用户名: 密码: 验证码:
弹性和塑性V形切口应力奇异性分析与界面强度的扩展边界元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在调查和总结现有的分析线弹性和塑性v形切口/裂纹尖端附近区域的应力奇异性方法和断裂强度分析的基础上,研究了使用插值矩阵法分析线弹性、塑性v形应力奇异性和边界元法分析V形切口/裂纹结构的力学场问题。创立了一个新的分析途径—扩展边界元法(the extended boundary element method—XBEM),研制了相应的计算程序,有效和准确地求解了线弹性、塑性V形切口/裂纹应力奇异性指数和尖端附近区域的奇异应力场。全文主要研究工作及创新点如下:
     1提出插值矩阵法分析固体结构切口尖端区域热流密度奇异性。基于在切口尖端附近区域温度场的渐近展开表达式,提出了计算切口/裂纹尖端处热流密度奇异性特征指数的新方法。将温度场的表达式引入稳态热传导微分方程,得到关于各向同性材料切口/裂纹奇异点处的一组非线性常微分方程的特征值问题,再采用变量代换法,将该非线性常微分方程组转化为一组线性常微分方程组。运用插值矩阵法求解,获得各向同性材料切口/裂纹尖端处多阶的热流密度奇异指数,同时获得其相应的特征角函数。
     2提出插值矩阵法分析复合材料结构切口尖端区域应力奇异性。基于复合材料切口尖端位移场的渐近展开,将切口的反平面平衡控制方程转化为关于切口奇性指数的微分方程特征值问题,采用插值矩阵法计算该方程组的特征值,获取了切口尖端的应力奇性指数。研究了单相材料切口、双相材料切口以及止于异质界面切口的奇异性问题,算例表明本文方法可以一次性计算出多阶奇异性指数。对所取得的非奇异指数尽管切口不表现出奇性状态,但它们却是描述切口尖端完整应力场必不可少的参量。
     3提出插值矩阵法分析三维柱向切口/裂纹尖端区域应力奇异性难题。在三维柱向切口根部区域引用位移渐近展开式,代入线弹性力学控制方程,导得切口/裂纹应力奇性指数的常微分方程组特征值问题。然后采用插值矩阵法,一次性地计算出三维柱向切口的各阶应力奇性指数,并可同时获取相应的特征角函数。算例结果表明本文方法是分析三维切口应力奇异指数的一个有效的路径,三维切口的前若干阶应力奇性指数解收敛于平面应变切口应力奇性指数理论值,但若直接用平面应变理论预测三维切口应力奇性指数将导致部分奇性指数缺失。本文方法的一个重要优点是以上求解的特征角函数和它们各阶导函数具有同阶精度,并且一次性地求出前若干阶特征对,插值矩阵法计算量小,易于和其他方法联合使用。这些优点在后续求解尖端区域完全应力场和温度梯度场非常优越。
     4创立了扩展边界元法,用于分析线弹性平面V形切口/裂纹结构的位移场、应力场和裂纹扩展过程。对切口/裂纹尖端区域采用Williams渐近展开式表达,将其代入弹性力学基本方程中,尖端区域的应力奇异性指数及其对应的位移和应力角函数由插值矩阵法求解常微分方程组获得。由于在远离切口尖端的区域无应力奇异性,将尖端区域挖出后,其外围的剩余结构应力场无奇异性,由常规的边界元法分析。将尖端区域Williams渐近展开的特征分析法与边界积分方程结合,解出切口尖端附近应力奇异性区域的各应力场渐近展开项系数,获得平面切口/裂纹结构完整的位移和应力场,从而建立了扩展边界元法。①采用扩展边界元法研究了非奇异应力项对中央含V形切口试样的表观断裂韧度和临界荷载预测值的影响。结果表明:考虑非奇异应力项时,脆性断裂的表观断裂韧度和临界荷载的预测值要比忽略非奇异应力项时的预测值更接近实验值。②基于考虑非奇异应力项贡献的最大周向应力脆性断裂准则,运用扩展边界元法分析了边缘含V形切口/裂纹半圆形弯曲试样在荷载作用下的启裂方向,对切口/裂纹扩展过程给出了自动跟踪方法,通过算例证明了扩展边界元法的正确性和有效性。
     5提出了分析幂硬化塑性材料V形切口和裂纹尖端区域的应力奇异性一个新途径。首先在切口和裂纹区域采用自尖端径向度量的渐近位移场假设,将其代入塑性全量理论的基本微分方程后,经过一系列推导,得出包含应力奇异指数和特征函数的非线性常微分方程特征值问题。然后采用插值矩阵法迭代求解导出的控制方程,一次性得到一般性塑性材料V形切口和裂纹的前若干阶应力奇异阶和相应的特征函数,本文获得的前3阶应力奇异指数有3~5位有效数字,并且同一阶的特征函数和其导函数的计算精度与对应的奇异指数计算精度同阶。目前关于平面塑性V形切口他人文献中鲜见有第2阶以上的可靠解。
     6创立了扩展边界元法分析V形切口/裂纹尖端局部弹塑性奇异应力场。将含V形切口结构分成围绕切口尖端的塑性局部区域和外围的剩余结构两部分。基于切口尖端区域特征分析求出的多重塑性应力奇性指数和相应的位移、应力特征角函数,将尖端区域塑性变形的位移和应力表示成有限项奇性指数和特征角函数的线性组合,然后在挖去小区域后的剩余结构考虑为线弹性变形,由边界积分方程离散求解。两部分计算列式联立,由此精细地计算出V形切口尖端区域的塑性位移场、多重奇异应力场和应力强度因子。本文的扩展边界元法解符合切口尖端局部塑性奇异应力场的解析规律,为弹塑性V形切口/裂纹的疲劳和断裂扩展分析提供了一个有效新途径。
Based on the review of the analytic methods for the singularity orders of V-notches and interfacial strength of V-notched structures, the singularity analysis for the elastic and plastic V-notches by the interpolating matrix method and the mechanical field analysis at the V-notch tip of V-notched/cracked structures by the boundary element method are proposed in this thesis. A new approach named the extended boundary element method (XBEM) is established in order to effectively solve elastic or plastic singular stress fields in V-notch/crack tip region. The corresponding calculation program for the XBEM is developed. The main work and contribution of this thesis are given as follows:
     1A new way of analyzing the heat flux singularity of the V-notched structures is proposed by the use of the interpolating matrix method. Based on the asymptotic expression of the temperature field near the notch tip, a characteristic analysis method for calculating the singularity orders of heat flux density at the V-notch/crack tip is proposed. After introducing the expression of temperature field into the differential equation of the steady-state heat conduction problem, the governing equations are transformed into a set of non-linear characteristic ordinary differential equations with the singularity orders. By adopting the variable substitution technique, the established non-linear characteristic equations are transformed into a set of linear ones. Then the interpolating matrix method is adopted to solve the established equations so that the leading heat flux singularity orders and the associated angular functions are obtained.
