用户名: 密码: 验证码:
全场OCT及其对小鼠早期胚胎发育的形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析(Optical coherence tomography,OCT)是基于低相干干涉测量的一种新型的三维成像手段。该技术因具有非侵入式、低损、高分辨等特点已被广泛应用于生物医学领域。而在发育生物学中,哺乳动物早期胚胎发育机制的研究具有重大的理论意义和应用价值,但由于实验条件及相关方法学的局限性,以形态学演化为核心的早期发育模式与胚胎极性的研究,尚存在一些争议问题亟待解决。
     针对这一情况,本论文以OCT的一个分支“全场OCT(Full-field OCT,FF-OCT)”技术为基础,建立了一套研究早期胚胎形态学的新方法和新思路,并应用于小鼠早期胚胎发育的形态学研究中,得到了一系列有特色的成果。
     本论文首先发展和完善了全场OCT系统,并且突破全场OCT技术以往只能对固定胚胎(失去活性的胚胎)进行有效成像的限制,第一次成功获取了小鼠早期胚胎从受精卵时期到囊胚时期的早期发育典型阶段非荧光标记、三维活体的图像。这些发育阶段都具有鲜明的形态学特征,本论文也对各个时期主要的形态学参量提出了相应的量化方法,并进行了相关的形态学分析。
     进一步,本论文尝试了更为深入的工作:利用全场OCT技术探索与研究早期胚胎动态发育过程中形态学参量之间的四维时空关联。针对第一次卵裂事件中存在的种种争议问题,本论文对第一次卵裂前后的胚胎进行了三维活体成像的对比,并研究了受精卵里的第二极体、雌雄两个原核以及第一卵裂面的变化规律。继而通过相应的量化,以统计学的角度分析了这些形态学参量之间的时空演化机制。实验结果表明,第一卵裂面经过第二极体的概率只有27%,而且利用两个原核能够准确预测真实第一卵裂面的概率也只有24%。这些研究说明,第一卵裂面和受精卵时期的相关形态学参量不存在明确的时空关联。
     此外,本论文还利用全场OCT技术进行了与活体细胞内纺锤体结构相关的研究,并首次获取了小鼠卵母细胞和受精卵内纺锤体结构的非荧光标记、三维活体的形态学图像,并对其形态学参量进行了量化与分析。
     本论文的研究结果充分展现了全场OCT技术在早期胚胎发育机制与纺锤体相关研究中的应用前景。全场OCT技术将为发育生物学领域进一步的深入研究提供强有力的技术手段。
Optical coherence tomography (OCT) is an emerging3D imaging modalitybased on low coherence interferometry. The technique is suitable fornon-invasive, low optical damage and high resolution tomographic visualizationof the internal structure in biological samples. For these reasons, the techniqueof OCT has become a valuable methodology in biological and medical studies.On the other hand, the mechanism of early mammalian embryonic developmentis of great importance in developmental biology. Among the related studies, dueto the limitation of the experimental conditions and the methods, earlypatterning and polarity that takes the morphological evolution as its core, stillremains a controversial issue.
     Therefore, in this dissertation, a novel method based on full-field OCT(FF-OCT), which was an extension of OCT, was presented in order to providethe breakthrough and new insights into the controversial issue. Using thismethod, we demonstrated a series of the interesting results.
     First, the system of FF-OCT was successfully established and wasimproved a lot for its application to the morphological studies of early mouseembryos. We broke through the limitation that FF-OCT was only capable ofimaging the fixed (or dead) embryos and obtained label-free3D livemorphological images of the mouse embryos at various typical developmentalstages ranged from1-cell stage to blastocyst stage for the first time. Thesestages were all of notable morphological characteristics and a great many spatialfactors that related to these early developmental stages were quantitativelyanalysed.
     For further analysis, we extended our work and made some successfulattempts to study the dynamics of developmental processes during early mouseembryonic lives. We focused our imaging on the controversial event of the firstcleavage to investigate3D spatial morphogenetic relationship between the twopronuclei in zygote, the2PB and the first cleavage plane. Coupled withquantitative and statistical study, we demonstrated that only27%of the first realcleavage planes passed through the2PB and only24%of the predicted first cleavage planes that defined by the two pronuclei were in good accordance withthe real cleavage planes. These results suggested that the2PB and the twopronuclei were not convincing spatial cues for the event of the first cleavage.
