间分布特征与区域持续性强降水的三种类型基本一致,即可划分为华南、江南和江淮三个典型降水季节内振荡区域。区域持续性强降水的发生与典型区域降水季节内振荡的位相和强度关系密切,有87%以上的区域持续性强降水出现在降水30-60天季节内振荡的大于一个标准差的正位相。
     (3)从热带海洋性大陆地区经南海至中国东部35°N附近的区域是影响中国南方夏季降水季节内变化的关键区,南海夏季风的季节内振荡活动是在造成降水季节内变化关键因素。南海夏季风关键区850hPa纬向风EOF分解的前两主模态代表了南海夏季风季节内振荡的主要特征:热带大气季节内振荡(MJO)在南海和西太平洋地区的北传与西太平洋副热带高压系统的东西振荡相配合。这一过程造成了南海夏季风活跃期和中断期的交替出现,进而导致了中国南方地区夏季降水的季节内变化,而MJO北传的范围和西太副高振荡轴的纬度位置是造成南方夏季季节内降水分区特征的主要因素。
     (4)在降水季节内振荡的湿位相,南海夏季风低频环流系统为中国南方区域持续性强降水的发生提供了“充足的水汽”,“大范围的上升运动”和“持续时间”等必要的环流条件,造成超过70%的区域持续性强降水过程发生在该时段内。
     (5)南海夏季风季节内振荡的主要机制可能包括海气相互作用和大气内部动力作用两个方面,且都是建立在南海地区南海夏季风爆发后气候态东风垂直切变的基础上。其中,海气相互作用主要出现在西太平洋副热带高压振荡区域,而大气内部动力机制是造成MJO北传的主要原因。
     (6)东亚中高纬度大气季节内振荡的主模态包括“乌拉尔山阻高型”或称“欧亚阻高型”,“双阻型”和“鄂霍次克海阻高型”,他们在区域持续性强降水中的作用主要体现在稳定环流形势和提供冷空气上,但是某一区域的降水季节内变化并不完全与特定类型的中高纬度季节内环流形势相对应。在南海夏季风季节内振荡造成“湿位相”的背景下,中高纬度大气季节内振荡的强度是造成区域持续性强降水的关键因素。
     (7)NCEP/CFSv2模式回报资料反映的南海夏季风季节内振荡特征与观测分析结果一致。采用将实况观测和模式预报值投影到南海夏季风季节内振荡EOF空间结构上的方法,定义了南海夏季风季节内振荡的实时监测和预报指数(Real-timeSCSSM Oscillation index)RSO1和RSO2。利用南海夏季风季节内振荡实时监测和预报指数与模式直接预报降水量相结合的统计动力延伸预报方法能够有效提高降水季节内分量的预报效果,并且修正了大部分对模式预报降水直接进行带通滤波而导致的负相关现象,也避免了因带通滤波造成的数据的损失。同时,利用模式历史资料进行建模能够起到了消除模式系统误差的作用。该方法对于在延伸期预报中加强对区域持续性强降水过程的判断能力具有实际应用价值。
Regionally persistent heavy rainfall (RPHR) is one of the main types of disastrousweather that is most likely to cause large-scale severe flooding and endangers the lives andproperty of the public. RPHR events in China are unpredictable, frequent, and persistent.They have been responsible for many catastrophic floods in southern China. As thestability of large-scale circulation is essential for the persistence of rainstorms,atmospheric intraseasonal oscillation (ISO) may also be a potential signal for RPHR.Meanwhile ISO is valuable for the extended range forecast (ERF) of rainfall due to itsquasi-periodicity, time scale, and spatial scale. A further understanding of the relationshipbetween RPHR and ISO would be helpful for improving ERF of persistent heavy rain. Inthe present study, basing the temporal and spatial structures of RPHR, the relationshipbetween ISO and RPHR in southern China was investigated firstly. Then the causes andmechanisms of ISO in the summer rainy season of southern China and its influence onRPHR were studied. Based on the mechanisms and the relationship between ISO andRPHR, using the reforecast from NCEP/CFSv2, a statistics-based ERF method for therainfall ISO was test. The major conclusions are as follows:
     (1) Defined the RPHR over the southern China by considering its range, intensity andduration. Based on the definition, the statistical characteristics of the RPHR are as follows:①The high incidence areas of RPHR are South China, the south of the Yangtze River,and the Yangtze–Huai River Basin;②The average duration of three areas is4.8days.The duration of RPHR in the south of the Yangtze River is longest;③Most of theRPHRs happen in summer, and the incidence rates are close in three areas during thesummer.