     2The interpolating matrix method is proposed to analyze the stress singularity at the tip of composite V-notch. Based on the asymptotic extension of the displacement field at the composite notch tip, the governing equations for the notch subjected to the anti-plane loading are transformed into the characteristic differential equations with the notch singularity orders. A transformation is applied to converting these equations into a set of linear characteristic ordinary different equations. Then the interpolating matrix method is used to solve the established equations for obtaining the notch singularity orders. The single material notch, bi-material notch and the notch terminated at the bi-material interface are successively studied by the present method. The examples indicate that the present method can provide all the leading stress singularity orders synchronously. Although the eigenpairs corresponding to the non-singular orders in the asymptotic extension do not yield the singular stress components for the notched structures, they are the indispensable extension terms for evaluating the complete stress field in the notch tip region.
     3The difficulty of the analysis of stress singularity at three-dimensional (3-D) V-notch notch tip is tackled by the interpolating matrix method. After the expression of displacement asymptotic expansion in the notched root zone of3-D structures with column notch is introduced into the linear elasticity governing equation, the eigenvalue problem of ordinary differential equations with the stress singularity orders for3-D V-notch root zone are established by a series of deduction. Then by applying the interpolating matrix method to solve the established equations, all the leading stress singularity orders and the associated displacement/stress angular eigenfunctions can be achieved simultaneously. The numerical results show that some of the singularity orders at the3-D notch problem are converging to the theoretic solutions of the plane strain V-notch problem. However, the number of the singularity orders for3-D V-notch is more than one of2-D plane strain V-notch. If the plane strain theory is used to predict the stress singularity orders of3-D V-notch, some important terms in the asymptotic expansion will be lost. One of the important advantages of the present method is that the computed results of the angular eigenfunctions and their derivative functions corresponding to each asymptotic expansion term have the same order of accuracy. Another advantage is that all the useful eigenpairs in the asymptotic expansion can be yielded at the same time. Moreover the interpolating matrix method takes a small amount of computation to solve the eigenvalue problems and is easily used. These advantages are very beneficial to solve the stress field and temperature gradient in V-notches and cracks tip region subsequently.
     4A new numerical method named the extended boundary element method (XBEM) is established in the present thesis, which is used to analyze the displacement and stress field in the linear elastic plane notched/cracked structures and simulate the crack propagation beginning from the notch/crack tip. First of all, the displacement and stress fields in the characteristic radius region from a notch tip are expressed by the Williams asymptotic expansions. After the series expansion is substituted into the governing equation in elasticity, the stress singularity order and the associated angular functions can be obtained by solving the characteristic differential equations. Because there is no stress singularity in the remained region after the V-notch tip region is dug out, the conventional boundary element method (CBEM) can be used to analyze it. Hence all the leading unknown coefficients in the Williams series expansion and the complete stress field for the notched structures can be calculated by applying CBEM and combining with the results of the former eigenanalysis for the notch tip region. Here this is called eXtended Boundary Element Method (XBEM). The singular stress terms together with the non-singular stress terms in the tip region can be conveniently obtained. Then the effect of the non-singular stress on the fracture toughness and the critical loading for the centrally sharp V-notched specimen problem are discussed in detail. The numerical results show that the predicted critical loading and fracture toughness of V-notched structures when the non-singular stress is taken into consideration are more accurate than the predicted ones only considering the singular stress by comparing with the experimental results. Based on the consideration of the contribution of non-singular stress term and the maximum circumferential stress criterion of brittle fracture, the crack initiation extended direction from V-shaped notch/crack tip in a semicircular bending specimen can be determined by the XBEM. The strategy for XBEM tracking the crack propagation process is given. The numerical examples show that the XBEM is correct and effective for simulating the propagation process on plane crack.
     5A new approach of analyzing the stress singularity of the plane V-notches and cracks in power law hardening materials is proposed. Firstly, the asymptotic displacement field in terms of radial coordinates in the notch tip region is adopted. As soon as the notch tip region appears the plastic deformation, the Von Mises yield criterion and total strain plastic theory are adopted. By introducing the displacement expressions into the governing differential equations of the plastic theory, a set of the eigenvalue problem of nonlinear ordinary differential equations with the stress singularity orders and the associated eigenfunctions are proposed after a series of derivation. Then the interpolating matrix method is used to solve the eigenvalue problem by an iteration process. Several leading plastic stress singularity orders of plane V-notches and cracks can be obtained at a time. Simultaneously, the associated displacement and stress eigenvectors in the notch tip region have been determined as the same degree of accuracy with the corresponding singularity order. There are three to five significant figures in the computed values of the first three stress singularity orders obtained by the interpolating matrix method. Few of the published literatures gave out the effective and creditable second stress singularity order for the plane plastic V-notch.
     6The extended boundary element method (XBEM) is proposed to determinate the singular stress field of the V-notched structures with local plastic deformation near notch tip region. Firstly, the elastic-plastic V-notched structure is divided into two parts, a small region around the V-notch tip and the remaining structure without the small region. Consider that the small region around the V-notch tip yields the plastic deformation due to the stress concentration. Secondly, based on the computed results of the multiple plastic stress singularity orders and the associated eigenfunctions in the singularity analysis for the small region, the displacement and stress components in the small region are expressed as the linear combinations of the finite terms of the series expansion with the leading singularity orders. The remaining structure is considered as linear elastic region, where the discrete boundary integral equations (BIE) can be established along the boundary of the remaining structures, included the connection border with the small region. Then the results of the eigen analysis for the stress singularity in the notch tip region are combined together with the discrete BIE, which is called XBEM. The XBEM can determine the elastic-plastic displacement and stress fields of the V-notched structures and the multiple plastic stress intensity factors at the notch tip.The stress solutions obtained by the XBEM is in agreement with analytical characteristics of local plastic singular stress field at the notch tip. Hence the XBEM provides an effective new way to investigate the fatigue fracture and crack propagation process of elastic-plastic V-notched and cracked structures.
引文
[1]许金泉.界面力学[M].北京:科学出版社,2006.
    [2]庄茁,王向东,张朝晖等.力学在飞机结构设计中的应用与发展[J].工程力学,2007,24(增Ⅱ):1-7.
    [3]李舜酩.机械疲劳与可靠性设计[M].科学出版社,2006.
    [4]Tvergaard Viggo. Theoretical investigation of the effect of plasticity on crack growth along a functionally graded region between dissimilar elastic-plastic solids [J]. Engineering Fracture Mechanics,2002,69:1635-45.
    [5]郑云,叶列平,岳清瑞.FRP加固钢结构的研究进展[J].工业建筑,2005,35(8):20-25.
