用户名: 密码: 验证码:
改性Bi_2WO_6的制备、表征及其光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bi_2Wo_6作为一种窄带隙半导体,其禁带宽度为2.7eV,表现出优异的可见光催化性能。然而,由于Bi_2Wo_6分子量较大,通常获得的Bi_2Wo_6晶粒尺寸较大而导致光生电荷载流子的复合几率较高,因而实际中Bi_2Wo_6的光催化活性并不高。为了获得高活性的Bi_2Wo_6光催化剂,本论文采用水热法对Bi_2Wo_6进行不同非金属元素I、S、N和C的掺杂改性,通过XRD、SEM、TEM、红外光谱、Raman、XPS及DRS等分析表征手段对改性Bi_2Wo_6的晶相结构、显微结构、光学性质及掺杂元素的化学态进行研究,并探讨了不同改性方式对光催化性能的影响。
     由于I原子半径较大,很难置换晶格氧而发生置换掺杂。本论文通过对样品中I元素化学态的研究,提出了I2和I-对Bi_2Wo_6晶体的表面共掺杂机理。光吸收性质和RhB的光催化降解结果表明:表面掺杂物I2和I-不仅增加了可见光响应能力,而且还可以有效提高光生电子和空穴的分离效率,最终导致可见光催化活性提高。
     与I元素相比,S原子半径相对小一些,但仍比氧原子半径大很多,因而只有一小部分S掺杂进入Bi_2Wo_6晶格,另一部分则形成了Bi2S3晶相。Bi2S3是一种窄带隙半导体,可以对Bi_2Wo_6起到光敏化作用而导致带隙的窄化。S掺杂和Bi2S3/Bi_2Wo_6异质结的协同作用导致可见光响应和光催化活性提高。
     不同于I掺杂和S掺杂,由于N原子半径与O原子半径接近,容易置换晶格氧而形成置换掺杂。研究采用尿素为氮源对Bi_2Wo_6进行N掺杂,显著提高了Bi_2Wo_6的可见光催化活性。将TiO_2包覆在N掺杂Bi_2Wo_6的颗粒表面形成TiO_2/N-BWO异质结,样品的紫外光和可见光催化活性均显著提高。N掺杂可以窄化带隙,而TiO_2/N-BWO异质结可有效抑制光生电荷载流子的复合。
     C原子半径与O原子半径接近,但稍大于N原子半径,也可有效实现晶格氧的置换掺杂。研究中采用石墨烯作为碳源对Bi_2Wo_6进行掺杂改性,不仅形成了石墨烯/Bi_2Wo_6异质结,而且实现了Bi_2Wo_6的C掺杂。该方法克服了N掺杂过程中N源易挥发的缺点,实现了C元素的有效置换掺杂。C掺杂可以有效窄化带隙,提高可见光响应能力;石墨烯/Bi_2Wo_6异质结可以有效提高光生电子的迁移速度。
Bi_2Wo_6was regarded as a narrow band gap semiconductor with a band energy of2.7eV, exhibiting the excellent visible-light-induced photocatalytic performance.However, in general, a larger crystalline size of Bi_2Wo_6was obtained owing to its largemolecular weight, which resulted in a higher recombination rate of photo-inducedcharge carriers. Thus, the photocatalytic activity of Bi_2Wo_6was lower than thetheoretical value in practice use. To obtain the highly active Bi_2Wo_6photocatalyst, inthis work, the modification of Bi_2Wo_6was carried out by the doping of differentnonmetallic elements of I, S, N and C via a hydrothermal method. The crystalline phasecomposition, microstructure and optical properties of modified Bi_2Wo_6and thechemical states of doping elements were investigated by XRD、SEM、TEM、FT-IR、Raman、XPS and UV-Vis diffuse reflectance spectra. Moreover, the effects of differentmodification methods on the photocatalytic performances were also discussed.
     The substitution of lattice oxygen was very difficult to be carried out owing to thelarge atomic radius of iodine species. In this study, the mechanism of the surfaceco-doping of I2and I-was proposed by the analysis of the chemical states of iodinespecies. The photo-absorption property and the photo-degradation of RhB indicated thatI2and I-as the surface dopant not only improved the visible-light photo-responsivity,but also enhanced the separation of photo-induced electrons and holes efficiently,resulting in the enhanced visible-light-induced photocatalytic activity.