     (2) Based on the REOF modes of30–60-day bandpass filtered rainfall, southernChina can be divided into three typical regions which are similar to the high incidence areas of RPHR. The ISO rainfall index (IRI) was defined as the average regionalprecipitation in each region. The RPHR events that occurred in the typical regions werefound to be strongly related to the intraseasonal variation in the rainfall; indeed, more than87%of the RPHR events occurred when the IRI was larger than1SD.
     (3) The mapping of regression coefficients relating U850’ to IRIs indicated that theSouth China Sea summer monsoon (SCSSM) systems play an important role in regulatingintraseasonal rainfall over southern China. EOF analysis was performed on the850-hPazonal wind which was averaged over110°–120°E, to present the main mode of theSCSSM. Then, a pair of ISO modes of the SCSSM was identified by performing Morletwavelet analysis on the leading PCs of EOF1and EOF2. Composite analyses based onPC1and PC2revealed the evolution of the ISO in SCSSM: The accompanyingeastward-propagating MJO, and the east-west oscillation of the Western Pacificsubtropical high (WPSH), producing alternating dry and wet phases over southern China.These alternating periods last approximately40days and modulate the intraseasonalvariation in the rainfall. EOF1of the850hPa zonal wind over the SCS and southern Chinamainly represent the ISO mode controlling the intraseasonal variation of rainfall in thesouth of the Yangtze River, while EOF2leads to the intraseasonal out-of-phase rainfallover South China and the Yangtze–Huai River Basin.
     (4) The RPHR was found to be closely related to the ISO in SCSSM. In the threetypical regions, more than70%of RPHR events occur during wet phases from April toSeptember. During wet phases, moisture-rich air is transported to southern China at lowerlevels by the southwestward flow to the north of the WPSH. The unstable loweratmosphere coincides with an upper-tropospheric divergence and a low-level positivevorticity center that promotes heavy rainfall. The structures of ISO systems are reversedduring dry phases and suppress the rainfall over the corresponding regions. The region ofRPHR is determined by the zonal position of the WPSH.
     (5) The meridional-phase structure of the composite ISO modes indicated that thenorthward-propagating ISO and local air–sea interactions over the SCS are two keyfactors that promot the fluctuations in the geopotential height anomaly. Additionalnumerical simulations would be needed to identify the dominant mechanism.
     (6) Coupling between the ISO in SCSSM and the mid-and high-latitude systems,especially blocking situations, also play important roles in promoting the occurrence ofRPHR over southern China during wet phases. The main modes of the mid-andhigh-latitude ISO systems inclunde “Ural blocking”,“Ural-Okhotak double blocking” and “Okhotak blocking”. These modes provide cold air and stable circulation for theRPHR but do not exactly correspond to the RPHR of a certain region.
     (7) The SCSSM ISO is also found in the NCEP/CFSv2reforecasts and thecharacteristics of which are similar to the observation. The Real-time SCSSM ISOindeies (RSO1and RSO2) were defined by projecting the NCEP/CFSv2reforecasts onthe EOF spatial patterns of the SCSSM ISO. The statistics-based ERF method for therainfall ISO, by using these indeies, provides useful forecasts of precipitationintraseasonal anomalies up to10to90days of lead times in the southern China.
引文
Ajayamoham R. S., et al.2011: Poleward propagation of boreal summer intraseasonaloscillations in a coupled model: role of internal processes. Clim. Dyn.,37:851–867.
    Annamalai and Sperber.2005: Regional heat sources and the active and break phases ofboreal summer intraseasonal (30–50day) variability. J. Atmos. Sci.,62:2726-2748.
    Baldwin M P, Stephenson D B, Thompson D W J, et al.2003: Stratospheric memory andskill of extended-range weather forecasts. Science,301:636-640.
    ——, T. J. Dunkerton.2001: Stratospheric Harbingers of Anomalous Weather Regimes.Science,294:581-584.
    Benedict, J., and D. A. Randall,2007: Observed characteristics of the MJO relative tomaximum rainfall. J. Atmos. Sci.,64(7),2332-2354.
    Blackmon M L.1976: A climatological spect ral study of t he500hPa geopotential heightof t he Northern Hemisphere. J. Atmos. Sci.33:1607-1623.
    ——, Wallace J. M., Lau N. C., et al.1977: An observational study of t he NorthernHemisphere wintertime circulation. J. Atmos. Sci.,34:1040-1053.
    Boer G. J.1993: Systematic and random error in an extended-range forecastingexperiment. Mon. Wea. Rev.,121:173-188.