    [6]岳清瑞,杨勇新.复合材料在建筑加固修复中的应用[M].北京:化学工业出版社,2006
    [7]Henshel RD, Shaw KG. Crack tip finite elements are unnecessary [J]. Int J Numer Methods Eng, 1976,9:495-507.
    [8]Wells AA. Application of fracture mechanics at and beyond general yielding [J]. British Welding Journal,1963,10(11):563-570.
    [9]黄克智.弹塑性断裂力学的一个重要进展[J].力学与实践,1993,15(1):1-7.
    [10]Hutchinson J W. Singular behavior at the end of a tensile crack in hardening materials [J]. J Mech Phys Solids,1968,16:13-31.
    [11]Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks [J]. Journal of Applied Mechanics,1968,35:379-386.
    [12]Rice JR. Rosengren G F. Plane strain deformation near crack tip in a power law hardening materials [J]. J Mech Phys Solids,1968,16:1-12.
    [13]张俊彦,张淳源.裂纹扩展条件及其温度场研究[J].湘潭大学自然科学学报,1996,1:102-105.
    [14]Sladek J, Sladek V. Evaluations of the T-stress for interface cracks by the boundary element method [J]. Eng Fract Mech,1997,56:813-825.
    [15]Fett T, Rizzi G. T-stress of cracks loaded by near-tip tractions [J]. Eng Fract Mech,2006, 73:1940-1946.
    [16]Smith DJ, Ayatollahi M R, Pavier M J. The role of T-stress in brittle fracture for linear elastic materials under mixedmode loading [J]. Fatigue Fract Eng Mater Struct,2001,24:137-150.
    [17]Song C. Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners [J]. Eng Fract Mech,2005, 72:1498-1530.
    [18]Tvergaard V. Effect of T-stress on crack growth under mixed mode I-III loading [J]. Int J Solids Struct,2008,45:5181-5188.
    [19]Ayatollahi MR, Berto F, Lazzarin P. Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite [J]. Carbon,2011,49:2465-2474.
    [20]Ayatollahi MR, Nejati M, An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis [J]. Fatigue Fract EngMater Struct, 2011,34:159-176.
    [21]Ayatollahi MR, Dehghany M, Nejati M. Fracture analysis of V-notched components-effect of first non-singular stress term [J]. Int J Solids Struct,2011,48:1579-1589.
    [22]Ayatollahi MR, Aliha MRM, Hassani MM. Mixed mode brittle fracture in PMMA-An experimental study using SCB specimens [J]. Materials Science and Engineering:A,2006, 417(1):348-356.
    [23]周绍青,郭少华,李显方.T应力对岩石断裂韧度及扩展路径的影响[J]中南大学学报(自然科学版),2009,40(3):798-802.
    [24]Williams JG, Ewing P D. Fracture under complex stress-the angled crack problem [J]. International Journal of Fracture,1984,26(4):346-351.
    [25]Ueda Y, Ikeda K, Yao T. Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads [J]. Engineering Fracture Mechanics,1983, 18(6):1131-1158.
    [26]Larrsson SG, Carlsson AJ. Influence of non-singular term and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials [J]. Journal of Mechanics and Physics and Solids,1973,21(4):263-277.
    [27]Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity [J]. Journal of Mechanics and Physics and Solids,1974,22(1):17-26.
    [28]Ayatollahi MR, Aliha MRM. Fracture toughness study a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading [J]. Rock Mechanics and Mining Sciences,2007,44:617-624.
    [29]Cotterell B, Rice JR. Slightly curved or kinked cracks [J]. Int J Fract,1980,16(2):159-169.
    [30]Jie Tong. T-stress and its implications for crack growth [J]. Engineering Fracture Mechanics, 2002,69(12):1325-1337.
    [31]Ayatollahi MR, Aliha MRM. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading [J]. Computational Materials Science,2007, 38(4):660-670.
    [32]Selvarathinam AS, Goree JG. T-stress based fracture model for cracks in isotropic materials [J]. Engineering Fracture Mechanics,1998,60(5/6):543-561.
    [33]Moon HJ, Earmme YY. Calculation of elastic T-stress near inter face crack tip under in-plane and anti-plane loading [J]. International Journal of Fracture,1998,91(2):179-195.
    [34]Chen YZ. Closed form solutions of T-stress in plane elasticity crack problems [J]. International Journal of So lids and Structures,2000,37(11):1629-1637.
    [35]Shin DK, Lee JJ. Numerical analysis of dynamic T-stress of moving interfacial crack [J]. International Journal of Fracture,2003,119(3):223-245.
    [36]Shephard MS, Yehlan AB. Computational strategies for nonlinear and fracture mechanics problem [J]. Computer and Structure,1985,20:211-223.
    [37]Bittencourt TN, Wawrzynek PA. Quasi automatic simulation of crack propagation for 2D LEFM problem [J]. Engineering Mechanics.1996,55(2):321-333.
    [38]Klein P,Gao H. Crack nucleation and growth as strain localization in a virtual-bond continuum [J]. Engineering Fracture Mechanics.1998,61:21-48.
    [39]Kaiser PK, Tang CA. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure [J]. Int J Rock Mech Sci.1998,35(2):113-134.
    [40]Yao Zhenhan, Chen Yongqiang, Zheng Xiaoping. Numerical simulation of failure process in 3D Heterogeneous Brittle Material [J]. ICTAM 2000,Chicago,US, August 27-Stp.2,2000
    [41]陈永强,郑小平,姚振汉.三维非均匀材料破坏过程的数值模拟[J].力学学报,2002,34(3):351-361.
    [42]岑章志,秦飞,杜庆华.考虑摩擦作用闭合裂纹应力强度因子计算的边界元分区算法[J]. 固体力学学报,1989,10(1)1-11.
    [43]秦飞,岑章志,杜庆华.确定裂纹体等效弹性模量的边界元方法[J].固体力学学报,1996,17(3):207-213.
    [44]Zhang CH, Gross D. A non-hypersingular time-domain BIEM for 3-D transient elastodynamic crack analysis [J]. Int J Numer Methods Eng,1993,36:2997-3017.
    [45]朱伯靖,秦太验.磁电热弹耦合材料三维多裂纹超奇异积分法[J].力学学报,2008,40(1):46-55.
    [46]Chen JT, Wong FC. Analytical derivations for one-dimensional eigenproblems using dual boundary element method and multiple reciprocity method [J]. Engineering Analysis with Boundary Elements,1997,20(1):25-33.
    [47]Portela A, Aliabadi MH, Rooke DP. The dual boundary element method:effective implementation for crack problems [J]. Int J Number Mech Eng,1992,33:1269-1287.
    [48]Benedetti I, Aliabadi MH. A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems [J]. Int. J. Numer. Meth. Engng,2010,84: 1038-1067.
    [49]Wang PB, Yao ZH. Fast multipole DBEM analysis of fatigue crack growth [J]. Comput Mech, 2006,38(3):223-234.