     The atomic radius of sulfur is smaller than that of iodine, but is larger than that ofoxygen. Therefore, only one small amount of sulfur was doped into the lattice ofBi_2Wo_6, the other of sufur was used to form the crystalline phase of Bi2S3. Bi2S3as asemiconductor with a narrow band gap, would result in the narrowing of band gap bythe photosensitization for Bi_2Wo_6. The improved visible-light photoresponsivity andphotocatalytic activity were caused by the synergetic effect of sulfur-doping andBi2S3/Bi_2Wo_6heterojunction.
     Different from the cases of iodine-doping and sulfur-doping, the substitutionaldoping was prone to be carried out by the substitution of the lattice oxygen atom withnitrogen atom owing to the similar atomic radius of nitrogen and sulfur elements. The nitrogen-doping of Bi_2Wo_6was carried out by using urea as a nitrogen source,improving the visible-light-induced photocatalytic activity. The TiO_2/N-BWOheterojunction was formed by the coating of TiO_2on the surface of nitrogen-dopedBi_2Wo_6particles, resulting in the enhanced ultraviolet-light and visible-light-inducedphotocatalytic activities. Nitrogen doping resulted in the narrowing of band gap, whilethe TiO_2/N-BWO heterojunction inhibited the recombination of photo-induced chargecarriers efficiently.
     Although the atomic radius of carbon species is slightly larger than that of nitrogenspecies, the lattice oxygen atom was also substituted efficiently by carbon atom owingto the similar atomic radius of carbon and oxygen elements. The doping modification ofBi_2Wo_6was carried out using graphene as a carbon source. The carbon doping andgraphene/Bi_2Wo_6heterojunction was formed together. The substitutional doping ofcarbon species was obtained efficiently by avoiding the disadvantage of nitrogen sourcein the procedure of nitrogen doping. The narrowing of band gap was caused by thecarbon doping, improving the visible-light photo-responsivity. The efficient transfer rateof photo-induced electrons was caused by the heterojunction of graphene/Bi_2Wo_6.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,238(5358):37-38.
    [2] Li Y Y, Liu J P, Huang X T, et al. Carbon-modified Bi2WO6nanostructures with improvedphotocatalytic activity under visible light. Dalton Transactions,2010,39(14):3420-3425.
    [3]张彤,张悦炜,张世著,等.可见光响应型窄带隙半导体光催化材料的研究及应用进展.材料导报,2009,23(02):24-28.
    [4] Kim N, Vannier R N, Grey C P. Detecting different oxygen-ion jump pathways in Bi2WO6with1-and2-dimensional O-17MAS NMR spectroscopy. Chemistry of Materials,2005,17(8):1952-1958.
    [5] Wu L, Bi J, Li Z, et al. Rapid preparation of Bi2WO6photocatalyst with nanosheetmorphology via microwave-assisted solvothermal synthesis. Catalysis Today,2008,131(1-4):15-20.
    [6] Zhang L, Wang H, Chen Z, et al. Bi2WO6micro/nano-structures: Synthesis, modificationsand visible-light-driven photocatalytic applications. Applied Catalysis B: Environmental,2011,106(1-2):1-13.
    [7] Ng C, Iwase A, Ng Y H, et al. Transforming anodized WO3films into visible-light-activeBi2WO6photoelectrodes by hydrothermal treatment. Journal of Physical Chemistry Letters,2012,3(7):913-918.
    [8] Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solarphotocatalytic applications. Chemical Reviews,2011,112(3):1555-1614.
    [9] Fu H B, Yao W Q, Zhang L W, et al. The enhanced photoactivity of nanosized Bi2WO6catalyst for the degradation of4-chlorophenol. Materials Research Bulletin,2008,43(10):2617-2625.
    [10] Zhou Y, Tian Z, Zhao Z, et al. High-yield synthesis of ultrathin and uniform Bi2WO6square nanoplates benefitting from photocatalytic reduction of CO2into renewablehydrocarbon fuel under visible light. Acs Applied Materials&Interfaces,2011,3(9):3594-3601.
