用户名: 密码: 验证码:
连续切换全向轮及其移动机器人的各向异性分析及优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全方位移动机器人属于平面三自由度全方位移动系统,具有运动灵活的特点,适合在狭窄的空间内运动。全方位轮是构成移动机器人的关键因素,是主要的运动机构。目前,推广应用较多的全向轮是Mecanum轮,但Mecanum有其自身的缺点,其制作相对困难,运动过程中因接触点轴向移动存在“震动”现象。为此,本文另辟蹊径,采用连续切换全向轮的方案,并提出了一种单排连续切换全向轮的优化结构,研制相应移动机器人,进而研究此类全向轮的各向异性及其对机器人的轮系布局方式、自锁特性的影响,最后分析此类移动机器人的驱动控制特点,并提出优化的控制策略。
     论文的主要研究内容及其结果如下:
     1.提出了一种优化的连续切换全向轮结构,分析基于此轮的全方位移动机器人轮系布局问题。首先给出了连续切换全向轮的结构,通过Y型支架连接大小辊子,具有结构简单、安装方便等特点。分析并总结了用连续切换全向轮构成全方位移动机器人的规则和条件,并给出了三轮、四轮以及六轮能实现全方位运动的排布方式。从驱动能力、车体稳定性、系统可控性等角度分析,证明采用四轮的排布方式相对较优。
     2.介绍了移动机器人电气控制系统的设计与实现。分析对比了现阶段应用在移动机器人的不同控制方法,包括主控器选型、通讯方式、电机驱动器种类等问题。考虑到移动机器人的特点,采用并实现了适合应用在该移动机器人上的电气控制系统,并介绍了主要的软件设计思路。
     3.分析了连续切换全向轮和基于此的移动机器人运动的各向异性,主要有:
     (1)分析了移动机器人在驻停时的自锁特性。分析了全向轮运动过程中不同接触点摩擦力的组成形式,并建立斜面的实验系统,实测摩擦系数与地面介质、接触点等的关系,进而给出此全向轮的自锁角(摩擦角),从理论和实验上解决了移动机器人各个运动方向的自锁特性。
     (2)从运动学方程出发,分析了移动机器人速度的各向相异性。理论计算可得移动机器人的速度朝各个方向运动是不同的,并用ADAMS软件进行仿真,仿真结果与理论计算的结果相吻合。
     (3)根据非完整系统的劳斯方程,建立了全向轮机器人的动力学方程,理论和实验分析了移动机器人各个方向运动加速度的各向相异性。给出了车体在斜面运动时不发生后翻和侧翻的条件,用ADAMS软件进行仿真验证了模型,为此类系统的设计和控制提供了理论基础。
     4.针对基于连续切换全向轮移动机器人的特点,提出了优化的控制方法。具体为:
     (1)分析了四轮驱动移动机器人的冗余特性和驱动特性,在一些特殊方向可采用力矩和速度的双PI控制。四轮驱动的移动机器人是个冗余系统,针对移动机器人运动过程中四个轮子相互挤压(挤压是指电机的作用力对移动机器人运动无实质贡献,只是磨损机器人与轮子的连接部件)的问题,建立了车体速度与电机输出力矩同时控制的PI控制系统,实验结果表明:移动机器人沿正向运动时(正向指速度方向与相邻轮子轴线垂直),效率能提高13%左右,当移动机器人沿斜向运动时(斜向指速度方向与相邻轮子轴线成45°),效率能提高6%左右,同时车体速度的稳定性也得到了相应的提高。
     (2)从能量最省角度讨论了移动机器人加速过程中力矩分配的问题。从移动机器人动力学方程出发,增加了效率最大化的约束方程。从理论和实验分析可得,相对于其他的控制方法,基于效率最大化的力矩分配方式在移动机器人加速过程中效率能提高2%~3%左右。
As a3DOF mobile system, the omni-directional mobile robot is suitable for movement in narrow space with flexible motion characteristic. The omni-directional wheel is the key factor of the mobile robot as the main movement mechanism. Currently, the Mecanum wheel is widely used. But Mecanum wheel has some shortcomings, such as difficult in production, the "shock" phenomenon occurs during the movement due to uncertain axial movement contact points. This article tries to find a way to study another omni-directional wheel—single-row continuous alternate wheel. Considering the current researches of the alternate wheels, the single-row continuous alternate omni-directional wheel and the mobile robot are optimal designed and manufactured. The anisotropy of the wheel and its impact on the layout of the wheels and self-lock characteristics are studied. At last, based on the analysis of such mobile robot drive control features, optimal control strategise are proposed.