     In addition, FF-OCT was also applied to the spindle related investigations,and the first label-free3D live morphological images of the spindles within theoocytes and the zygotes were obtained with FF-OCT. The spindle relatedmorphological parameters were quantitatively measured as well.
     Our studies demonstrate the feasibility of FF-OCT in providing newinsights and potential breakthroughs to the controversial issues of earlymammalian embryonic development. Also, we believe that FF-OCT will offer apowerful methodology for the early embryo and the spindle related studies inmammalian developmental biology.
引文
[1] Drexler W, Fujimoto J G, eds. Optical coherence tomography: Technology and applications.biological and medical physics, biomedical engineering (Springer Berlin Heidelberg NewYork),2007.
    [2] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography. Science,1991,254:1178-1181.
    [3] Fercher A F, Hitzenberger C K, Drexler W, et al. In vivo optical coherence tomography. Am JOphthalmol,1993,116:113-114.
    [4] Schmitt J M, Yadlowsky M, Bonner R F. Subsurface imaging of living skin with opticalcoherence tomography. Dermatology,1995,191:93-98.
    [5] Fujimoto J G, Brezinski M E, Tearney G J, et al. Optical biopsy and imaging using opticalcoherence tomography. Nat Med,1995,1:970-972.
    [6] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of fourier domain vs. time domainoptical coherence tomography. Opt Express,2003,11:889-894.
    [7] Nassif N, Cense B, Park B H, et al. In vivo human retinal imaging by ultrahigh-speed spectraldomain optical coherence tomography. Opt Lett,2004,29:480-482.
    [8] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances bybackscattering spectral interferometry. Opt Commun,1995,117:43-48.
    [9] Chinn S R, Swanson E A, Fujimoto J G. optical coherence tomography using afrequency-tunable optical source. Opt Lett,1997,22:340-342
    [10] Golubovic B, Bouma B E, Tearney G J, et al. Optical frequency-domain reflectometry usingrapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett,1997,22:1704-1706.
    [11] Yun S H, Tearney G J, Bouma B E, et al. High-speed spectral-domain optical coherencetomography at1.3μm wavelength. Opt Express,2003,11:3598-3604.
    [12] Oh W Y, Yun S H, Tearney G J, et al,115kHz tuning repetition rate ultrahigh-speedwavelength-swept semiconductor laser. Opt Lett,2005,30:3159-3162.
    [13] Izatt J A, Kulkarni M D, Yazdanfar S, et al. In vivo bidirectional color Doppler flow imagingof picoliter blood volumes using optical coherence tomography. Opt Lett,1997,22:1439-1441.
    [14] Ren H W, Brecke K M, Ding Z H, et al. Imaging and quantifying transverse flow velocitywith the Doppler bandwidth in a phase-resolved functional optical coherence tomography.Opt Lett,2002,27:409-411.
    [15] Morgner U, Drexler W, Kartner X D, et al. Spectroscopic optical coherence tomography. OptLett,2000,25:111-113.
    [16] Schmitt J M, Xiang S H, Yung K M. Differential absorption imaging with optical coherencetomography. J Opt Soc Am A,1998,15:2288-2296.
    [17] Hee M R, Huang D, Swanson E A, et al. Polarization-sensitive low-coherence reflectometerfor birefringence characterization and ranging. J Opt Soc Am B,1992,9:903-908.
    [18] Jiao S, Wang L V. Two-dimensional depth-resolved Mueller matrix of biological tissuemeasured with double-beam polarization-sensitive optical coherence tomography. Opt Lett,2002,27:101-103.
    [19] Jiang Y, Tomov I, Wang Y, et al. Second-harmonic optical coherence tomography. Opt Lett,2004,29:1090-1092.
    [20] Bredfeldt J S, Vinegoni C, Marks D L, et al. Molecularly sensitive optical coherencetomography. Opt Lett,2005,30:495-497.
    [21] Applegate B E, Yang C, Rollins A M, et al. Polarization-resolved second-harmonic-generationoptical coherence tomography in collagen. Opt Lett,2004,29:2252-2254.
    [22] Sarunic M V, Applegate B E, Izatt J A. Spectral domain second-harmonic optical coherencetomography. Opt Lett,2005,30:2391-2393.
    [23] Chen Z, Milner T E, Wang X J, et al. Optical Doppler tomography:imaging in vivo bloodflow dynamics following pharmacological intervention and photodynamic therapy.Photochem Photobiol,1998,67:56-60.