    Cadet, D. L.1986: Fluctuations of precipitable water over the Indian Ocean. Tellus.,38A:170-177.
    Chang C-P, Lim H.1988: Kelvin wave-CISK: A possible mechanism for the30-50dayoscillations [J]. J. Atmos. Sci.,45(11):1709-1720.
    Chen Long Xun, Zhu Congwen, Wang Wen, et al.2001: Analysis of the characteristics of30-60day low-frequency oscillation over Asia during1998SCSMEX.Adv. Atmos.Sci.,(18):623-638.
    Chen Yang and Zhai Panmao,2013: Persistent extreme precipitation events in Chinaduring1951-2010. Clim. Res.,57:143-155
    Demott C. A., C. Stan, and D. A. Randall.2013: Northward propagation mechanisms ofthe boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J.Climate,26,1973-1992.
    Emanuel K A.1987: An air-sea interaction model of intraseasonal oscillations in thetropics [J]. J. Atmos. Sci.,44(16):2324-2340.
    Easterling D. R., Evans J. L., and Groisman P. Ya., et al.2000: Observed variability andtrends in extreme climate events: a brief review [J]. Bull. Amer. Meteor. Soc.,81(3):417-425.
    Goswami, B. N.2012: South Asian monsoon. Intraseasonal Variability in theAtmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds.,Springer, Praxis Books,21-72.
    Hendon H. H., B Liebmann.1990: The intraseasonal (30-50day) oscillation of theAustralian summer monsoon.J. Atmos. Sci.,47(24):2909-2924.
    ——, and M. L. Salby,1994: The life cycle of the Madden–Julian oscillation. J. Atmos.Sci.,51,2225-2237.
    ——,Liebmann B and NewmanM, et al.2000: Medium-range forecast errors associatedwith active episodes of the Madden-Julian Oscillation [J]. Mon. Wea. Rev.,128:69-86.
    Hoerling M., A. Kumar.2003: The Perfect Ocean for Drought. Science,299:691-694.
    Horel J. D.,1981: A rotated principal component analysis of the interannual variability ofthe Northern Hemisphere500mb height field. Mon. Wea. Rev.,109,2080-2092.
    Hong Wei and Ren Xuejuan,2013: Persistent heavy rainfall over South China duringMay-August: Subseasonal anomalies of circulation and sea surface temperature.Acta Meteor. Sinica,27(6),769-787.
    Huang N. E., et al.1998: The empirical mode composition and the Hilbert spectrum fornonlinear and nonstationary time series. Proc. R. Soc. London, Ser A,454:903-993.
    IPCC. Climate Change2001: The Science of Climate Change. Contribution of WorkingGroup I to the Third Assessment Report of the Intergovernmental Panel on ClimateChange [M]. Cambridge UK: Cambridge University Press,1-785.
    Jiang Xianan, Tim Li, and Bin Wang,2004: Structures and mechanisms of the northwardpropagating boreal summer intraseasonal oscillation. J. Climate,17,1022-1039.
    Jones C, Waliser D E, Schemm J-K E et al.2000: Prediction skill of the Madden andJulian Oscillation in dynamical extended range forecasts. Climate Dyn.,16:273-289.
    ——, Leila M V, R Wayne et al.2003: A Statistical Forecast Model of TropicalIntraseasonal Convective Anomalies. J.Climate,17:2078-2095.
    Kalnay et al.,1996: The NCEP/NCAR40-year reanalysis project. Bull. Amer. Meteor.Soc.,77:437-470.
    Kanamitsu M. et al.,2002: NCEP Dynamical Seasonal Forecast System2000. Bull. Amer.Meteor. Soc.,83:1019-1037.
    Katherine, H. S., N. K. George, and E. C. Paul.2006: The role of equatorial waves in theonset of the South China Sea summer monsoon and the demise of El Ni no during1998. Dyn. Atmos. Oceans,42:216-238.
    Koster R. D. et al.2010: Contribution of land surface initialization to subseasonalforecast skill: First results from a multi-model experiment. Geophy Res Lett,37(2):L02402.
    Krishnamurti T N, S Gadgil.1985: On the structure of the30to50day mode over theglobe during FGGE. Tellus,37A:336-360.
    Kutzbach, J. E.,1967: Empirical eigenvectors of sea-level pressure, surface temperatureand precipitation complexes over North America. J. Appl. Meteor.,6,791-802.
    Lau K M and L Peng.1987: Origin of low frequency oscillations in the tropicalatmosphere. Part a: Basic theory. J. Atmos. Sci.,44:950-972.