     The main researches and conclusions of this article contain the following aspects:
     1、This article puts forward the optimal designing of a single-row continuous alternate wheel, and solves the structural problem of the layout of the omni-directional mobile robot. At first, the structure of the wheel is introduced with simple structure and easy installation advantages through the Y-shaped brackets which are made for fixing rollers. Through analyzing and summarizing the rules and conditions of the omni-directional mobile robot, the full range motion arrangements of three wheels, four wheels and six wheels are proposed. Considering the drive capability, body stability and controllability of the system, the arrangement of the four wheels is chosen as the actual bodywork.
     2、Designing and implementation of the electrical control system are introduced. The analysis and comparison of different control methods in the mobile robot are proposed, including selections of the master controller, means of communication, types of the motor drive. Taking into account the characteristics of the mobile robot, electrical control system which is suitable for the mobile robot and the major software design ideas are described.
     3、The anisotropy of the mobile robot is analyzed, including the following three main aspects:
     (1) The self-lock characteristics of the mobile robot is analyzed and solved. Through analyzing the composition of the friction force on different contact points when the wheel moves, the experiment system is established. The relationships between friction coefficient with ground media, contact points are measured by experiments. And the omni-directional wheel self-lock angle (friction angle) is proposed. Self-lock characteristics of the mobile robot on the slope in all directions is solved through theoretical and experimental analysis.
     (2) The anisotropy of the robot speed is analyzed based on kinematic equation. The speed of the mobile robot in each direction is different through theoretical calculation. Simulation results by ADAMS software and theoretical calculation results are the same.
     (3) Dynamic equations of the system are obtained according to the nonholonomic system of Rolls equations. The acceleration anisotropy of the mobile robot is obtained in all directions by theoretical and experimental analysis. The rollover and backward conditions of the mobile robot moves on the slope are calculated, and the model is simulated by using ADAMS software. The theoretical basis for system practical application is provided.
     4, The optimal control method of the mobile robot based on single-row continuous alternate wheel is obtained, mainly including two aspects:
     (1) A dual PI control of motor torque and speed can be used in special directions by analyzing the four wheels drive mobile robot redundancy features and drive features. The mobile robot consists four wheels is a redundant system. In order to reduce the squeeze between the four wheels (squeeze is a part of the motor force, no contribution to the mobile robot, but harmful to the joint), a dual PI control system includes vehicle speed and motor output torque is established. Experimental results show that when the mobile robot moves along the forward direction (forward direction refers to the direction of the velocity perpendiculars to the axis of the adjacent wheels), the efficiency can be increased by13%. And when the mobile robot moves obliquely (oblique direction means that the angle of velocity and axis of the adjacent wheels is45°), the efficiency can be increased by6%. Meanwhile, the stability of the vehicle speed is also increased.
     (2) In order to solve moment distribution problem of the mobile robot in the acceleration process, efficiency maximization of the constraint equation is added from the mobile robot dynamics equation. From the theoretical and experimental analysis, related to the other control methods, the efficiency can be increased by2%to3%by using the method of efficiency maximization.
引文
[1]陈丽,王越超,李斌.蛇形机器人研究现况与进展[J].机器人,2002,24(6):559-563.
    [2]李磊,叶涛,谭民等.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.
    [3]刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,28(1):81-88.
    [4]孙立宁,胡海燕,李满天.连续型机器人研究综述[J].机器人,2010,32(5):688-694.