    [24] Saxer C E, de Boer J F, Hyle Park B, et al. High-speed fiber based polarization-sensitiveoptical coherence tomography of in vivo human skin. Opt Lett,2000,25:1355-1357.
    [25] Nelson J S, Kelly K M, Zhao Y, et al. Imaging blood flow in human port wine stain in-situand in real-time using optical Doppler tomography. Arch Dermatology,2001,137:741-744.
    [26] Dubois A, Vabre L, Boccara A C, et al. High-resolution full-field optical coherencetomography with a linnik microscope. Appl Opt,2002,41:805-812.
    [27] Grieve K, Dubois A, Simonutti M, et al. In vivo anterior segment imaging in the rat eye withhigh speed white light full-field optical coherence tomography. Opt Express,2005,13:6286-6295.
    [28] Dubois A, Grieve K, Moneron G, et al. Ultrahigh-resolution full-field optical coherencetomography. Appl Opt,2004,43:2874-2883.
    [29] Puliafito C A, Hee M R, Lin C P, et al. Imaging of macular diseases with optical coherencetomography. Ophthalmology,1995,102:217-229.
    [30] Hee M R, Puliafito C A, Duker J S, et al. Topography of diabetic macular edema with opticalcoherence tomography. Ophthalmology,1998,105:360-370.
    [31] Schuman J S, Hee M R, Puliafito C A, et al. Quantification of nerve fiber layer thickness innormal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol,1995,113:586-596.
    [32] Lisboa R, Leite M T, Zangwill L M, et al. Diagnosing preperimetric glaucoma with spectraldomain optical coherence tomography. Ophthalmology,2012,119:2261-2269.
    [33] Bolz M, Ritter M, Schneider M. A systematic correlation of angiography and high-resolutionoptical coherence tomography in diabetic macular edema. Ophthalmology,2009,116:66-72.
    [34] Majander A S, Lindahl P M, Vasara L K, et al. Anterior segment optical coherencetomography in congenital corneal opacities. Ophthalmology,2012,119:2450-2457.
    [35] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging. NatBiotechnol,2003,21:1361-1367.
    [36] Tearney G J, Brezinski M E, Bouma B E, et al. In vivo endoscopic optical biopsy with opticalcoherence tomography. Science,1997,276:2037-2039.
    [37] Sergeev A M, Gelikonov V M, Gelikonov G V, et al. In vivo endoscopic OCT imaging ofprecancer and cancer states of human mucosa. Opt Express,1997,1:432-440.
    [38] Hou J B, Jia H B, Huang X T, et al. Optical coherence tomographic observations ofpolytetrafluoroethylene-covered sirolimus-eluting coronary arterial stent. Am J Cardiol,2012,Accepted.
    [39] Gora M J, Sauk J S, Carruth R W, et al. Tethered capsule endomicroscopy enables lessinvasive imaging of gastrointestinal tract microstructure. Nat Med,2013,19:238-241.
    [40] Li J N, de Groot M, Helderman F, et al. High speed miniature motorized endoscopic probe foroptical frequency domain imaging. Opt Express,2012,20:24132-24138.
    [41] Larina I V, Furushima K, Dickinson M E, et al. Live imaging of rat embryos with Dopplerswept-source optical coherence tomography. J Biomed Opt,2009,14:050506.
    [42] Boppart S A, Bouma B E, Pitris C, et al. In vivo cellular optical coherence tomographyimaging. Nat Med,1998,4:861-865.
    [43] Peterson L M, Jenkins M W, Gu S, et al.4D shear stress maps of the developing heart usingDoppler optical coherence tomography. Biomed Opt Express,2012,3:3022-3032.
    [44] Sattler E, K stle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt,2013,18:061224.
    [45] Blatter C, Weingast J, Alex A, et al. In situ structural and microangiographic assessment ofhuman skin lesions with high-speed OCT. Biomed Opt Express,2012,3:2636-2646.
    [46] Welzel J, Bruhns M, Wolff H H. Optical coherence tomography in contact dermatitis andpsoriasis. Arch Dermatol Res,2003,295:50-55.
    [47] Bakhsh T A, Sadr A, Shimada Y, et al. Non-invasive quantification of resin-dentin interfacialgaps using optical coherence tomography: validation against confocal microscopy. DentMater,2011,27:915-925.
    [48] Pan Y, Li Z, Xie T, Chu C R. Hand-held arthroscopic optical coherence tomography for invivo high-resolution imaging of articular cartilage J Biomed Opt,2003,8:648-654.