    [50]Ingraffea AR, Blandford G, Liggett JA. Automatic Modeling of Mixed-mode Fatigue and Quasi-static Crack Propagation Using the Boundary Element Method [J]. In:14th Natl Symp on Fracture, ASTM STP791,1983, pp.1407-1426.
    [51]Blandford GE, Ingraffea AR, Liggett J A.Two-dimensional stress intensity factor computations using the boundary element method [J]. Int J Num Methods Eng,1981,17:387-404.
    [52]Grestle WH. Finite and boundary element modeling of crack propagation in two and three-dimensions using interactive computer graphics. [Ph D Thesis]. New York:Cornell Univ, 1986.
    [53]Doblare M, Espiga F, Garcia L, et al. Study of crack propagation in orthotropic materials by using the boundary element method [J]. Eng Fract Mech,1990,37:953-967.
    [54]Aliabadi MH. Boundary element formulation in fracture mechanics [J]. Applied Mechanics Review,1997,50:83-96.
    [55]Portela A, Aliabadi MH, Rooke DP. Dual boundary element incremental analysis of crack propagation [J]. Int J Comput Struct,1993,46:237-247.
    [56]Mi Y, Aliabadi MH. Three-dimensional crack growth simulating using BEM [J]. Int J Comput Struct,1994,52:871-878.
    [57]Mi Y, Aliabadi MH. Automatic procedure for mixed-mode crack growth analysis [J]. Commun Numer Methods Eng,1995,11:167-177.
    [58]Yan XQ. Multiple crack fatigue growth modeling by displacement discontinuity method with crack-tip elements [J]. Applied Mathematical Modelling,2006,30:489-508.
    [59]Yan XQ. Automated simulation of fatigue crack propagation for two-dimensional linear elastic fracture mechanics problems by boundary element method [J]. Engineering Fracture Mechanics,2007,74:2225-2246.
    [60]秦飞,岑章志,杜庆华.多裂纹扩展分析的边界单元法[J].固体力学学报,2002,23(4):431-438.
    [61]Wunsche M, Zhang Ch, et al. A hypersingular time-domain BEM for 2D dynamic crack analysis in anisotropic solids [J]. Int J Numer Methods Engng,2009; 78:127-150.
    [62]Weber W, Kolk K, Kuhn G. Acceleration of 3D crack propagation simulation by the utilization of fast BEM-techniques [J].Engineering Analysis with Boundary Elements,2009,33: 1005-1015.
    [63]Freddi F, Savoia M. Analysis of FRP-concrete debonding via boundary integral equations [J]. Engineering Fracture Mechanics,2008,75:1666-1683.
    [64]Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FT. A general algorithm for the numerical solution of hypersingular BEM [J]. J of Appl Mech,1992,59(3):604-614.
    [65]闫相桥,刘宝良,胡照会,巴西圆盘试样中心斜裂纹疲劳扩展轨迹的边界元模拟[J].力学学报,2010,42(6):123 1-1236.
    [66]Cen Z, Maier G. Bifurcations and instabilities in fracture of cohesive-softening structures:a boundary element analysis [J]. Fatigue Fact Engng Mater Struct,1992,15:911-928.
    [67]Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. Int J Numer Methods Engng,1999,45:601-620.
    [68]李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20.
    [69]Krysl P, Belytschko T, Dynamic propagation of arbitrary 3D cracks [J]. Int J Numer Methods Engrg,1999,44(6):767-800.
    [70]Moes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets, part Ⅰ:mechanical model [J]. Int J Numer Methods Engng,2002,53: 2549-2568.
    [71]Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth andlife predictions [J]. Engineering Fracture Mechanics,2010,77:2840-2863.
    [72]闫晓中,王生楠,苏毅.整体壁板三维裂纹应力强度因子计算与分析[J].航空工程进展,2011,2(2):205-209.
    [73]Bordas S, Nguyen PV, Dunant C, et al. An extended finite element library [J]. International Journal for Numerical Methods in Engineering,2007,71(6):703-732.
    [74]Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements [J]. International Journal for Numerical Methods in Engineering,2001,50(12):2667-2682.
    [75]杜效鹄,段云岭,王光纶.混凝土断裂的连续-非连续方法[J].固体力学学报,2005,26(4):405-413.
    [76]金峰,方修君.扩展有限元法及其它数值方法的联系[J].工程力学,2008,25(增1):1-17.
    [77]袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学,2002,19(1):25-28.
    [78]朱旭程,侯志强.一种裂纹扩展的递推分析方法及其Matlab实现[J].计算力学学报,2009,26(1):146-150.
    [79]Williams ML. Stress singularities resulting from various boundary conditions in angular corners of plates in extension [J]. Journal of Applied Mechanics,1952,19(4):526-528.
    [80]England AH. On stress singularities in linear elasticity [J]. International Journal of Engineering Science,1971,9:571-585.
    [81]Fan Zhong, Long Yuqiu. Sub-region mixed finite element analysis of V-notched plates [J]. International Journal of Fracture,1992,56:333-344.
    [82]傅向荣,龙驭球.解析试函数法分析平面切口问题[J].工程力学,2003,20(4):33-38.
    [83]徐永君,袁驷,柳春图.二维切口问题完备特征解的研究现状与进展[J].力学进展,2000,30(2):216-226.
    [84]牛忠荣,葛大丽,程长征,叶建乔.插值矩阵法分析双材料平面V形切口奇异阶.计算力学学报,2009,26(6):893-899
    [85]牛忠荣.多点边值问题的插值矩阵法及其误差分析[J].计算物理,1993,10(3):336-344.
    [86]Yao XF, Ye HY, Xu W. Fracture investigation at V-notch tip using coherent gradient sensing (CGS) [J]. International Journal of Solids Structures,2006,43:1189-1200.
    [87]亢一澜.界面力学若干问题的实验研究[J].力学与实践,1999,21(3):9-15.
    [88]Williams ML. Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending [J]. Appl Mech,1961,28:325-328
    [89]Sih GC, PC Paris, F Erdogan. Crack tip stress intensity factors for plane extension and plate bending problems [J]. Appl Mech,1962,29:306-312.
    [90]Knowles JK and NM Wang. On the bending of an elastic plate containing a crack [J]. Math and Phy,1960,39:223-236.
    [91]柳春图.承受弯曲的板在裂纹顶端附近的应力和变形[J].固体力学学报,1983,3:441-447.
    [92]Delale F, Erdogan, F. The effect of transverse shear in a crack plate under skew-symmetric loading [J]. Journal of Applied Mechanics,1979,46:618-624.
    [93]Murthy MVV, Raju KN, Viswanath S. On the bending stress distribution at the tip of a stationary crack from Reissner's theory [J]. International Journal of Fracture,1981,17: 537-552.
    [94]Boduroglu H, Erdogan F. Internal and edge cracks in a plate of finite width under bending [J]. Journal of Applied Mechanics,1983,50:621-629.