    [5]陈百超.月球车新型移动系统设计[D].吉林:吉林大学载运工具运用工程博士学位论文,2009.
    [6]周科RoboCup小型组_F_180_足球机器人的运动控制和路径规划[D].杭州:浙江大学信息科学与工程硕士学位论文,2004.
    [7]张翮,熊蓉,褚健,et al一种全方位移动机器人的运动分析与控制实现[J].浙江大学学报:工学版,2004,38(12):1650-1653,1672.
    [8]黄善均,黄长江.一种新型的万向车轮[P].中国:1435330A,2003.
    [9]J Grabowiecki.Vehicle Wheel[P]美国:1303535,1919.
    [10]B E Ilon. Wheels for a course stable self-propelling vehicle movable in any desired direction on the ground or some other base[P]美国:3876255,1975.
    [11]A.Gfrerrer.Geometry and kinematics of the Mecanum wheel[J].Computer Aided Geometric Design,2008,25(9):784-791.
    [12]J F Blumrich.Omnidirectional Wheel[P]美国:244519,1974.
    [13]H M Bradbury.Omni-directional Transport Device[P]美国:862032,1980.
    [14]白小波.一种新型万向轮结构及其构成的移动机器人[C]//第五届机器人学术会议,中国,1998.
    [15]M West,H Asada.Design of a holonomic omnidirectional vehicle[C]//IEEE International Conference on Robotics and Automation,M A, U S A,1992:97-103.
    [16]M West,A Nishikawa,H Asada.A Unified Transportation/Manipulation System with Holonomic Omnidirectional Vehicles for Flexible Conveyorless Manufacturing[C]//Japan-USA Symposium on Flexible,Japan,1992:897-904.
    [17]M West,H Asada.design and control of ball wheeled omnidirectional vehicles[C]//IEEE International Conference on Robotics and Automation,MA, USA,1995:1931-1938.
    [18]K A Tahboub,H H Asada.Dynamics analysis and control of a holonomic vehicle with a continuously variable transmission[J].ASME Journal of Dynamic Systems, Measurement and Control,2002,124(3):118-126.
    [19]F G Pin,S M Killough.A new family of omnidirectional and holonomic wheeled platforms for mobile robots[J].IEEE Transactions on Robotics and Automation,1994,10(4):480-489.
    [20]田宇,吴镇炜,柳长春.开放式三自由度全方位移动机器人实验平台[J].机器人,2002,24(2):102-111.
    [21]刘开周,董再励,孙茂相.一类全方位移动机器人的不确定扰动数学模型[J].机器人,2003,25(5):399-403.
    [22]杨福广,戴炬,朱苏宁.由OW组成的全方位移动机器人运动问题分析[J].计算机科学,2002,29(10):41-53.
    [23]赵冬斌,易建强.全方位移动机器人导论[M].北京:科学出版社,2010.
    [24]赵祥敏.全方位移动机器人的研制[D].哈尔滨:哈尔滨工业大学机电工程学院硕士学位论文,2008.
    [25]K L Moore,N S Flann.A six-wheeled omnidirectional autonomous mobile robot[J].IEEE Control System Magazine,2000,20(6):53-66.
    [26]M Korayem,A Nakhai,T Bani Rostam.Design, modelling and errors measurement of wheeled mobile robots [J]. The International Journal of Advanced Manufacturing Technology,2006,28(3):403-416.
    [27]王一治.适于楼宇环境的全方位移动技术研究[D].上海:上海大学机械学院博士学位论文,2010.
    [28]郭旭,熊蓉,胡协和.全方位移动机器人的运动预测控制[J].电机与控制学报,2007,11(1):79-82,87.
    [29]熊蓉,张翮,褚健,et a1.四轮全方位移动机器人的建模和最优控制[J].控制理论与应用,2006,23(1):93-98.
    [30]B Carter,M Good,M Dorohoff, et al.Mechanical design and modeling of an omni-directional RoboCup player [C]//RoboCup AI Conference,Seattle W A,2003.1-10.