    Lau, K, M., G. J. Yang and S. H. Shen,1988: Seasonal and intraseasonal climatology ofmonsoon rainfall over EastAsia. Mon. Wea. Rev.,116:18-37.
    Liebmann, B., and C.A. Smith,1996: Description of a Complete (Interpolated) OutgoingLongwave Radiation Dataset. Bull. Amer. Meteor. Soc.,77,1275-1277.
    Li C Y.1990: Intraseasonal oscillation in the atmosphere. J. Atmos. Sci.,14:35.
    ——, Long Z X, Zhang Q Y.2001: Strong/weak summer monsoon activity over theSouth China Sea and atmospheric intraseasonal oscillation [J]. Adv. Atmos. Sci.,18(6):1146-1160.
    Li Qingquan, Zhu Qiangen.1995: Analysis on the source and sink of kinetic energy ofatmospheric30-60day period oscillation and the probable causes.9(4):420-431.
    Li Tim.2014: Recent advance in understanding the dynamics of the Madden-JulianOscillation. J. Meteor. Res.,28(1):001-033.
    Li W, et al.2001: Intraseasonal oscillation in a coupled general circulation model. J.Atmos. Sci.,25:132
    Lorenz E. N.1963: Deterministic non-periodic flow. J. Atmos. Sci.,20:130-141.
    Lo F, H. H. Hendon.2000: Empirical prediction of the Madden-ulian oscillation. Mon.Wea. Rev.,128:2528-2543.
    Lu Riyu, et al.2014: The30-60-day intraseasonal oscillations over the subtropicalwestern North Pacific during the summer of1998. Adv. Atmos. Sci.,31(1):1-7.
    Madden R A, P R Julian.1971: Detection of a40~50day oscillation in the zonal wind inthe tropical Pacific [J]. J. Atrmos. Sci.,28:702-708.
    Mao, J. Y., J. C. L. Chan, Guoxiong Wu,2004: Relationship between the onset of theSouth China Sea summer monsoon and the structure of the As ian subtropicalanticyclone. J. Meteor. Soc. Japan,82(3),845-849.
    Mao, J. Y., and J. C. L. Chan,2005: Intraseasonal variability of the South China Seasummer monsoon, J. Climate,18,2388–2402.
    Maloney Eric D. and Walter M. Hannah,2010: Aquaplanet GCM simulations ofintraseasonal moisture modes. J. Adv. Model Earth Syst.,2, Article5.
    ——.2009: The moist static energy budget of a composite tropical intraseasonaloscillation in a climate model. J. Climate,22(3),711-729.
    ——, and A. H. Sobel,2004: Surface fluxes and ocean coupling in the tropicalintraseasonal oscillation. J. Climate,17(22),4368-4386.
    Meehl G A, Karl T R, Easterlling D R, et al.2000: An introduction to trends in extremeweather and climate events: observations, socioeconomic impacts, terrestrialecological impacts, and model projections [J]. Bull. Amer. Meteor. Soc.,81(3):413-416.
    Mo K C, Higgins R W.1998: Tropical influences on California precipitation. J.Climate,11:412-430.
    Murakami, T., T. Nakazawa, and J. He.1984: On the40–50day oscillations during the1979Northern Hemisphere summer. I: Phase propagation. J. Meteor. Soc. Japan,62,440–468.
    Neelin J. D., Held I. M.1987: Cook K. H. Evaporation-wind feedback and low-frequencyvariability in the tropical atmosphere[J]. J. Atmos. Sci.,44(16):2341-2348.
    Osborn T J, Hnhne M, Jones P D, et al.2000: Observed trends in the daily intensity ofUnited Kingdom precipitation [J]. Int. J. Climatol.,20:347-364.
    Paegle J N, Byerle L A, Mo K C.2000: Intraseasonal modulation of South Americansummer precipitation.Mon.Wea.Rev.,128(3):837-850.
    Rex, D.,1950: Blocking action in the middle troposphere and its effect upon regionalclimate II: the climatology of blocking action. Tellus,2:275-301.
    Saha, Suranjana, and Coauthors.2010: The NCEP Climate Forecast SystemReanalysis. Bull. Amer. Meteor. Soc.,91:1015-1057
    ——,2014: The NCEP Climate Forecast System Version2. J. Climate,27,2185–2208.
    Seo K. H.2009: Statistical-dynamical prediction of the Madden–Julian oscillation usingNCEP Climate Forecast System (CFS). Int. J. Climatol.,29:2146-2155.
    Sikka, D. R., and S. Gadgil.1980: On the maximum cloud zone and the ITCZ over Indianlongitudes during the southwest monsoon. Mon. Wea. Rev.,108,1840–1853.