    [95]Sosa HA, Eischen JW. Computation of stress intensity factors for plate bending via a path-independent integral [J]. Engineering Fracture Mechanics,1986,25:451-462.
    [96]Hui, CY, Zehnder AT. A theory for fracture of thin plates subjected to bending and twisting moments [J]. International Journal of Fracture,1993,61:211-229.
    [97]Young ML, Sun CT. Cracked plates subjected to out-of-plane tearing loads [J]. International Journal of Fracture,1993,60:1-18.
    [98]Su RKL, Leung AYT. Mixed mode crack in Reissner plates [J]. International Journal of Fracture,2001,107:235-257.
    [99]Sih GC, Rice JR. The bending of plates of dissimilar media [J]. Journal of Applied Mechanics, 1964,31:477-482.
    [100]Sih GC. Flexural problems of cracks in mixed media [J]. In:Proceedings of the First International Conference on Fracture,1962,1:391-409.
    [101]杨丽敏,柳春图,曾晓辉.计算Reissner理论各向异性板应力强度因子的半权函数法[J].机械强度,2006,28(1):113-117.
    [102]Ang DD, Williams ML. Combined stresses in a orthotropic plate having a finite crack [J]. ASME Journal of Applied Mechanics,1961,28:372-378.
    [103]Sih GC, Chen EP. Cracks in composite materials [M]. In:Mechanics of Fracture, Martinus Nijhoff Publishers, The Hague.1981. Vol.6.
    [104]Yuan FG, Yang S. Asymptotic crack-tip fields in an anisotropic plate subjected to bending, twisting moments and transverse shear loads [J]. Composites Science and Technology,2000, 60:2489-2502.
    [105]Li Jia. Singularity analysis of near-tip fields for notches formed from several anisotropic plates under bending [J]. International Journal of Solids and Structures,2002,39:5767-5785.
    [106]李俊林,王小丽.正交异性双材料反平面界面端应力场分析[J].应用数学和力学,2009,30(9):1078-1084.
    [107]Shahani AR. Analysis of an anisotropic finite wedge under antiplane deformation [J]. Journal of Elasticity,1999,56:17-32.
    [108]Lin RL, Ma CC. Theoretical full-field analysis of dissimilar isotropic composite annular wedges under anti-plane deformations [J]. International Journal of Solids and Structures,2004, 41:6041-6080.
    [109]Chen CH, Wang CL, Ke CC.Analysis of composite finite wedges under anti-plane shear [J]. International Journal of Mechanical Sciences,2009,51:583-597.
    [110]Pageau SS, Joseph P, Biggers SB. A finite element analysis of the singular stress fields in anisotropic materials loaded in antiplane shear [J]. International Journal for Numerical Methods in Engineering,1995,38:81-97.
    [111]平学成,陈梦成,谢基龙.复合材料尖劈和接头端部奇性场的反平面问题研究[J].固体力学学报,2005,26(2):193-198.
    [112]钱俊,龙驭球.分区混合有限元法计算反平面复合材料切口应力强度因子[J].计算结构力学及其应用,1991,8(3):325-330.
    [113]戴耀,张磊,张鹏,等.非均匀材料反平面裂纹问题的特征函数.中国科学:物理学力学天文学,2012,42:852-860.
    [114]徐永君,袁驷.多材料反平面断裂问题特征值的超逆幂迭代求解[J].固体力学学报,1997,18(4):290-294.
    [115]Koguchi H. Stress singularity analysis in three-dimensional bonded structure [J]. International Journal of Solids and Structures,1997,34:461-480.
    [116]Koguchi H, Muramoto T. The order of stress singularity near the vertex in three-dimensional joints [J]. International Journal of Solids and Structures,2000,37:4737-4762.
    [117]Lee Y, Im S. On the computation of the near-tip stress intensities for three-dimensional wedges via two-state M-integral [J]. Journal of the Mechanics and Physics of Solids,2003,51: 825-850.
    [118]Huang CS, Leissa AW. Stress singularities in bimaterial bodies of revolution [J]. Composite Structures,2008,82:488-498.
    [119]Labossiere PEW, Dunn ML. Fracture initiation at three-dimensional bimaterial interface corners [J]. Journal of the Mechanics and Physics of Solids,2001,49:609-634.
    [120]Yosibash Z. Computing edge singularities in elastic anisotropic three-dimensional domains [J]. International Journal of Fracture,1997,86:221-245.
    [121]Omer N, Yosibash Z. Edge singularities in 3-D elastic anisotropic and multi-material domains [J]. Computer Methods in Applied Mechanics and Engineering,2008,197:959-978.
    [122]Xu JQ, Mutoh Y. Development of FEM program for stress singularity analysis and database of three dimensional interfacial corner singularities[J].Trans JSME,2001,67 (2):1609-1615.
    [123]钱俊,龙驭球.三维切口尖端应力应变场[J].应用数学和力学,1994,15(3):199-208.
    [124]Chen MC, Sze KY. A novel hybrid finite element analysis of bimaterial wedge problems [J]. Engineering Fracture Mechanics,2001,68:1463-1476.
    [125]陈梦成,平学成,姜羡.夹杂角端部奇异应力场分析[J].应用力学学报,2009,26(4):651-656.
    [126]吴志学.影响双材料界面端三维应力奇异性的几何因素研究[J].计算力学学报,2007,24(4):494-498.
    [127]Sharma SM, Aravas N. Plane stress elastoplastic solutions of interface cracks with contact zones [J]. Mechanics of materials,1991,12(2):147-163.
    [128]Wang TC. Elastic-plastic asymptotic fields for cracks on bimaterial interfaces [J]. Engineering Fracture Mechanics,1990,37:527-538.
    [129]Yang S, Chao YJ. Asymptotic deformation and stress fields at the tip of a sharp notch in as elastic-plastic material [J]. International Journal Fracture,1992,54:211-224.
    [130]Kuang ZB, Xu XP. Analysis of elastoplastic sharp notches [J]. International Journal of Fracture,1987,1:39-53.
    [131]李有堂,剡昌峰,郑克宇.V型切口尖端的弹塑性应力奇异性问题[J].甘肃工业大学学报,2002,28(3):125-128.
    [132]傅列东,许金泉.界面端弹塑性应力奇异性的迭代计算方法[J].浙江大学学报,2001,35(6):689-694.
    [133]傅列东,许金泉,郭乙木.不同硬化指数的幂次硬化结合材料的界面端奇异性分析[J].力学季刊,2000,21(4):503-507.
    [134]Shih CF, Asaro RJ. Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces. Part 1. Small Scale Yielding [J]. ASME Journal of Applied Mechanics,1988,55:299-315.
    [135]Xia Yuanming, Rao Shiguo, Yang Baochang. A novel method for measuring plane stress dynamic fracture toughness [J]. Engineering Fracture Mechanics,1994,48(1):17-24.