    [31]I E Paromtchik,U Rembold.A motion generation approach for an omnidirectional vehicle[C]//IEEE International Conference on Robotics and Automation,San Francisco, USA,2000:1213-1218.
    [32]K-S Byun.S-J Kim,J-B Song.Design of continuous alternate wheels for omnidirectional mobile robots[C]//IEEE International Conference on Robotics and Automation,Seoul, South Korea 2001.
    [33]王一治,常德功,钱晋武.适应不平地面的Mecanum四轮全方位小车结构及运动学模型[J].中国机械工程,2009,20(9):1130-1133.
    [34]贾官帅.基于Mecanum轮全方位移动平台的理论和应用研究[D].杭州:浙江大学电气工程学院硕士学位论文,2012.
    [35]石维亮,王兴松,贾茜.基于Mecanum轮的全向移动机器人的研制[J].机械工程师,2007,9):18-21.
    [36]O DiegeI,A Badve,G Bright, et al.Improved mecanum wheel design for omni-directional robots[C]//Australasian Conference on Robotics and Automation,Auckland,2002:117-121.
    [37]G Mourioux,C Novales.G Poisson, et al.Omni-directional robot with spherical orthogonal wheels: concepts and analyses[C]//IEEE International Conference on Robotics and Automation,Florida, USA,2006:3374-3379.
    [38]叶长龙,李怀勇,马书根,et al.具有MY轮的全方位移动机器人运动学研究[J].机器人,2012,34(2):144-151.
    [39]李怀勇.一种新型全方位移动机器人的运动学分析[D].沈阳:沈阳航空航天大学硕士学位论文,2011.
    [40]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社,2009.
    [41]李文锋.无线传感器网络与移动机器人控制[M].北京:科学出版社,2009.
    [42]邓旭玥,易建强,赵冬斌.一种全方位移动机器人的控制方法[J].电机与控制学报,2005,2):139-144.
    [43]S F Wu,J S Mei,P Y Niu.Path guide and control of a guided wheeled mobile robot[J].Control Engineer Practice,2001,9:97-105.
    [44]龚建伟,陆际联,黄文宇.轮式移动机器人航向跟踪预估控制算法[J].机器人2001,23(3):193-196.
    [45]李啸,张洪钺,李骥.基于模糊PID的轮式移动机器人轨迹控制[J].机器人技术与应用,2002,5:30-33.
    [46]徐俊艳,张培仁,程剑锋.基于Backstepping时变反馈和PID控制的移动机器人实时轨迹跟踪控制[J].电机与控制学报.,2004.,8(1):35-38.
    [47]葛宝明.林飞,李国国.先进控制理论及其应用[M].背景:机械工业出版社.2007.
    [48]C S Junior.Adaptive control of mobile robots using a neural network[J].International Journal of Neural Systems,2001,11(3):211-218.
    [49]G F Yuan.S X Yang,G S Mittal.Tracking control of a mobile robot using a neural dynamics based approach[C]//IEEE International Conference on Robotics and Automation,Canada,2001:163-168.
    [50]M K Bugeja,S G Fabri.L Camilleri.Dual adaptive dynamic control of mobile robots using neural networks[J].IEEE Transactions Systems Man Cybernetics B,2009,39(1):129-141.
    [51]王立新.自适应模糊系统与控制[M].北京:国防工业出版社.1995.
    [52]Y Li,T Lin.Y Huang.Study on fuzzy logic control based path tracking method of 3-DOF mobile robot[C]//International Conference on Fuzzy Information Processing Theories and Applications,USA,2003:283-287.
    [53]L C Bento,U Nunes.A Mendes, et al.Path-Tracking Controller of a bi-steerable Cybernetic Car using Fuzzy Logic[C]//International Conference on Advanced Robotics,Coimbra, Portugal,2003:1556-1561.