    [49] Jones R S, Staninec M, Fried D. Imaging artificial caries under composite sealants andrestorations. J Biomed Opt,2004,9:1297-1304.
    [50] PaytonS. First in vivo study shows optical imaging can distinguish renal cancer from normaltissue. Nat Rev Urol,2012,9:294.
    [51] Zhi Z W, Jung Y R, JiaY L. Highly sensitive imaging of renal microcirculation in vivo usingultrahigh sensitive optical microangiography. Biomed Opt Express,2011,2:1059-1068.
    [52] Nissel R, Fischer D C, Puhlmann A, et al. Short-term growth hormone treatment andmicrocirculation: effects in patients with chronic kidney disease. Microvasc Res,2009,78:246-252.
    [53] Brezinski M E, Tearney G J, Bouma B E, et al. Optical coherence tomography for opticalbiopsy: properties and demonstration of vascular pathology. Circulation,1996,93:1206-1213.
    [54] Ko T H, Adler D, Fujimoto J G, et al. Ultrahigh resolution optical coherence tomographyimaging with a broadband superluminescent diode light source. Opt Express,2004,12:2112-2119.
    [55] Lapin P I, Mamedov D S, Yakubovich S D, et al. Novel near-IR broad-band light sources forOCT based on SLD. Proc of SPIE-OSA Biomed Opt,2005,5861:586108.
    [56] Wang Y, Zhao Y, Nelson J S, et al. Ultrahigh-resolution optical coherence tomography bybroadband continuum generation from a photonic crystal fiber. Opt Lett,2003,28:182-184.
    [57] Bourquin S, Aguirre A D, Hartl I, et al. Ultrahigh resolution real time OCT imaging using acompact femtosecond Nd:Glass laser and nonlinear fiber. Opt Express,2003,11:3290-3297.
    [58] Herz P R, Chen Y, Aguirre A D, et al. Ultrahigh resolution optical biopsy with endoscopicoptical coherence tomography. Opt Express,2004,12:3532-3542.
    [59] Dubois A, Moneron G, Grieve K, et al. Three-dimensional cellular-level imaging usingfull-field optical coherence tomography. Phys Med Biol,2004,49:1227-1234.
    [60] Vabre L, Dubois A, Boccara A C. Thermal-light full-field optical coherence tomography. OptLett,2002,27:530-532.
    [61] Hsu I J, Sun C W, Lu C W, et al. Resolution improvement with dispersion manipulation and aretrieval algorithm in optical coherence tomography. Appl Optics,2003,42:227-234.
    [62] Fercher A F, Hitzenberger C K, Sticker M, et al. Numerical dispersion compensation forPartial Coherence Interferometry and Optical Coherence Tomography. Opt Express,2001,9:610-615.
    [63] Wojtkowski M, Srinivasan V J, Ko T H, et al. Ultrahigh-resolution, high-speed, Fourierdomain optical coherence tomography and methods for dispersion compensation. Opt Express,2004,12:2404-2422.
    [64] Hermann B, Fernandez E J, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution opticalcoherence tomography. Opt Lett,2004,29:2142-2144.
    [65] Zawadzki R J, Cense B, Zhang Y, et al. Ultrahigh-resolution optical coherence tomographywith monochromatic and chromatic aberration correction. Opt Express,2008,16:8126-8143.
    [66] Zawadzki R J, Choi S S, Fuller A R, et al. Cellular resolution volumetric in vivo retinalimaging with adaptive optics–optical coherence tomography. Opt Express,2009,17:4084-4094.
    [67] Qi B, Himmer A P, Gordon LM, et al. Dynamic focus control in high-speed optical coherencetomography based on a microelectromechanical mirror. Opt Commun,2004,232:123-128.
    [68] Yasuno Y, Sugisaka J, Sando Y, et al. Non-iterativenumerical method for laterallysuperresolving Fourier domain optical coherence tomography. Opt Express,2006,14:1006-1020.
    [69] Yu L F, Rao B, Zhang J, et al. Improved lateral resolution in optical coherence tomographyby digital focusing using twodimensional numerical diffraction method. Opt Express,2007,15:7634-7641.
    [70] Blatter C, Grajciar B, Eigenwillig C M, et al. Extended focus high-speed swept source OCTwith self-reconstructive illumination. Opt Express,2011,19:12141-12155.