    [11] Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B bynanosized Bi2WO6. Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [12]王文中,尚萌,尹文宗,等.含铋复合氧化物可见光催化材料研究进展.无机材料学报,2012,27(1):11-18.
    [13] Zhang L W, Man Y, Zhu Y F. Effects of Mo replacement on the structure andvisible-light-induced photocatalytic performances of Bi2WO6photocatalyst. Acs Catalysis,2011,1(8):841-848.
    [14] Ge M, Li Y, Liu L, et al. Bi2O3Bi2WO6composite microspheres: Hydrothermal synthesisand photocatalytic performances. Journal of Physical Chemistry C,2011,115(13):5220-5225.
    [15] Cui Z, Zeng D, Tang T, et al. Enhanced visible light photocatalytic activity of QDSmodified Bi2WO6nanostructures. Catalysis Communications,2010,11(13):1054-1057.
    [16] Li G S, Zhang D Q, Yu J C, et al. An efficient bismuth tungstate visible-light-drivenphotocatalyst for breaking down nitric oxide. Environmental Science&Technology,2010,44(11):4276-4281.
    [17] Amano F, Nogami K, Abe R, et al. Preparation and characterization of bismuth tungstatepolycrystalline flake-ball particles for photocatalytic reactions. Journal of PhysicalChemistry C,2008,112(25):9320-9326.
    [18] Fu H, Zhang L, Yao W, et al. Photocatalytic properties of nanosized Bi2WO6catalystssynthesized via a hydrothermal process. Applied Catalysis B: Environmental,2006,66(1-2):100-110.
    [19] Yu J, Xiong J, Cheng B, et al. Hydrothermal preparation and visible-light photocatalyticactivity of Bi2WO6powders. Journal of Solid State Chemistry,2005,178(6):1968-1972.
    [20]孟晓爽,张秀芳,董晓丽,等.水热合成条件对Bi2WO6可见光催化性能的影响.大连工业大学学报,2011,30(05):361-364.
    [21]高春梅,王智宇. Effect of pH values on photocatalytic properties of Bi2WO6synthesizedby hydrothermal method. Journal of Wuhan University of Technology (Materials ScienceEdition),2009,24(04):533-536.
    [22]刘瑛,王为民,傅正义,等. Bi2WO6的水热合成及其光催化性能研究.无机材料学报,2011,26(11):1169-1174.
    [23]陈渊,刘国聪,李志友,等.柠檬酸辅助水热法制备可见光高效去除甲基橙的Bi2WO6纳米片.催化学报,2011,32(10):1631-1638.
    [24]姚三丽,陈建林,王仪春.水热合成纳米Bi2WO6粉末及其可见光催化活性.中国环境科学,2008,28(03):242-245.
    [25]韩伟春,赵莲花.可见光催化剂Bi2WO6的制备及其光催化性能的研究.延边大学学报(自然科学版),2009,35(04):335-339.
    [26] Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol A bymesoporous Bi2WO6under simulated solar light irradiation. Environmental Science&Technology,2010,44(17):6843-6848.
    [27]杨英杰,陈建林,王仪春,等. Bi2WO6催化剂的合成和表征及其光催化活性.化工环保,2007,27(06):501-505.
    [28] Gao X, Li W, Fu F, et al. Preparation of Bi2WO6photocatalyst and its application in thephotocatalytic oxidative desulfurization. China Petroleum Processing&PetrochemicalTechnology,2011,13(2):19-23.
    [29]张豪,王春英,李方,等. Bi2WO6可见光催化降解活性艳红X-3B的研究.中国环境科学,2010,30(12):1608-1613.
    [30] Shang M, Wang W, Sun S, et al. Bi2WO6nanocrystals with high photocatalytic activitiesunder visible light. Journal of Physical Chemistry C,2008,112(28):10407-10411.
    [31] Amano F, Yamakata A, Nogami K, et al. Visible light responsive pristine metal oxidephotocatalyst: Enhancement of activity by crystallization under hydrothermal treatment.Journal of the American Chemical Society,2008,130(52):17650-17651.
    [32]邢光建,李钰梅,赵铮,等.不同形貌的钨酸铋纳米材料的制备及其光催化性能.人工晶体学报,2010,39(05):1265-1271.