    Slingo J M, et al.1996: Intraseasonal oscillations in15atmospheric general circulationmodels: Results from an AMIP diagnostic subproject. Climate Dyn,13:325.
    Sperber, K. R.,2003: Propagation and the vertical structure of the Madden-Julianoscillation. Mon. Wea. Rev.,131(12),3018-3037.
    Swinbank R, et al.1988: Numerical simulations of the Madden and Julian oscillation. J.Atmos. Sci.,45:774.
    Takahashi M.1987: A theory of the slow Phases Peed of the intraseasonal oscillationusing the wave-CISK. J. Meteor. Soc. Japan,65:43-49.
    Tao Shiyan, and Chen Longxun,1987: A review of recent research on the East Asiansummer monsoon in China. Monsoon Meteorology. Oxford University Press,Oxford,60-92.
    Tang Yanbing, et al.2006: On the climatology of persistent heavy rainfall events inChina. Adv. Atmos. Sci.,23,678-692.
    Tao Shiyan, Ding Yihui.1981: Observational evidence of the influence of theQinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severeconvective storms in China. Bull. Amer. Meteor. Soc.,62:23-30.
    Torrence, C., and G. P. Compo.1998: A practical guide to wavelet analysis. Bull. Amer.Meteor. Soc.,79:61-78.
    Van den Dool and Saha S.1990: Frequency dependence in forecast skill. Mon. Wea. Rev.,118:128-137.
    Waliser D E, et al.1999: The influence of coupled sea surface temperature on theMadden-Julian oscillation: A model perturbation experiment. J. Atmos. Sci.,56:322-333.
    Wang, B., and H. Rui.1990: Synoptic climatology of transient tropical intraseasonalconvection anomalies:1975–1985. Meteor. Atmos. Phys.,44:43-61.
    ——, LI T.1994: Convective interaction with boundary layer dynamics in thedevelopment of a tropical intraseasonal system[J]. J. Atmos. Sci.,51(11):1386-1400
    ——, Xie X.1997: A model for the boreal summer intraseasonal oscillations. J. Atmos.Sci.,54:72–86.
    ——, et al.1998: Coupled modes in the warm pool climate system,Part I: The role ofair-sea interaction in maintaining Madden-Julian oscillation. J. Climate,11:2116
    Walter M. Hannah and Eric D. Maloney.2011: The role of moisture-convectionfeedbacks in simulating the Madden-Julian Oscillation. J. Climate,24:2754-2770
    Weaver S.J., Wanqiu Wang, Mingyue Chen et al.,2011: Representation of MJOVariability in the NCEP Climate Forecast System. J. Climate,24:2676-2693.
    Wheeler M, Hendon H. H.2004: An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction. Mon.Wea.Rev.,132:1917-1932.
    Whitaker J S, Weickmann K M.2001: Subseasonal variations of tropical convection andweek-2prediction of wintertime western North American rainfall.J. Climate,14:3279-3288
    Woolngough S. J., J. M. Slingo, B. J. Hoskins,2000: The relationship betweenconvection and sea surface temperature on intraseasonal timescales. J. Climate,2000,13:2086-2103
    Wu Z,Huang N. E.2009: Ensemble empirical mode decomposition: A noise-assisteddata analysis method. Adv. Adapt. Data. Anal.,1(1):1-41.
    Wu Rengguang,2010: Subseasonal variability during the South China Sea summermonsoon onset. Clim. Dyn.,34,629-642.
    Xavier P K, Goswami B N.2007: An analog method for real-time forecasting of summermonsoon subseasonal variability. Mon. Wea. Rev.,135(12):4149-4160
    Yasunari T.1979: Cloudiness fluctuations associated with the Northern Hemispheresummer monsoon. J. Meteor. Soc. Japan,57:227–242.
    ——.1980: A quasi-stationaryappearance of30-40dayperiod in the fluctuations duringthe summer monsoon, over India, J. Meteor. Soc. Japan.58:225-229.
    Yamamoto R, Sakurai Y.1999: Long term intensification of extremely heavy rainfallintensity in recent100years [J]. World Resour. Rev.,11:271-281.
    Yang Hui, LI Chongyin.2003: The Relation between Atmospheric IntraseasonalOscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe RiverBasin. Adv. Atmos. Sci.,20(4):540-553.
    Zhai Panmao, Zhang Xuebin, Wan Hui, et al.2005: Trends in total precipitation andfrequency of daily precipitation extremes over China. J. Climate,18:1096~110
    Zheng Y, Waliser D E, Stern W, et al.2004: The role of coupled sea surface temperaturesin the simulation of the tropical intraseasonal oscillation [J]. J. Climate,17(21):4109-4134.