    [71]高湔松.光学相干CT联用技术的研究[硕士学位论文].北京:清华大学物理系,2002.
    [72] Ballif J, Gianotti R, Chavanne P, et al. Rapid and scalable scans at21m/s in opticallow-coherence reflectometry. Opt Lett,1997,22:757-759.
    [73] Tearney G J, Bouma B E, Boppart S A, et al. Rapid acquisition of in vivo biological imagesby use of optical coherence tomography. Opt Lett,1996,21:1408-1410.
    [74] Tearney G J, Bouma B E, FujimotoJ G. High-speed phase-and group-delay scanning with agrating-based phase control delay line. Opt Lett,1997,22:1811-1813.
    [75] de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domaincompared with time-domain optical coherence tomography. Opt Lett,2003,28:2067-2069.
    [76] Choma M A, Sarunic M V, Yang,C H, et al. Sensitivity advantage of swept source and Fourierdomain optical coherence tomography. Opt Express,2003,11:2183-2189.
    [77] Leitgeb R A, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain opticalcoherence tomography. Opt Express,2004,12:2156-2165.
    [78] Nassif N A, Cense B, Park B H. In vivo high-resolution video-rate spectral-domain opticalcoherence tomography of the human retina and optic nerve. Opt Express,2004,12:367-376.
    [79] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): A new laseroperating regime and applications for optical coherence tomography. Opt Express,2006,14:3225-3237.
    [80] Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectionalswept laser sources for optical coherence tomography imaging at370,000lines/s. Opt Lett,2006,31:2975-2977.
    [81] Moon S, and Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulsesupercontinuum source. Opt Express,2006,14:11575-11584.
    [82] Choi D, Hiro-Oka H, Furukawa H, et al. Fourier domain optical coherence tomography usingoptical demultiplexers imaging at60,000,000lines/s. Opt Lett,2008,33:1318-1320.
    [83] Wieser W, Biedermann B R, Klein T, et al. Multi-Megahertz OCT: High quality3D imagingat20million A-scans and4.5GVoxels per second. Opt Express,2010,2:14687-14704.
    [84] Bonin T, Franke G, Hagen-Eggert M, et al. In vivo Fourier-domain full-field OCT of thehuman retina with1.5million A-lines/s. Opt Lett,2010,35:3432-3434.
    [85] Grebenyuk A A, Ryabukho V P. Numerical correction of coherence gate in full-fieldswept-source interference microscopy. Opt Lett,2012,37:2529-2531.
    [86] Schmitt J M, Knuttel A, Yadlowsky M, et al. Optical-coherence tomography of a dense tissue:statistics of attenuation and backscattering. Phys Med Biol,1994,39:1705-1720.
    [87] Hale G M, and Querry M R. Optical constants of water in the200-nm to200-μm wavelengthregion. Appl Opt,1973,12:555-563.
    [88] Bouma B E, Nelson L E, Tearney G J, et al. Optical coherence tomographic imaging ofhuman tissue at1.55μm and1.81μm using Er-and Tm-Doped Fiber Sources. J Biomed Opt,1998,3:76-79.
    [89] Kakuma H, Ohbayashi K, and Arakawa Y. Optical imaging of hard and soft dental tissuesusing discretely swept optical frequency domain reflectometry optical coherence tomographyat wavelengths from1560to1600nm. J Biomed Opt,2008,13:014012.
    [90] Carrion L, Lestrade M, Xu Z, et al. Comparative study of optical sources in the near infraredfor optical coherence tomography applications. J Biomed Opt,2007,12:014017.
    [91] Kodach V M, Kalkman J, Faber D J, et al. Quantitative comparison of the OCT imaging depthat1300nm and1600nm. Biomed Opt Express,2010,1:176-185.
    [92] H usler G, Lindner M W. Coherence radar and spectral radar–new tools for dermatologicaldiagnosis. J Biomed Opt,1998,3:21-31.
    [93] Wojtkowski M, Kowalczyk A, Leitgeb R, et al. Full range complex spectral optical coherencetomography technique in eye imaging. Opt Lett,2002,27:1415-1417.
    [94] G tzinger E, Pircher M, Leitgeb R, et al. High speed full range complex spectral domainoptical coherence tomography. Opt Express,2005,13:583-594.
    [95] Davis A M, Choma M A, and Izatt J A. Heterodyne swept-source optical coherencetomography for complete complex conjugate ambiguity removal. J Biomed Opt,2005,10:064005-064006.