    [33] Zhang C, Zhu Y F. Synthesis of square Bi2WO6nanoplates as high-activityvisible-light-driven photocatalysts. Chemistry of Materials,2005,17(13):3537-3545.
    [34] Xie H D, Shen D Z, Wang X Q, et al. Microwave hydrothermal synthesis and visible-lightphotocatalytic activity of Bi2WO6nanoplates. Materials Chemistry and Physics,2007,103(2-3):334-339.
    [35]宋丽花,谈国强,夏傲,等.反应温度对微波水热法合成Bi2WO6粉体及光催化性能影响的研究.无机化学学报,2011,27(11):2133-2137.
    [36]郑玉芹,谈国强,博海洋,等. pH值对Bi2WO6粉体的微波水热法合成及光催化性能的影响.硅酸盐学报,2011,39(03):481-485.
    [37]朱振峰,于红光,李军奇,等.无助剂一步合成巢状钨酸铋微球及其光催化性能的研究.功能材料,2012,43(04):409-416.
    [38] Zhao G, Liu S W, Lu Q F, et al. Preparation of Bi2WO6by electrospinning: Researchingtheir synthesis mechanism and photocatalytic activity. Journal of Cluster Science,2011,22(4):621-631.
    [39] Shang M, Wang W Z, Ren J, et al. A practical visible-light-driven Bi2WO6nanofibrous matprepared by electrospinning. Journal of Materials Chemistry,2009,19(34):6213-6218.
    [40]沈琳,周德凤,孟健. Bi2WO6的静电纺丝法制备及其光催化性能.应用化工,2012,41(02):206-211.
    [41] Mann A K P, Skrabalak S E. Synthesis of single-crystalline nanoplates by spray pyrolysis:A metathesis route to Bi2WO6. Chemistry of Materials,2011,23(4):1017-1022.
    [42]戈磊,张宪华.微乳液法合成新型可见光催化剂Bi2WO6及其光催化性能.硅酸盐学报,2010,38(03):457-462.
    [43] Xie L J, Ma J F, Zhou J, et al. Morphologies-controlled synthesis and optical properties ofbismuth tungstate nanocrystals by a low-temperature molten salt method. Journal of theAmerican Ceramic Society,2006,89(5):1717-1720.
    [44]高春梅,刘博,翁晶晶,等.熔盐法制备Bi2WO6.稀有金属材料与工程,2010,39(S2):405-408.
    [45]林声和.颗粒定向的Bi2WO6陶瓷的制备.华南工学院学报,1985,13(01):52-56.
    [46] Zhang Z, Wang W, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6nanoparticles as a visible-light-driven photocatalyst. Journal of Hazardous Materials,2010,177(1-3):1013-1018.
    [47]陈磊,吴大雄,朱海涛.醇水混合溶剂中制备钨酸铋中空纳米结构.青岛科技大学学报(自然科学版),2012,33(01):9-12.
    [48] Xu C, Wei X, Ren Z, et al. Solvothermal preparation of Bi2WO6nanocrystals withimproved visible light photocatalytic activity. Materials Letters,2009,63(26):2194-2197.
    [49] Alfaro S O, Martínez-de la Cruz A. Synthesis, characterization and visible-lightphotocatalytic properties of Bi2WO6and Bi2W2O9obtained by co-precipitation method.Applied Catalysis A: General,2010,383(1-2):128-133.
    [50] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6nano-and microstructures: Shape controland associated visible-light-driven photocatalytic activities. Small,2007,3(9):1618-1625.
    [51] Ma D K, Huang S M, Chen W X, et al. Self-assembled three-dimensional hierarchicalumbilicate Bi2WO6microspheres from nanoplates: Controlled synthesis, photocatalyticactivities, and wettability. Journal of Physical Chemistry C,2009,113(11):4369-4374.
    [52] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-built hierarchical nest-likestructures with visible-light-induced photocatalytic activity. Journal of Physical ChemistryC,2007,111(34):12866-12871.
    [53] Huang Y, Wu J, Huang M, et al. Influence of surfactants on the morphology andphotocatalytic activity of Bi2WO6by hydrothermal synthesis. Science China (Chemistry),2011,54(01):211-216.