    [136]饶世国,夏源明.双边切口薄板小试件动态弹塑性有限元分析[J].力学学报,1995,27(2):232-238.
    [137]Sharma SM and Aravas N. Determination of higher-order terms in asymptotic elastoplastic crack tip solutions [J]. J Mech Phys Solids,1991,39:1043-1072.
    [138]Yang S, Chao YJ, Sutton Ma. Higher order asymptotic crack tip fields in a power-law hardening materials [J]. Engng Fract Mech,1993,45:1-20.
    [139]Xia L, Wang TC, Shih CF. Higher-order analysis of crack tip fields in elastic power-law hardening materials [J]. J Mech Phys Solids,1993,41:665-687.
    [140]Duva JM. The singularity at the apex of a rigid wedge embedded in a nonlinear material [J]. Journal of Applied Mechanics,1988,55(2):361-364.
    [141]Reedy E D. Free-edge stress intensity factor for a bonded ductile layer subjected to shear[J]. Journal of Aapplied Mechanics,1993,60(3):715-720.
    [142]Xia L, Wang T. Singular behaviour near the tip of a sharp V-notch in a power law hardening material [J]. International Journal of Fracture,1993,59(1):83-93.
    [143]Gao Y, Lou Z. Mixed mode interface crack in a pure power-hardening biomaterial [J]. International Journal of Fracture,1990,43(4):241-256.
    [144]Champion CR, Atkinson C. A crack at the interface between two power-law materials under plane strain loading [J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1991,32(4):547-553.
    [145]Sharma SM, Aravas N. On the development of variable-separable asymptotic elastoplastic solutions for interfacial cracks [J]. International Journal of Solids and Structures,1993, 30(5):695-723.
    [146]Sutton MA, Wu R. Determination of the asymptotic crack tip fields for a crack perpendicular to an interface between elastic-plastic materials [J]. Acta Mechanica,1993,100(1-2):13-36.
    [147]Lau CW, Delale F. Interfacial stress singularities at free edge of hybrid metal matrix composites [J]. Journal of Engineering Materials and Technology,1988,110:41-47.
    [148]Zhang N, Joseph PF. A nonlinear finite element eigenanalysis of singular plane stress fields in bimaterial wedges including complex eigenvalues [J]. International Journal of Fracture,1998, 90(3):175-207.
    [149]Rahman A, Lau ACW. Singular stress fields in interfacial notches of hybrid metal matrix composites [J]. Composites Part B,1998,29B:763-768.
    [150]Xu JQ, Fu LD, Motoh Y. A method for determining elastic-plastic stress singularity at the interface edge of bonded power law hardening materials [J]. JSME Inter J,2002, A45 (2):177-183.
    [151]Chen DH, Ushijima K. Plastic stress singularity near the tip of a V-notch [J]. Inter J of Fracture,2000,106:117-134.
    [152]陈小明,杨南生,官忠信.弹塑性状态下I型裂纹前缘应力应变场的奇异性分析[J].应用数学和力学,1987,8(7):611-616.
    [153]Filippi F, Ciavarella M, Lazzarin P. An approximate, analytical approach to the 'HRR'-solution for sharp V-notches [J]. Inter J of Fracture,2002,117:269-286.
    [154]Loghin Adrian, Joseph Paul F. Asymptotic solutions for mixed mode loading of cracks and wedges in power law hardening materials [J]. Engng Fract Mech,2001,68:1511-1534.
    [155]牛忠荣,葛仁余,程长征,胡宗军.平面V形切口塑性应力奇异性分析[J].中国科学:物理学力学天文学,2014,44(1):70-90.
    [156]Gross B. Plane elastostatic analysis of V-notched plate [J]. International Journal of Fracture Mechanics,1972,8:267-276.
    [157]Chen DH. Stress intensity factors for V-notched strip under tension or in-plane bending [J]. International Journal of Fracture,1995,70:81-97.
    [158]Yakobori T, Kamei A, Konosu SA. Criterion for low stress brittle fracture of notched specimens based on combined micro and macro fracture with notches [J]. Engineering Fracture Mechanics,1976,8:397-409.
    [159]Seweryn A. Brittle fracture criterion for structure with sharp notches [J]. Engineering Fracture Mechanics,1994,47:673-681.
    [160]Gross B, Srawley JE, Brown WF. Stress intensity factors for a singular-edge-notch tension specimen by boundary collocation [R]. NASA TN D-2395,1964.
    [161]Carpenter WC. The eigenvector solution for a general corner or finite opening crack with further studies on the collocation procedure [J]. International Journal of Fracture,1985,27: 63-74.
    [162]Yamada Y, Okumura H. Finite element analysis of stress and strain singularity eigenstate in inhomogeneous media or composite materials[C]//International Symposium on Hybrid and Mixed Finite Element Methods, Atlanta, GA.1981.
    [163]Sukumar N, Kumosa M. Application of the finite element iterative method to cracks and sharp notches in orthotropic media [J]. International Journal of Fracture,1992,58:177-192.
    [164]Gu L, Belytschko T. A numerical study of stress singularities in a two-material wedge [J]. International Journal of Solids Structures,1994,31:865-889.
    [165]王效贵,郭乙木,许金泉.与界面相交的裂纹尖端的应力奇异性分析[J].固体力学学报,2002,23(4):412-418.
    [166]平学成,陈梦成.楔形体尖端近似场的非协调元有限元特征法[J].华东交通大学学报,2001,18:6-11.
    [167]陈梦成,姜羡,朱剑军.复合压电材料尖劈端部奇性问题有限元分析[J].华东交通大学 学报,2004,21(1):1-7.
    [168]Sinclair GB, Okajima M, Griffin JH. Path independent integrals for computing stress intensity factors at sharp notches in elastic plates [J]. International Journal for Numerical Method in Engineering,1984,20:999-1008.
    [169]Rzasnicki W, Mendelson A, Albers LU. Application of boundary integral method to elastoplastic analysis of V-notched beams [J]. International Journal of Fracture,1975,11: 329-342.
    [170]Tan CL, Gao YL, Afagh FF. Boundary element analysis of interface cracks between dissimilar anisotropic materials [J].International Journal of Solids and Structures,1992,29(24): 3201-3220.
    [171]宋莉,黄松梅.用边界元法计算V形切口的应力强度因子[J].陕西水力发电,1993,9(4):29-33.
    [172]张永元,阮国华.表面钝裂纹的计算模型及其边界元法模拟[J].应用力学学报,1995,12(1):25-32.
    [173]邓宗才,徐佐霞.用杂交元法计算V形切口问题的应力强度因子[J].山东建材学院学报,1996,10(1):50-45.