    [54]T H S Li,S J Chang.Autonomous fuzzy parking control of a car-like mobile robot [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2003.33(4):451-465.
    [55]S Thongchai,S Suksakulchai,D M Wilks, et al.Sonar behavior-based fuzzy control for a mobile robot [C]//IEEE International Conference on Systems, Man, and Cybernetics,Nashville, TN, USA 2000:3532-3537.
    [56]K Watanable,K Izumi,F Han. Stochastic fuzzy servo control using multiple linear dynamic models [C]//IEEE International Conference on Knowledge Based Intelligent Electronic Systems, Japan,1998:474-482.
    [57]T Das,I N Kar.Design and implementation of an adaptice fuzzy lagic-based controller for wheeled mobile robots[J].IEEE Transactions on Control System Technology,2006,14(3):501-510.
    [58]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2012.
    [59]W Perrquetti,J P Barbot.Sliding mode control in engineering[M].New York:Marcel Dkker Inc,2002.
    [60]X H Yu, J X Xu.Advance in Variable Structure Systems[M].Singapore:World Scientific Publishing,2000.
    [61]曹其新,张蕾.轮式自主移动机器人[M].上海:上海交通大学出版社,2011.
    [62]C T Leng,Q X Cao,C Lo.A motion control method for omni-directional mobile robots based on anisotropy[J].Industrial Robot,2010,37(1):23-35.
    [63]D Y Chwa.Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates[J].IEEE Transactions on Control System Technology,2004,12(4):637-644.
    [64]B S Park,S J Yoo,J B Park, et al.A daptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty[J].IEEE Transactions on Control Systems Technology,2009,17(1):207-214.
    [65]G Dundek,M Jenkin. Computational Principles of Mobile Robotics[M].New York:Cambridge University Press,2000.
    [66]J E M Salih,M Rizon,S Yaacob, et al.Designing omni-directional mobile robot with mecanum wheel[J].American Journal of Applied Sciences,2006,3(5):1831-1835.
    [67]J G Phillips.Mechatronic design and construction of an intelligent mobile robot for educational purposes[D].Palmerston North, New Zealand:Massey UniversityMaster of Technology Thesis.2000.
    [68]P Viboonchaicheep,A Shimada,Y Kosaka.Position rectification control for Mecanum wheeled omni-directional vehicles[C]//IEEE/IECON Conference on Industrial Electronics Society,Roanoke,VA,2003:854-859.
    [69]赵冬斌,易建强,邓旭玥.全方位移动机器人结构和运动分析[J].机器人,2003,25(5):394-398.
    [70]闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857.
    [71]M I C Dede,S Tosunoglu.Design of a Fault-Tolerant Holonomic Mobile Platform[C]//Conference on Recent Advances in Robotics,Florida,2006:
    [72]W H Zhou,J F Guo,H Liu, et al.Design and analysis of an omni-directional mobile robot with orthogonal wheel[C]//IEEE Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation,Hang zhou, China,2011:60-64.
    [73]冷春涛,曹其新.四轮全方位移动机器人各向相异性研究[J].智能系统学报,2007,3):45-51.
    [74]王一治,常德功Mecanum四轮全方位系统的运动性能分析及结构形式优选[J].机械工程学报,2009,45(5):307-310,316.
    [75]P Xu.Mechatronics Design of a mecanum wheeled mobile robot[J].Cutting edge robotics,2005,9(7):61-74.
    [76]夏国庆Mecanum轮全向移动机器人研制[D].南京:东南大学机械工程学院硕士学位论文,2010.
    [77]黄永志,陈卫东.两轮移动机器人运动控制系统的设计与实现[J].机器人,2004,26(1):40-44.
    [78]Y Ma,K Zhang,J Gu, et al.Design of the Control System for a Four-wheel Driven Micro Electric Vehicle[C]//IEEE Vehicle Power and Propulsion Conference (VPPC), Dearborn,MI,USA,2009:1813-1816.