    [54] Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6superstructuresas high performance visible-light driven photocatalysts. Journal of Materials Chemistry,2007,17(24):2526-2532.
    [55] Li Y Y, Liu J P, Huang X T. Synthesis and visible-light photocatalytic property of Bi2WO6hierarchical octahedron-like structures. Nanoscale Research Letters,2008,3(10):365-371.
    [56] Huang H, Chen H F, Xia Y, et al. Controllable synthesis and visible-light-responsivephotocatalytic activity of Bi2WO6fluffy microsphere with hierarchical architecture. Journalof Colloid and Interface Science,2012,370:132-138.
    [57] Shang M, Wang W, Xu H. New Bi2WO6nanocages with high visible-light-drivenphotocatalytic activities prepared in refluxing EG. Crystal Growth&Design,2008,9(2):991-996.
    [58] Dai X J, Luo Y S, Zhang W D, et al. Facile hydrothermal synthesis and photocatalyticactivity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area.Dalton Transactions,2010,39(14):3426-3432.
    [59] Wu D X, Zhu H T, Zhang C Y, et al. Novel synthesis of bismuth tungstate hollownanospheres in water-ethanol mixed solvent. Chemical Communications,2010,46(38):7250-7252.
    [60] Cui Z K, Liu J, Zeng D W, et al. Quasi-one-dimensional bismuth tungsten oxidenanostructures templated by cotton fibers. Journal of the American Ceramic Society,2010,93(5):1479-1483.
    [61]王玉洁,任雪红,蒋引珊.掺杂纳米Bi2WO6的水热合成及其光催化性能研究.环境工程学报,2008,2(12):1715-1718.
    [62] Guo S, Li X F, Wang H Q, et al. Fe-ions modified mesoporous Bi2WO6nanosheets withhigh visible light photocatalytic activity. Journal of Colloid and Interface Science,2012,369(01):373-380.
    [63] Song X C, Zheng Y F, Ma R, et al. Photocatalytic activities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres. Journal of Hazardous Materials,2011,192(1):186-191.
    [64] Castro A, Begue P, Jimenez B, et al. New Bi2Mo1-xWxO6solid solution: Mechanosynthesis,structural study, and ferroelectric properties of the x=0.75member. Chemistry of Materials,2003,15(17):3395-3401.
    [65] Jimenez R, Castro A, Jimenez B. Evidence of ferroelastic-ferroelastic phase transition inBiMoxW1-xO6compounds. Applied Physics Letters,2003,83(16):3350-3352.
    [66]李红花,李坤威,汪浩.固溶体Bi2Mo(1-x)WxO6的水热合成及光催化性能.无机化学学报,2010,26(01):138-143.
    [67]武玉飞,高晓明,付峰,等.水热合成Cu-Bi2WO6催化剂及用于光催化氧化脱硫的研究.石油与天然气化工,2012,41(4):366-369.
    [68]刘恩周,樊君,胡晓云,等.基于上转换发光的可见/近红外光催化研究现状及展望.化工进展,2011,30(12):2621-2627.
    [69] Zhang Z, Wang W, Yin W, et al. Inducing photocatalysis by visible light beyond theabsorption edge: Effect of upconversion agent on the photocatalytic activity of Bi2WO6.Applied Catalysis B: Environmental,2010,101(1-2):68-73.
    [70] Zhang Z, Wang W, Xu J, et al. Enhanced photocatalytic activity of Bi2WO6doped withupconversion luminescence agent. Catalysis Communications,2011,13(1):31-34.
    [71]范乃英,侯海鸽,冯清茂,等.花状Bi32WO6∶Er+纳米球的纯绿色上转换荧光和增强的光催化活性(英文).发光学报,2012,33(03):263-268.
    [72]刘恢,袁坚,上官文峰.可见光响应光催化剂BiYWO6的制备、表征及其完全分解水的研究.高等学校化学学报,2008,29(08):1603-1608.
    [73] Liu H, Yuan J, Shangguan W F, et al. Visible-light-responding BiYWO6solid solution forstoichiometric photocatalytic water splitting. Journal of Physical Chemistry C,2008,112(23):8521-8523.
    [74] Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinatedBi2WO6and distributions of the intermediate products. Environmental Science&Technology,2008,42(6):2085-2091.