    Zhou Tianjun, D. Gong, J. Li, et al.2009: Detecting and understanding the multi-decadalvariability of the East Asian Summer Monsoon–Recent progress and state of affairs.Meteorologische Zeitschrift [J],18(4):455-467.
    Zhu W., T. Li X. Fu, et al.2010: Influence of the maritime continent on the boreal smmerintraseasonal oscillation. J. Meteor. Soc. Japan,88:395–407.
    Zhu Congwen, T. Nakazawa, Jianping Li, et al.2003: The30–60day intraseasonaloscillation over the western North Pacific Ocean and its impacts on summerflooding in China during1998. Geophysical Research Letters,30(18): CLM5-1:5-5.
    鲍名,黄荣辉.2006:近40年我国暴雨的年代际变化特征.大气科学.30:1057-1067.
    鲍名.2007:近50年我国持续性暴雨的统计分析及其大尺度环流背景.大气科学.31(5):779-792.
    鲍名.2008:两次华南持续性暴雨过程中热带西太平洋对流异常作用的比较.热带气象学报,24(1):27-36.
    毕慕莹.1989:夏季西太平洋副热带高压的振荡.气象学报,47:468-474.
    程胜,李崇银.2006:北半球冬半年平流层大气低频振荡特征的研究[J].大气科学,30(4):660-670.
    陈尚峰,温之平,陈文.2011:南海地区大气30-60天低频振荡及其对南海夏季风的可能影响.大气科学,35(5):982-992.
    纪立人,杨培才等.2003:改善月动力延伸预报水平的一种新途径.科学通报,48(5):513-520.
    陈官军,魏凤英,巩远发.2010: NCEP/CFS模式对东亚夏季延伸预报的检验评估.应用气象学报,21(6):659-669.
    陈官军,魏凤英.2012:基于低频振荡特征的夏季江淮持续性降水延伸预报方法.大气科学,36(3):633-644.
    丑纪范,郑志海,孙树鹏.2010:10~30d延伸期数值天气预报的策略思考——直面混沌.气象科学,30(5):569-573.
    丁一汇.1993:1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社.
    丁一汇.2004:高等天气学.北京:气象出版社, p423.
    封国林等.2012:2011年春末夏初长江中下游地区旱涝急转成因初探.大气科学,36(5):1009-1026.
    高守亭,朱文妹,董敏.1998:大气低频变异中的波流相互作用(阻塞形势)。气象学报,56(6):665-680
    何金海.1988:亚洲季风纬圈剖面内准40天周期振荡的环流结构及其演变.热带气象,4:116-125.
    何敏,龚振淞,许力.2005:热带环流系统异常对2003年淮河持续性暴雨的影响.热带气象学报,21(3):323-329.
    黄菲,黄少妮,张旭.2008:中国降水季节内振荡的气候特征分析.中国海洋大学学报,38(2):173-177
    黄嘉佑,符长锋.1993:黄河中下游地区夏季逐候降水量的低频振荡特征.大气科学,17(3):379-383.
    ——.2004.气象统计分析与预报方法[M].北京:气象出版社,130-134.
    胡亮,何金海,高守亭.2007:华南持续性暴雨的大尺度降水条件分析.南京气象学院学报,30(3):345-351.
    蒋国荣,俞永强,何金海.2007:季节内振荡的数值模拟I.模拟的自然变率.大气科学,31(3):536-546.
    江志红,丁裕国,陈威霖.2007:21世纪中国极端降水事件预估.气候变化研究进展,3(4):202-207.
    纪晓玲,贾宏元,沈跃琴.2004:2002年6月7~8日宁夏区域性暴雨天气过程分析.干旱气象,22(2),17-22
    琚建华,钱诚,曹杰.2005:东亚夏季风的季节内振荡研究[J].大气科学,29(2):187-194.
    琚建华,赵尔旭.2005:东亚夏季风区的低频振荡对长江中下游旱涝的影响[J].热带气象学报,21(2):163-171.
    梁建茵,吴尚森,游积平.1999,南海夏季风的建立及强度,热带气象学报,15(2):97-105.
    ——,吴尚森.2002:南海西南季风爆发日期及其影响因子.大气科学,26(5):829-844.
    梁萍,丁一汇.2012:东亚梅雨季节内振荡的气候特征.气象学报,70(3):418-435.
    李峰,丁一汇.2004:近30年夏季亚欧大陆中高纬度阻塞高压的统计特征.气象学报,62(3):348-354.