    [79]K L Han,O K Choi,I Lee, et al.Design and control of omni-directional mobile robot for mobile haptic interface[C]//IEEE International Conference on Control, Automation and Systems,Korea,2008:1290-1295.
    [80]林孙奔.一种基于电机转子转动惯量的电机特性测试系统研究[D].杭州:浙江大学电气工程学院硕士学位论文,2011.
    [81]郑莉,董渊.C++语言程序设计[M].北京:清华大学出版社,2003.
    [82]王卫华,熊有伦,孙荣磊.一种移动机器人轮子打滑的实验校核方法[J].机器人,2005,27(3):197-202.
    [83]Y Mori,E Nakano,T Takahashi, et al.Mechanism and running modes of new omnidirectional vehicle ODV9[J].JSME International Journal,1999,42(1):210-217.
    [84]K Nagatani,S Tachibana,M Sofne, et al.Improvement of odometry for omnidirectional vehicle using optical flow information[C]//the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems,2000,46(1):468-473.
    [85]L Gracia,J Tornero. Kinematic modeling of wheeled mobile robots with slip [J]. Advanced Robotics,2007,21(11):1253-1279.
    [86]D Saha,R Ray,S Bhaumik.Dynamic modelling of a skid-steered twelve wheeled Mobile Robot using a 'slip'-'friction coefficient'relationship and its trajectory tracking control[C]//IEEE International conference on Advances in Engineering, Science and Management,Durgapur, India 2012:192-197.
    [87]J Jung,H-K Lee,H Myung.Fuzzy-logic-assisted interacting multiple model (FLAIMM) for mobile robot slip compensation[C]//IEEE International Conference on Fuzzy Systems,Daejeon, South Korea,2012:1-8.
    [88]R L.Williams,B E.Carter,P Gallina, et al.Dynamic Model With Slip for Wheeled Omnidirectional Robots[J].IEEE Transactions on Robots and Automation,2002,18(3):285-293.
    [89]漆安慎,杜婵英.力学[M].北京:高等教育出版社,1996.
    [90]瓦L.波波夫.接触力学与摩擦学的原理及其应用[M].北京:北京大学出版社,2008.
    [91]Y-S Hwang,J Lee,T C Hsia.A recursive dimension-growing method for computing robotic manipulability polytope[C]//IEEE International Conference on Robotic and Automation,Davis, CA, USA,2000:2569-2574.
    [92]M Wade,H H Asada.Design and control of a variable footprint mechanism for holonomic omnidirectional vehicles and its application to wheelchairs[C]//IEEE International Conference on Robotics and Automation,Japan,1999:978-989.
    [93]J B Song,K S Byun.Design and Control of a Four-Wheeled Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels[J].Journal of Robotic Systems,2004,21(4):193-208.
    [94]M Ashmore,N Barnes.Omni-drive robot motion on curved pahts:the fastest path between two points is not a straight-line [C]//Australian Joint Conference on Artifical Intelligence,Canberra, Australia,2002:225-233.
    [95]Y P Leow,K H Low,W K Loh.kinematic modelling and analysis of mobile robots with omni-directional wheels[C]//7th International Conference on Control, Automation, Robotics and Vision,Singapore,2002:820-825.
    [96]吴克河,李为,柳长安,et al双轮驱动式移动机器人动力学控制[J].宇航学报,2006,27(2):273-275.
    [97]梅红,王勇.轮式移动机器人的动力学建模及跟踪控制[J].机床与液压,2009,37(9):127-129.
    [98]刘宇,任均国,唐乾刚.柔性结构动力学方程的高斯消元法[J].湖南理工学院学报,2004,17(1):16-18.
    [99]刘延柱.高等动力学[M].北京:高等教育出版社,2001.
    [100]余志生.汽车理论[M].北京:机械工业出版社,1990.
    [101]赵健,郭俐彤,朱冰,et al基于NN-TTR的轻型汽车侧翻预警算法[J].吉林大学学报(工学 版),2012,42(1):78-83.