    [75] Shi R, Huang G L, Lin J, et al. Photocatalytic activity enhancement for Bi2WO6by fluorinesubstitution. Journal of Physical Chemistry C,2009,113(45):19633-19638.
    [76] Shang M, Wang W, Zhang L, et al. Bi2WO6with significantly enhanced photocatalyticactivities by nitrogen doping. Materials Chemistry and Physics,2010,120(1):155-159.
    [77] Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene-TiO2composites withenhanced photocatalytic activity. New Journal of Chemistry,2011,35(2):353-359.
    [78] Zhu P N, Nair A S, Yang S Y, et al. TiO2-MWCNT rice grain-shaped nanocomposites:Synthesis, characterization and photocatalysis. Materials Research Bulletin,2011,46(4):588-595.
    [79] Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2aggregatesby embedding carbon nanotubes as electron-transfer channel. Physical Chemistry ChemicalPhysics,2011,13(8):3491-3501.
    [80] Yu J G, Dai G P, Xiang Q J, et al. Fabrication and enhanced visible-light photocatalyticactivity of carbon self-doped TiO2sheets with exposed {001} facets. Journal of MaterialsChemistry,2011,21(4):1049-1057.
    [81] Zhang J, Huang Z-h, Xu Y, et al. Carbon-coated TiO2composites for the photocatalyticdegradation of low concentration benzene. New Carbon Materials,2011,26(1):63-70.
    [82] Shi X L, Yang X Y, Wang S W, et al. Photocatalytic degradation of rhodamine B dye withMWCNT/TiO2/C60composites by a hydrothermal method. Journal of Wuhan University ofTechnology-Materials Science Edition,2011,26(1):65-69.
    [83] Chen Y, Cao X, Kuang J, et al. The gas-phase photocatalytic mineralization of benzeneover visible-light-driven Bi2WO6@C microspheres. Catalysis Communications,2010,12(4):247-250.
    [84] Zhu S, Xu T, Fu H, et al. Synergetic effect of Bi2WO6photocatalyst with C60and enhancedphotoactivity under cisible irradiation. Environmental Science&Technology,2007,41(17):6234-6239.
    [85] Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performanceof graphene-Bi2WO6composite. Physical Chemistry Chemical Physics,2011,13(7):2887-2893.
    [86] Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4photocatalyst for an enhanced photoelectrochemical water splitting. Journal of PhysicalChemistry Letters,2010,1(17):2607-2612.
    [87]应红,王志永,郭政铎,等.还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能(英文).物理化学学报,2011,27(06):1482-1486.
    [88] Ge L, Liu J. Efficient visible light-induced photocatalytic degradation of methyl orange byQDs sensitized CdS-Bi2WO6. Applied Catalysis B: Environmental,2011,105(3-4):289-297.
    [89] Xu J, Wang W, Gao E, et al. Bi02WO6/Cu: A novel coupled system with enhancedphotocatalytic activity by Fenton-like synergistic effect. Catalysis Communications,2011,12(9):834-838.
    [90] Ren J, Wang W, Sun S, et al. Enhanced photocatalytic activity of Bi2WO6loaded with Agnanoparticles under visible light irradiation. Applied Catalysis B: Environmental,2009,92(1-2):50-55.
    [91] Wang D J, Xue G L, Zhen Y Z, et al. Monodispersed Ag nanoparticles loaded on thesurface of spherical Bi2WO6nanoarchitectures with enhanced photocatalytic activities.Journal of Materials Chemistry,2012,22(11):4751-4758.
    [92]余长林,凯杨, C Y J,等.水热合成Bi2WO6/ZnO异质结型光催化剂及其光催化性能.无机材料学报,2011,26(11):1157-1163.
    [93] Zhang L, Wang W Z, Shang M, et al. Bi2WO6@carbon/Fe3O4microspheres: Preparation,growth mechanism and application in water treatment. Journal of Hazardous Materials,2009,172(2-3):1193-1197.
    [94] Zhang L S, Wong K H, Chen Z G, et al. AgBr-Ag-Bi2WO6nanojunction system: A noveland efficient photocatalyst with double visible-light active components. Applied Catalysisa-General,2009,363(1-2):221-229.