    [174]Niu ZR, Cheng CZ, Ye JQ, Recho N. A new boundary element approach of modeling singular stress fields of plane V-notch problems [J]. Int J Solids Struct,2009,46:2999-3008
    [175]杨新华,陈传尧,胡元太等.压电切口张开角和深度对其尖端力电损伤场的影响[J].固体力学学报,2005,26(3):359-364.
    [176]Lazzarin P, Filippi S. A generalized stress intensity factor to be applied to rounded V-shaped notches [J]. International Journal of Solids and Structures,2006,43:2461-2478.
    [177]Ma S, Zhang XB, Recho N, et al. The mixed-mode investigation of the fatigue crack in CTS metallic specimen [J]. International Journal of Fatigue,2006,28:1780-1790.
    [178]Leguillon D, Quesada D, Putot C, et al. Prediction of crack initiation at blunt notches and cavities-size effects [J]. Engineering Fracture Mechanics,2007,74:2420-2436.
    [179]Seweryn A. Modeling of singular stress fields using finite element method [J]. International Journal of Solids and Structures,2002,39:787-804.
    [180]Hult JAH, McClintock FA. Elastic-plastic stress and strain distribution around sharp notches under repeated shear[C]//Proc.9th Int. Congress on Applied Mechanics.1956,8:51-58.
    [181]Hutchinson JW. Plastic stress and strain fields at a crack tip [J]. Mech Phys Solids,1968, 16:337-347.
    [182]Hayashi K. Singular behavior at the tip of a crack in an elastic-plastic material with plastic orthotropy [J]. Journal of the Mechanics and Physics of Solids,1979,27(2):163-174.
    [183]Pan J, Fong Shih C. Plane-strain crack-tip fields for power-law hardening orthotropic materials [J]. Mechanics of Materials,1986,5(4):299-316.
    [184]Kuang ZB, Xu XP. Stress and strain fields at the tip of a sharp V-notch in a power-hardening material [J]. Int J Fract 1987,35:39-53.
    [185]Lazzarin P, Zambardi R, Livieri P. Plastic notch stress intensity factors for large V-shaped notches under mixed load conditions [J]. Int J Fract.2001,107(4):361-77.
    [186]Zappalorto M, Lazzarin P. Strain energy-based evaluations of plastic notch stress intensity factors at pointed V-notches under tension [J]. Engineering Fracture Mechanics,2011,78(15): 2691-2706.
    [187]Hilton PD, Hutchinson JW. Plastic intensity factors for cracked plates [J]. Engng Fract Mech, 1971,3:435-451.
    [188]Hilton PD. Plastic intensity factors for cracked plates subjected to biaxial loading [J]. Int J Fract,1973,9:149-56.
    [189]Molski K, Glinka G. A method of elastic-plastic stress and strain calculation at a notch root [J]. Mater Sci Engng,1981,50:93-100.
    [190]Lazzarin P, Zambardi R. The equivalent strain energy density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity [J]. Fatigue Fract Engng Mater Struct,2002,25:917-28.
    [191]Lazzarin P, Zappalorto M. Plastic notch stress intensity factors for pointed V-notches under antiplane shear loading [J]. Int J Fract,2008,152(1):1-25.
    [192]Shih CF, Asaro RJ. Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces. Part Ⅰ. Small Scale Yielding [R]. BROWN UNIV PROVIDENCE RIDIV OF ENGINEERING,1987.
    [193]Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces. Ⅱ:Structure of small-scale yielding fields [J]. Journal of Applied Mechanics,1989,56(4):763-779.
    [194]Lin X, Tzuchiang W. The interfacial crack between two dissimilar elastic-plastic materials [J]. Acta Mechanica Sinica,1992,8(2):147-155.
    [195]Pan J. Plane-strain crack-tip stress field for anisotropic perfectly-plastic materials [J]. Journal of the Mechanics and Physics of Solids,1986,34(6):617-635.
    [196]Champion CR, Atkinson C. On a crack in a material with a nonlinear stress-strain law [J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1993,41(4):377-386.
    [197]魏悦广,王自强.扩展裂纹尖端弹塑性场[J].力学学报,1994,26(1):39-48.
    [198]Achenbach JD, Li ZL. Plane stress crack-line fields for crack growth in an elastic perfectly-plastic material [J]. Engineering Fracture Mechanics,1984,20(3):535-544.
    [199]Guo Q, Li K. Plastic deformation ahead of a plane stress tensile crack growing in an elastic-perfectly-plastic solid[J]. Engineering Fracture Mechanics,1987,28(2):139-146.
    [200]Yi ZJ. The most recent solutions of near crack line fields for mode Ⅲ cracks [J]. Engineering Fracture Mechanics,1994,47(1):147-155.
    [201]易志坚,理想弹塑性I型扩展裂纹的全新和精确分析[J].应用数学和力学,1993,14(4):327-333.
    [202]易志坚,王士杰,王向坚.II型平面应力裂纹线场的弹塑性精确解[J].应用数学和力学,1995,16(10):909-916.
    [203]吴承平、王成.裂纹面任意点受反平面集中力时裂纹线场的弹塑性分析[J].应用数学和力学,1996,17(12):1059-1064.
    [204]王自强.静止裂纹顶端塑性区内应力场[J].力学学报.1987,19(3):230-238.
    [205]许金泉,李一全.线性硬化材料的界面裂纹裂尖弹塑性应力场[J].固体力学学报,1998,19(3):278-282.
    [206]王世文,郭万林,沈亚鹏.三维约束下幂硬化双材料界面裂尖场分析[J].力学学报,1996,28(3):352-358.
    [207]张宁生,赵学仁,薛大为.裂纹尖端场弹塑性分析的加权残数法及塑性应力强度因子的计算[J].应用数学和力学,1991,12(12):1055-1066.
    [208]李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用[J].固体力学学报,2001,22(4):361-367.
    [209]张志春,强洪夫,周伟.基于粘结界面模型的三维裂纹扩展研究[J].计算物理,2010,27(4): 586-592.
    [210]Bogy DB. Two edge bonded elastic wedges of different materials and wedge angles under surface tractions [J]. J Appl Mech,1971,38(7):377-386.
    [211]郑百林,戴瑛,嵇醒,王远功.双材料反平面问题界面端奇异应力场分析[J].应用力学学报,1999,16(4):21-26.
    [212]Hartranft RJ, Sih GC. The use of eigenfunction expansions in the general solution of three-dimensional crack problems [J]. Journal of Mathematics and Mechanics,1969, 19:123-138.
    [213]Lin KY, Hartmann HH. Numerical analysis of stress singularities at a bonded anisotropic wedge [J]. Engineering Ffracture Mmechanics,1989,32(2):211-224.
    [214]Huang CS, Leissa AW. Stress singularities in bimaterial bodies of revolution [J]. Composite Structures,2008,82:488-498.
    [215]Labossiere PEW, Dunn ML. Fracture initiation at three-dimensional bimaterial interface corners [J]. Journal of the Mechanics and Physics of Solids,2001,49:609-634.