    [96] Dhalla A H. Complete complex conjugate resolved heterodyne swept-source opticalcoherence tomography using a dispersive optical delay line. Biomed Opt Express,2011,2:1218-1232.
    [97] Dhalla A H, Nankivil D, and Izatt J A. Complex conjugate resolved heterodyne swept sourceoptical coherence tomography using coherence revival. Biomed Opt Express,2012,3:633-649.
    [98] Adler D C, Wieser W, Trepanier F, et al. Extended coherence length Fourier domain modelocked lasers at1310nm. Opt Express,2011,19:20930-20939.
    [99] Grulkowski I, Liu J J, Potsaid B, et al. High-precision, high-accuracy ultralong-rangeswept-source optical coherence tomography using vertical cavity surface emitting laser lightsource. Opt Lett,2013,38:673-675.
    [100] Zheng J G, Lu D Y, Chen T Y, et al. Label-free subcellular3D live imaging of preimplantationmouse embryos with full-field optical coherence tomography. J Biomed Opt,2012,17:070503.
    [101] Izatt J A, Hee M R, Owen G M, et al. Optical coherence microscopy in scattering media. OptLett,1994,19:590-592.
    [102] Izatt J A, Kulkarni M D, Wang H W, et al. Optical Coherence Tomography and Microscopyin Gastrointestinal Tissues. IEEE J Sel Top Quantum Electron,1996,2:1017-1028.
    [103] Beaurepaire E, Boccara A C, Lebec M, et al. Full-field optical coherence microscopy. OptLett,1998,23:244-246.
    [104] Der Martino A, Carrara D, Devillon B, et al. Full-field OCT with thermal light. Proc SPIE,2001,4431:38-42.
    [105] Safrani A, and Abdulhalim I. Ultrahigh-resolution full-field optical coherence tomographyusing spatial coherence gating and quasi-monochromatic illumination. Opt Lett,2012,37:458-460.
    [106] Zheng J G, Huo T C, Chen T Y, et al. Understanding three-dimensional spatial relationshipbetween the mouse second polar body and first cleavage plane with full-field opticalcoherence tomography. J Biomed Opt,2013,18:010503.
    [107] Choi W J, Pi L Q, Min G H, et al. Qualitative investigation of fresh human scalp hair withfull-field optical coherence tomography. J Biomed Opt,2012,17:036010.
    [108] Perea-Gomez A. Camus A, Moreau A, et al. Initiation of gastrulation in the mouse embryo ispreceded by an apparent shift in the orientation of the anterior-posterior Axis. Curr Biol,2004,14:197-207.
    [109] Choi W J, Jeon D I, Ahn S G, et al. Full-field optical coherence microscopy for identifyinglive cancer cells by quantitative measurement of refractive index distribution. Opt Express,2010,18:23285-23295.
    [110] Sacchet D, Moreau J, Georges P, et al. Simultaneous dual-band ultra-high resolution full-fieldoptical coherence tomography. Opt Express,2008,16:19434-19446.
    [111] Na J H, Choi W J, Choi E S, et al. Image restoration method based on Hilbert transform forfull-field optical coherence tomography. Appl Opt,2008,47:459-466.
    [112] Dubois A, Moneron G, and Boccara C. Thermal-light full-field optical coherence tomographyin the1.2m wavelength region. Opt Commun,2006,266:738-743.
    [113] Akiba M, Chan K P, and Tanno N. Full-field optical coherence tomography bytwo-dimensional heterodyne detection with a pair of CCD cameras. Opt Lett,2003,28:816-818.
    [114] Grieve K, Moneron G, Dubois A. Ultrahigh resolution ex vivo ocular imaging using ultrashortacquisition time en face optical coherence tomography. J Opt A: Pure Appl Opt,2005,7:368-373.
    [115] Hrebesh M S, Dabu R, Sato M. In vivo imaging of dynamic biological specimen by real-timesingle-shot full-field optical coherence tomography. Opt Commun,2009,282:674-683.
    [116] Moreau J, Loriette V, and Boccara A C. Full-field birefringence imaging by thermal-lightpolarizationsensitive optical coherence tomography I. Theory. Appl Opt,2003,42:3800-3810.
    [117] Moreau J, Loriette V, and Boccara A C. Full-field birefringence imaging by thermal-lightpolarizationsensitiveoptical coherence tomography II. Instrument and results. Appl Opt,2003,42:3811-3818.