    [95] Murcia López S, Hidalgo M C, Navío J A, et al. Novel Bi2WO6-TiO2heterostructures forRhodamine B degradation under sunlike irradiation. Journal of Hazardous Materials,2011,185(2-3):1425-1434.
    [96] Shang M, Wang W Z, Zhang L, et al.3D Bi2WO6/TiO2hierarchical heterostructure:Controllable synthesis and enhanced visible photocatalytic degradation Performances.Journal of Physical Chemistry C,2009,113(33):14727-14731.
    [97] Yu H G, Liu R, Wang X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6nanoparticles by Ag2O cocatalyst. Applied Catalysis B-Environmental,2012,111:326-333.
    [98] Wang W C, Yang W J, Chen R, et al. Investigation of band offsets of interfaceBiOCl:Bi2WO6: a first-principles study. Physical Chemistry Chemical Physics,2012,14(7):2450-2454.
    [99]孟晓爽,张秀芳,董晓丽,等. Fe2O3/Bi2WO6的制备及其可见光光催化性能的研究.材料导报,2011,25(17):59-61.
    [100] Liu W, Chen S F, Zhang H Y, et al. Preparation, characterisation of p-n heterojunctionphotocatalyst CuBi2O4/Bi2WO6and its photocatalytic activities. Journal of ExperimentalNanoscience,2011,6(2):102-120.
    [101] Duan F, Zheng Y, Chen M. Flowerlike PtCl4/Bi2WO6composite photocatalyst withenhanced visible-light-induced photocatalytic activity. Applied Surface Science,2011,257(6):1972-1978.
    [102] Zhang Q, Chen X Y, Zhou Y X, et al. Synthesis of ZnWO4@MWO4(M=Mn, Fe)core-shell nanorods with optical and antiferromagnetic property by oriented attachmentmechanism. Journal of Physical Chemistry C,2007,111(10):3927-3933.
    [103] Sun H Q, Wang S B, Ang H M, et al. Halogen element modified titanium dioxide forvisible light photocatalysis. Chemical Engineering Journal,2010,162(2):437-447.
    [104] Zhang Q Y, Gao T T, Andino J M, et al. Copper and iodine co-modified TiO2nanoparticlesfor improved activity of CO2photoreduction with water vapor. Applied CatalysisB-Environmental,2012,123:257-264.
    [105] Zhang Q Y, Li Y, Ackerman E A, et al. Visible light responsive iodine-doped TiO2forphotocatalytic reduction of CO2to fuels. Applied Catalysis a-General,2011,400(1-2):195-202.
    [106] Su Y L, Xiao Y T, Fu X, et al. Photocatalytic properties and electronic structures ofiodine-doped TiO2nanotubes. Materials Research Bulletin,2009,44(12):2169-2173.
    [107] Tojo S, Tachikawa T, Fujitsuka M, et al. Iodine-doped TiO2photocatalysts: Correlationbetween band structure and mechanism. Journal of Physical Chemistry C,2008,112(38):14948-14954.
    [108] Smith S C, Liu G, Sun C H, et al. Iodine doped anatase TiO2photocatalyst with ultra-longvisible light response: correlation between geometric/electronic structures and mechanisms.Journal of Materials Chemistry,2009,19(18):2822-2829.
    [109] Wang Y P, Ren J K, Liu G Q, et al. Synthesis and characterization of iodine ion dopedmesoporous TiO2by sol-gel method. Materials Chemistry and Physics,2011,130(1-2):493-499.
    [110] Ma Y, Fu J W, Tao X, et al. Low temperature synthesis of iodine-doped TiO2nanocrystallites with enhanced visible-induced photocatalytic activity. Applied SurfaceScience,2011,257(11):5046-5051.
    [111] Liu G, Sun C H, Wang L Z, et al. Bandgap narrowing of titanium oxide nanosheets:homogeneous doping of molecular iodine for improved photoreactivity. Journal ofMaterials Chemistry,2011,21(38):14672-14679.
    [112] Zhang G, Lü F, Li M, et al. Synthesis of nanometer Bi2WO6synthesized by sol-gel methodand its visible-light photocatalytic activity for degradation of4BS. Journal of Physics andChemistry of Solids,2010,71(4):579-582.