    李崇银.1985:南亚夏季风槽脊和热带气旋活动与移动性CISK波[J].中国科学B辑,(7):668-675.
    李崇银,武培立,张勤.1990:北半球大气环流30-60天振荡的一些特征.中国科学,7:764
    李崇银.1990a:赤道以外热带大气中30~50天振荡的一个动力学研究[J].大气科学,14(1):84-92.
    李崇银.1990b:大气中的季节内振荡.大气科学,14(1):32-45.
    李崇银,张勤.1991:全球大气低频遥相关.自然科学进展,1:330-334.
    李崇银.1991:大气低频振荡[M].北京:气象出版社,1-2
    李崇银.1992:华北地区汛期降水的一个分析研究.气象学报,50(1):41-49
    李崇银.2000:气候动力学引论,北京:气象出版社, p449
    李崇银.2004:大气季节内振荡研究的新进展.自然科学进展,14:734-741
    李崇银,贾小龙,董敏.2006:大气季节内振荡的数值模拟比较研究.气象学报,64(4):412-419
    李桂龙,李崇银.1999:江淮流域夏季旱涝与不同时间尺度大气扰动的关系.大气科学,23(1):39-50.
    李江南等.2003:台风暴雨的研究进展.热带气象学报,19(增刊):152-159.
    李薇,郭裕福,张学洪.2001:热带大气季节内振荡研究进展——观测、动力机制和数值模拟[J].地球科学进展,16(1):72-78.
    李维京,陈丽娟.1999:动力延伸预报产品释用方法的研究.气象学报,57(3):338-345.
    林爱兰.1998:南海夏季风的低频特征[J].热带气象学报,14(2):113-118.
    林爱兰,梁建茵,谷德军.2008:热带大气季节内振荡对东亚季风区的影响及不同时间尺度变化研究进展.热带气象学报,24(1):11-19.
    刘小宁.1999:我国暴雨极端事件的气候变化特征.灾害学,14(1):54-59.
    廖清海,陶诗言.2004:东亚地区夏季大气环流季节循环进程及其在区域持续性降水异常形成中的作用.大气科学,28(6):835-846.
    雷雨顺.1981:经向型持续性特大暴雨的合成分析.气象学报,39(2):168-181.
    柳艳菊,丁一汇,赵南.2005:1998年南海季风爆发时期中尺度对流系统的研究Ⅱ:中尺度对流系统发生发展的大尺度条件.气象学报,63(4):431-442.
    陆尔,丁一汇.1996:1991年江淮特大暴雨与东亚大气低频振荡.气象学报,54(6):730-736.
    罗秋红等.2010:近40年西江流域前汛期致洪暴雨期间降水的低频振荡特征分析,热带气象学报,26(2):201-210.
    罗德海,李崇银.1992:地形强迫Rossby波的不稳定和中高纬度地区30-60天低频振荡.气候变化若干问题研究.北京:科学出版社,151-159.
    吕宏忠,张先恭,丁一汇.1991:赤道地区向西传播的40天周期低频波.气象报,49(2):29-38.
    缪锦海,刘家铭.1991:东亚夏季风降水中30-60天低频振荡.大气科学,15(5):65-71.
    毛江玉,吴国雄.2005:1991年江淮梅雨与副热带高压的低频振荡.气象学报,63(5):762-770.
    闵屾,钱永甫.2008:中国极端降水事件的区域性和持续性研究.水科学进展,19(6):763-771.
    慕建利,王建捷,李泽椿.2008:2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析.气象学报,6(33):437-451.
    倪文琪,蒋国荣,2010:东亚夏季风过程大气低频振荡的数值模拟研究.热带气象学报,26(1):93-97.
    钱维宏等.2007:近40年中国平均气候与极值气候变化概述.地球科学进展,22(7):673-684.
    钱维宏.2011:气候变化与中国极端事件图集.北京:气象出版社, p147-151.
    钱维宏.2012:天气尺度瞬变扰动的物理分解原理.地球物理学报,55(5):1439-1448.
    邱明宇,陆维松,王尚荣.2006:印度洋海温异常对北半球中高纬大气低频振荡[J].热带气象学报,22(5):454-460.
    孙丹,琚建华,吕俊梅.2008:2003年东亚季风季节内振荡对我国东部地区降水的影响.热带气象学报,24(6):641-648.
    史学丽,丁一汇.2000:1994年中国华南大范围暴雨过程的形成与夏季风活动的研究.气象学报,58(6):666-678.