    [118] Moneron G, Boccara A C, and Dubois A. Polarization-sensitive full-field optical coherencetomography. Opt Lett,2007,32:2058-2060.
    [119] Dubois A, Moreau J, and Boccara A C. Spectroscopic ultrahigh-resolution full-field opticalcoherence microscopy. Opt Express,2008,16:17082-17091.
    [120] Dubois A. Spectroscopic polarization-sensitive full-field optical coherence tomography. OptExpress,2012,20:9962-9977.
    [121] Oh W Y, Bouma B E, Iftimia N, et al. Ultrahigh-resolution full-field optical coherencemicroscopy using InGaAs camera. Opt Express,2006,14:726-735.
    [122] Labiau S, David G, Gigan S, et al. Defocus test and defocus correction in full-field opticalcoherence tomography. Opt Lett2009,34:1576-1578.
    [123]孙德明,李根平,陈振文等.实验动物从业人员上岗培训教材.北京:中国农业大学出版社,2011.
    [124] Tarkowski A K. Experiments on the development of isolated blastomeres of mouse eggs.Nature,1959,184:1286-1287.
    [125] Tsunoda Y, and McLaren A. Effect of various procedures on the viability of mouse embryoscontaining half the normal number of blastomeres. J Reprod Fertil,1983,69:315-322.
    [126] Ciemerych M A, Mesnard D, and Zernicka-Goetz M. Animal and vegetal poles of the mouseegg predict the polarity of the embryonic axis, yet are nonessential for development.Development,2000,127:3467-3474.
    [127] McDole K, Xiong Y, Iglesias P A, et al. Lineage mapping the pre-implantation mouse embryoby two-photon microscopy, new insights into the segregation of cell fates. Dev Biol,2011,355:239-249.
    [128] Hiiragi T, and Solter D. First cleavage plane of the mouse egg is not predetermined butdefined by the topology of the two apposing pronuclei. Nature,2004,430:360-364.
    [129] Kurotaki Y, Hatta K, Nakao K, et al. Blastocyst axis is specified independently of early celllineage but aligns with the ZP shape. Science,2007,316:719-723.
    [130] Gardner R L. Experimental analysis of second cleavage in the mouse. Hum Reprod,2002,17:3178-3189.
    [131] Zernicka-Goetz M. Development: Do Mouse Embryos Play Dice?, Curr Biol,2012,23:15-17.
    [132] Gardner R L. Specification of embryonic axes begins before cleavage in normal mousedevelopment. Development,2001,128:839-847.
    [133] Bischoff M, Parfitt D E, and Zernicka-Goetz M. Formation of the embryonic-abembryonicaxis of the mouse blastocyst: relationships between orientation of early cleavage divisions andpattern of symmetric/asymmetric divisions. Development,2008,135:953-962.
    [134] González S, Ibá ez E, and Santaló J. Influence of early fate decisions at the two-cell stage onthe derivation of mouse embryonic stem cell lines. Stem Cell Res,2011,7:54-65.
    [135] Motosugi N, Bauer T, Polanski Z, et al. Polarity of the mouse embryo is established atblastocyst and is not prepatterned. Genes Dev,2005,19:1081-1092.
    [136] Piotrowska K, and Zernicka-Goetz M. Role for sperm in spatial patterning of early mouseembryos. Nature,2001,409:517-521.
    [137] Piotrowska K, Wianny F, Pedersen R A, et al. Blastomeres arising from the first cleavagedivision have distinguishable fates in normal mouse development. Development,2001,128:3739-3748.
    [138] Takaoka1K, and Hamada H. Cell fate decisions and axis determination in the early mouseembryo. Development,2012,139:3-14.
    [139] G ppert-Mayer M. über Elementarakte mit zwei Quantensprüngen. Ann Phys,1931,401:273-294.
    [140] Duguay M A, and Mattick A T. Ultrahigh Speed Photography of Picosecond Light Pulses andEchoes. Appl Opt,1971,10:2162-2170.
    [141] Fujimoto J G, De Silvestri S, Ippen E P, et al. Femtosecond optical ranging in biologicalsystems. Opt Lett,1986,11:150-152.
    [142] Youngquist R, Carr S, and Davies D, Optical coherence-domain reflectometry: a new opticalevaluation technique. Opt Lett,1987,12:158-160.
    [143] Fercher A F, Mengedoht K, and Werner W. Eye-length measurement by interferometry withpartially coherent light. Opt Lett,1988,13:186-188.