    [216]Sze KY, Wang Haitao. A simple finite element formulation for computing stress singularities at bi-material interfaces [J]. Finite Elements in Analysis and Design,2000,35:97-118.
    [217]Sze KY, Wang Haitao, Fan H. A finite element approach for computing edge singularities in piezoelectric materials [J]. International Journal o f Solids & Structures,2001,38:9233-9252.
    [218]Wang Haitao, Sze KY, Yang Xiaomei. Analysis of electro-mechanical stress singularity in piezoelectric by computed eigensolutions and hybrid-trefftz finite element models [J]. Computational Mechanics,2006,38:551-564.
    [219]Niu Zhong-rong, Ge Da-li, Cheng Chang-zheng, et al. Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials [J]. Applied Mathematical Modelling,2009, 33:1776-1792.
    [220]王海涛,杨笑梅.奇异热流密度场的数值分析(Ⅰ)-热传导特征解问题[J].华南理工大学学报(自然科学版),2006,34(11):99-104.
    [221]斯米尔诺夫A.Φ.结构的振动和稳定性[M].(楼志文译),北京:科学出版社,1963.
    [222]牛忠荣.两点边值问题的一个新数值方法及其在建筑力学中应用.南京工学院(东南大学)硕士论文(指导教师:薛祖卫),1984.
    [223]Ma CC, Hour BL. Analysis of dissimilar anisotropic wedges subjected to anti-plane shear deformation [J]. International Journal of Solids Structures,1989,11:1295-1309.
    [224]Cheng CZ, Niu ZR, Recho N. Effect of non-singular stress on the brittle fracture of V-notched structure [J]. International Journal of Fracture,2012,174:127-138.
    [225]Bilby BA, Cardew GE, Goldthorpe M R, et al. A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks [A]. In: Size Effects in Fracture [C]. London:Mechanical Engineering Publications, Ltd,1986,37-46.
    [226]Betegon C, Hancock JW. Two-parameter characterization of elastic-plastic crack tip fields [J]. ASME JAM,1991,58(1):104-110.
    [227]Fleck NA, Hutchinson JW, Suo Z. Crack path selection in a brittle adhesive layer [J]. Int J Solids Struct,1991,37(5):1683-1703.
    [228]Zhao Liguo, Chen Yiheng. Effect of the T-stress in microcrack shielding problems [J]. ASME JAM,1998,65(1):71-75.
    [229]Sham TL. The determination of the elastic T-term using higher order weigh functions [J]. Int J Fract,1991,48(1):81-102.
    [230]Ma Hao, Zhao Liguo, Chen Yiheng. Non-singular terms for multiple cracks in anisotropic elastic solids [J]. Theoretical and Applied Fracture Mechanics,1997,27(1):129-134.
    [231]Aoki S, Kishimoto K, Sakata M. Finite element computation of dynamic stress intensity factor for a rapidly propagating crack using J-integral [J]. Computational Mechanics,1987,2(1): 54-62.
    [232]Koh HM, Lee HS, Haber RB. Dynamic crack propagation analysis using Eulerian-Lagrangian kinematic descriptions [J]. Computational Mechanics,1988,3(3):141-155.
    [233]Wawrzynek PA, Ingraffea AR. Interactive finite element analysis of fracture processes:an integrated approach [J]. Theoretical and Applied Fracture Mechanics,1987,8(2):137-150.
    [234]Gerstle WH, Martha LF, Ingraffea AR. Finite and boundary element modeling of crack propagation in two and three dimensions [J]. Engineering with Computers,1987,2(3): 167-183.
    [235]Belytschko T, Lu YY, Gu L. Element-free Galerkin methods [J]. International journal for numerical methods in engineering,1994,37(2):229-256.
    [236]庞作会,葛修润,王水林,等.对无网格伽辽金法(EFGM)的两点补充[J].岩石力学与工程学报,1999,18(5):581-584.
    [237]Yosibash Z, Szabo BA. A note on numerically computed eigenfunctions and generalized stress intensity factors associated with singular points [J]. Eng Fract Mech,1996,54:593-595.
    [238]Oliver J, Huespe AE, Sanchez PJ. A comparative study on finite elements for capturing strong discontinuities:E-FEM vs X-FEM [J]. Comput Methods Appl Mech Engrg,2006,195: 4732-4752.
    [239]章青,刘宽,夏晓舟,杨静.广义扩展有限元法及其在裂纹扩展分析中的应用[J].计算力学学报,2012,29(3):427-432.
    [240]杜庆华等.边界积分方程方法一边界元法[M].北京:高等教育出版社,1989
    [241]Niu Zhongrong, Cheng Changzheng, Zhou Huanlin, Hu Zongjun. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM [J]. Engineering Analysis with Boundary Elements,2007,31(12):949-964.
    [242]Seweryn A, Lukaszewicz A. Verification of brittle fracture criteria for elements with V-shaped notches [J]. Eng Fract Mech,2002,69:1487-1510.
    [243]Yosibash Z, Bussiba A, Gilad I. Failure criteria for brittle elastic material [J]. International Journal of Fracture,2004,125:307-333.
    [244]Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with V-shaped notches [J]. International Journal of Fracture, 2001,112(3):275-298.
    [245]Leguillon D. Strength or toughness? A criterion for crack onset at a notch [J]. Eur J Mech A/Solids,2002,21(1):61-72.
    [246]Ayatollahi MR, Torabi AR, Azizi P. Experimental and Theoretical Assessment of Brittle Fracture in Engineering Components Containing a Sharp V-notch [J]. Experimental Mechanics,2011,51:919-932.
    [247]Barsoum RS. Singular behaviour near an interface crack tip of power law hardening materials using The Finite Element Iterative Method [J]. International Journal for Numerical Methods in Engineering,1990,29(4):699-717.
    [248]Bazant ZP, Estenssoro LF. Surface singularity and crack propagation [J]. International Journal of Solids and Structures,1979,15(5):405-426.
    [249]Pageau SS, Joseph PF, Biggers Jr SB. Finite element analysis of anisotropic materials with singular inplane stress fields [J]. International Journal of Solids and Structures,1995,32(5): 571-591.
    [250]Shih CF. Small-scale yielding analysis of mixed mode plane-strain crack problems [J]. ASTM STP,1974,560(7):187-210.
    [251]Shih CF. Elastic-plastic analysis of combined mode crack problems [M]. Harvard University, 1973.
    [252]范季夏,袁祖培.正交异性理想塑性材料平面应力问题的裂纹尖端应力场[J].应用数学和力学,1991,12(4):369-374.
    [253]夏霖,王自强.弹塑性双材料界面裂纹的渐近分析[J].固体力学学报,1992,13(3):191-200.
    [254]Shih CF, Asaro RJ. Elastic-plastic and asymptotic fields of interface cracks [J]. International Journal of Fracture,1990,42 (2):101-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700