    [102]韩建保,云志刚,陈厉兵.汽车电子稳定系统ESP的工作原理及应用[J].汽车电器,2004,29(4):29-31.
    [103]宋亦旭,贾培发.一种轮式移动机器人实时速度估计方法[J].机械工程学报,2005,41(5):60-64.
    [104]P Kourosh,A Jorge,K M Arun.Pose and twist estimation of a rigid body using accelerometers[C]//IEEE International Conference on Robotics and Automation,Korea,2001:2873-2878.
    [105]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京:北京航空航天大学出版社,2008.
    [106]董玉红,邓宗全,方海涛,et al六轮独立驱动月球车的动力学与控制研究[J].系统仿真学报,2009,21(4):1210-1213.
    [107]E Esmailzadeh,A Goodarzi,G R Vossoughi.Directional stability and control of four-wheel independent drive electric vehicles [J] Journal of Multi-body Dynamics,2002,216(4):303-313.
    [108]S-I SAKAI,H SADO,Y HORI.Dynamic driving-braking force distribution in electric vehicles with independently driven four wheels[J].Electrical Engineering in Japan,2002,138(1):761-768.
    [109]Y P Li,D Oetomo,M H Ang, et al.Torque Distribution and Slip Minimization in an Omnidirectional Mobile Base[C]//12th International Conference on Advanced Robotics,Singapore,2005:567-572.
    [110]D B Zhao,X Y Deng,J Q Yi.Motion and internal force control for omni-directional wheeled mobile robots[J].Transactions on Mechatronics,2009,14(3):382-387.
    [111]X Y Deng,D B Zhao,J Q Yi, et al.Motion and squeeze force control for omni-directional wheeled mobile robots[C]//IEEE International Conference on American Control Conference,Minnesota,USA,2006:5608-5613.
    [112]J霍林.摩擦学原理[M].北京:机械工业出版社,1981.
    [113]J J卡尔克.三维弹性体的滚动接触[M].成都:西南交通大学出版社,1993.
    [114]F Gustafsson.Slip-baesd tire-road friction estimation[J].Automation,1997,33(6):1087-1099.
    [115]朱恩涌,巫世晶,王晓笋,et al含摩擦力的行星齿轮传动系统非线性动力学模型[J].振动与冲击,2010,29(8):217-220.
    [116]崔丽.自动变速器中行星齿轮结构的传动效率研究[D].重庆:重庆大学车辆工程硕士学位论文,2005.
    [117]J Yamakawa,K Watanabe.A method of optimal wheel torque determination for independent wheel drive vehicles[J].Journal of Terramechanics,2005,43(3):269-285.
    [118]P He,Y Hori.Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition[C]//IEEE International Conference on Advanced Motion Control,Japan,2006:596-601.
    [119]S-I Sakai,H Sado,Y Hori.Dynamic driving/braking force distribution in electric vehicles with independently driven four wheels[J].Electrical Engineering in Japan,2002,138(1):79-89.
    [120]R P.osborn,T Shim.Independent control of all-wheel-drive torque distribution[J].Vehicle System Dynamics,2006,44(7):529-546.
    [121]F Tahami,S Farhangi,R Kazemi.A fuzzy logic direct yaw-moment control system for all-wheel-drive electric vehicles[J].Vehicle System Dynamics,2004,41(3):203-221.
    [122]Y P Li,T Zielinska,V M H Ang, et al.Wheel-ground interaction modelling and torque distribution for a redundant mobile robot[C]//IEEE International Conference on Robotics and Automation,Singapore 2006:3362-3367.
    [123]T L Lam,Y S Xu,G Q Xu.Traction force distribution on omni-directional four wheel independent drive electric vehicle[C]//IEEE International Conference on Robotics and Automation,Hong Kong, China 2009:3724-3729.
    [124]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M].北京:机械工业出版社,2008.
    [125]J A M Petersen,M Bodson. Constrained quadratic programming techniques for control allocation[C]//IEEE International Conference on Decision and Control,Maui, Hawaii, USA,2003:91-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700