    [144] Michelson A, and Morley E. On the Relative Motion of the Earth and the Luminiferous Ether.Am J Sci,1887,34:333-345.
    [145]赵凯华,钟锡华.光学,北京:北京大学出版社,2008.
    [146] Wiener N. Generalized harmonic analysis, Acta Math,1930,55:117-258.
    [147] Pennisi E. Sequence Tells Mouse, Human Genome Secrets, Science,2002,298:1863-1865.
    [148] Chinwalla A T, Cook L L, Delehaunty K D, et al. Initial sequencing and comparative analysis ofthe mouse genome. Nature,2002,420:520-562.
    [149]郭萌译自《国际实验动物科学协会(ICLAS)概况》,小鼠基因组草图完成.中国实验动物学报,2003,11.
    [150] Wang H B, and Dey S K. Roadmap to embryo implantation: clues from mouse models. NatRev Genet,2006,7:185-199.
    [151]傅剑华.小鼠早期胚胎发育过程量化表达方法研究:[清华大学硕士论文].北京:清华大学物理系,2007.
    [152] Tian N, Zhang L, Lv D Y, et al. Effects of maternal aging on localizations and expressionlevels of DNA methyltransferases and chromosome architecture in in-vivo matured mouseoocytes. Chin Sci Bull,2012, Accepted.
    [153]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000.
    [154]张红卫,王子仁,张士璀.发育生物学.北京:高等教育出版社,2001.
    [155] Bouniol-Baly C, Nguyen E, Besombes D, et al. Dynamic organization of DNA replication inone-cell mouse embryos: relationship to transcriptional activation. Exp Cell Res,1997,236:201-211.
    [156] Cohen Y, Malcov M, Schwartz T. Spindle imaging: a new marker for optimal timing of ICSI?.Hum Reprod,2004,19:649-654.
    [157] Keefe D, Liu L, Wang W, et al. Imaging meiotic spindles by polarization light microscopy:principles and applications to IVF. Reprod Biomed Online,2003,7:24-29.
    [158] Mantikou E, Wong K M, Repping S, et al. Molecular origin of mitotic aneuploidies inpreimplantation embryos. Biochim Biophys Acta,2012,18221921-1930.
    [159] Eichenlaub-Ritter U, Shen Y, and Tinneberg H R. Manipulation of the oocyte: possibledamage to the spindle apparatus. Reprod Biomed Online,2002,5:117-124.
    [160] Borini A, Lagalla C, Cattoli M, et al. Predictive factors for embryo implantation potential.Reprod Biomed Online,2005,10:653-668.
    [161] Petersen C G, Oliveira J B, Mauri A L, et al. Relationship between visualization of meioticspindle in human oocytes and ICSI outcomes: a meta-analysis. Reprod Biomed Online,2009,18:235-243.
    [162] Gu Y F, Lin G, Lu C F, et al. Analysis of the first mitotic spindles in human in vitro fertilizedtripronuclear zygotes after pronuclear removal. Reprod Biomed Online,2009,19:745-754.
    [163] Oldenbourg R. Polarized light microscopy of spindles. Method Cell Biol,1999,61:175-208.
    [164]朱亮.卵母细胞纺锤体观察及在辅助生殖领域应用与展望.国外医学计划生育分册,2003,22:194-197.
    [165] Liu L, Oldenbourg R, Trimarchi J R, et al. A reliable, noninvasive technique for spindleimaging and enucleation of mammalian oocytes. Nat Biotechnol,2000,18:223-225.
    [166] Liu L, Trimarchi J R, Oldenbourg R, et al. Increased Birefringence in the Meiotic SpindleProvides a New Marker for the Onset of Activation in Living Oocytes. Biol Reprod,2000,63:251–258.
    [167] Wang W H, Meng L, Hackett R J, et al. Developmental ability of human oocytes with orwithout birefringent spindles imaged by Polscope before insemination. Hum Reprod,2001,16:1464-1468.
    [168] Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location withregard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod,2003,18:1289-1293.
    [169] Cooke S, Tyler J P P, and Driscoll G L. Meiotic spindle location and identification and itseffect on embryonic cleavage plane and early development. Hum Reprod,2003,18:2397-2405.
    [170] Zheng J G, Huo T C, Tian N, et al. Noninvasive three-dimensional live imaging methodologyfor the spindles at meiosis and mitosis. J Biomed Opt,2013,18:050505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700