    苏同华,薛峰.2010:东亚夏季风环流和雨带的季节内变化[J].大气科学,34(3):611-628
    孙国武等.2008:低频天气图预报方法.高原气象,27(增刊):65-68.
    陶诗言,丁一汇,周晓平.1979:暴雨和强对流天气研究.大气科学,3(3),227-238
    陶诗言等.1980:中国之暴雨.北京:科学出版社,225pp
    陶诗言,徐淑英.1962:夏季江淮流域持久性旱涝现象的环流特征.气象学报,32:1-10.
    汤懋苍.1957:东亚东部的阻塞形势极其对天气气候的影响.气象学报,28(4):282-293.
    王永光和廖荃荪.1997:7月份降水分布型的预报方法.气象,23(3):50-53.
    魏凤英.现代气候统计诊断与预测技术(第2版).北京:气象出版社,2007. p71-75.
    吴丽姬等,2007:华南前汛期区域持续性暴雨的分布特征及分型.中山大学学报(自然科学版),46(6):108-113.
    武炳义,章淹,宋英杰.1994:10-20天准双周振荡的经向传播及地理特征.大气科学,18(5):561-568.
    信飞,肖子牛,李泽椿,2007:1997年华南汛期降水异常与大气低频振荡的关系,气象,33(12):23-30.
    信飞,孙国武,陈伯民.2008:系回归统计模型在延伸期预报中的应用.高原气象,27(增刊):69-74.
    夏芸,管兆勇,王黎娟.2008:2003年江淮流域强降水过程与30~70d天低频振荡的联系.南京气象学院学报,31(1):33.
    徐国强,藏建升,周伟灿.2001:1998年京津冀夏季风的低频振荡与降水的特征.应用气象学报,12(3):297-306.
    杨秋明.1992:初夏亚洲季风区环流低频振荡与长江下游持续暴雨.应用气象学报,4(3):320-326.
    杨秋明.2008:10-30天延伸期天气预报及发展趋势.中国新技术新产品,7:96-97.
    杨扬,周国良,戚建国等.2005:长江中游地区暴雨过程的气候背景分析.水科学进展,16(4):546-551.
    杨非.2014:2013年我国洪涝灾害损失总体偏轻部分地区灾情较重.国家防汛抗旱总指挥部办公室网站: http://fxkh.mwr.gov.cn/gzdt/201401/t20140109_547227.html.
    朱乾根,林锦瑞,寿绍文等.2000:天气学原理和方法.北京,气象出版社p344.
    朱乾根,何金海.1995:中高纬度低频环流系统与东亚季风低频变化及其异常(基金成果介绍).地球科学进展,10(3):304-305.
    朱乾根,徐国强.1998年夏季中国南部低频降水特征与南海低频夏季风活动.气象科学,2000,20(3):239-248.
    郑志海,封国林,丑纪范等.2010:数值预报中自由度的压缩及误差相似性规律.应用气象学报,21(2):139-148.
    郑志海,封国林,黄建平等.2012:基于延伸期可预报性的集合预报方法和数值试验.物理学报,61(19):199-203.
    周秀骥.2000:海峡两岸及临近地区暴雨试验研究.北京:气象出版社,p10-50.
    周秀骥,薛纪善,陶祖钰等.2003:‘98’华南暴雨科学试验研究[M].北京:气象出版社,
    张海霞,周伟灿,黄昌兴.2002:长江流域不同区域暴雨发生机理的比较研究.南京气象学院学报,25(1):21-27.
    周静亚,成秋影.1987:夏季印度洋环流系统与我国长江上游区域性持续暴雨的关系.气象学报,45(2):179-187.
    张端禹等.2012:华南前汛期持续暴雨环流特征分析.暴雨灾害,21(3):264-271.
    张庆云,陶诗言.1998:亚洲中高纬度环流对东亚夏季降水的影响.气象学报,56(2):199-211.
    张庆云,陶诗言,彭京备.2008:我国灾害性天气气候事件成因机理的研究进展.大气科学,32(4):815~825.
    张秀丽,郭品文,何金海.2002:1991年夏季长江中下游降水和风场的低频振荡特征分析.南京气象学院学报,25(3):388-394.
    张瑛,陈隆勋,何金等.2008:1998年夏季亚洲地区低频大气环流的特征及其与长江中下游降水的关系.气象学报,66(4):577.
    赵平,周自江.2005:东亚副热带夏季风指数及其与降水的关系.气象学报,63(6):933-941.
    祝从文,周秀骥,赵平等.2011:东亚副热带季风建立于中国汛期开始时间.中国科学:地球科学,41(8):1172-1181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700