    [113]刘自力,秦祖赠,杨克迪,等.焙烧温度对钨酸铅的结构及光催化活性的影响.材料研究与应用,2008,2(04):361-364.
    [114]刘自力,秦祖赠,韦江慧.焙烧温度对钨酸铋光催化剂的影响.广西大学学报(自然科学版),2006,31(01):82-85.
    [115] Saison T, Chemin N, Chanéac C, et al. Bi2O3, BiVO4, and Bi2WO6: Impact of surfaceproperties on photocatalytic activity under visible light. Journal of Physical Chemistry C,2011,115(13):5657-5666.
    [116] Shi R, Huang G, Lin J, et al. Photocatalytic activity enhancement for Bi2WO6by fluorinesubstitution. Journal of Physical Chemistry C,2009,113(45):19633-19638.
    [117] Amano F, Nogami K, Tanaka M, et al. Correlation between surface area and photocatalyticactivity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchicalstructure. Langmuir,2010,26(10):7174-7180.
    [118] Maczka M, Paraguassu W, Freire P T C, et al. Lattice dynamics and pressure-induced phasetransitions in Bi2W2O9: High-pressure Raman study. Physical Review B,2010,81(10):104301.
    [119] Bi J, Wu L, Li Z, et al. A facile microwave solvothermal process to synthesize ZnWO4nanoparticles. Journal of Alloys and Compounds,2009,480(2):684-688.
    [120] Chen J F, Hou Q Q, Zheng Y Z, et al. Visible-light-response iodine-doped titanium dioxidenanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry,2011,21(11):3877-3883.
    [121] Chang X, Huang J, Cheng C, et al. Photocatalytic decomposition of4-t-octylphenol overNaBiO3driven by visible light: Catalytic kinetics and corrosion products characterization.Journal of Hazardous Materials,2010,173(1-3):765-772.
    [122] Guo Y, Yang X, Ma F, et al. Additive-free controllable fabrication of bismuth vanadatesand their photocatalytic activity toward dye degradation. Applied Surface Science,2010,256(7):2215-2222.
    [123] Wen C, Sun L, Zhang J M, et al. Effect of iodine-doping on photocatalytic activity of TiO2photocatalyst. Chemical Journal of Chinese Universities-Chinese,2006,27(12):2408-2410.
    [124] Boukherroub R, Barka-Bouaifel F, Sieber B, et al. Synthesis and photocatalytic activity ofiodine-doped ZnO nanoflowers. Journal of Materials Chemistry,2011,21(29):10982-10989.
    [125] Fu X Z, Su W Y, Zhang Y F, et al. Multivalency iodine doped TiO2: Preparation,characterization, theoretical studies, and visible-light photocatalysis. Langmuir,2008,24(7):3422-3428.
    [126] Zhang Z, Wang W, Wang L, et al. Enhancement of visible-light photocatalysis by couplingwith narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6. Acs AppliedMaterials&Interfaces,2012,4(2):593-597.
    [127] Peng X L, Yao M M, Li F, et al. Microstructures and photocatalytic properties of S dopednanocrystalline TiO2films. Particulate Science and Technology,2012,30(1):81-91.
    [128] Yang G D, Yan Z F, Xiao T C. Low-temperature solvothermal synthesis ofvisible-light-responsive S-doped TiO2nanocrystal. Applied Surface Science,2012,258(8):4016-4022.
    [129] Etacheri V, Seery M K, Hinder S J, et al. Nanostructured Ti1-xSxO2-yNyheterojunctions forefficient visible-light-induced photocatalysis. Inorganic Chemistry,2012,51(13):7164-7173.
    [130] Bayati M R, Moshfegh A Z, Golestani-Fard F. On the photocatalytic activity of the sulfurdoped titania nano-porous films derived via micro-arc oxidation. Applied Catalysisa-General,2010,389(1-2):60-67.
    [131] Han C, Pelaez M, Likodimos V, et al. Innovative visible light-activated sulfur doped TiO2films for water treatment. Applied Catalysis B-Environmental,2011,107(1-2):77-87.
    [132] Jo W K, Kim J T. Decomposition of gas-phase aromatic hydrocarbons by applying anannular-type reactor coated with sulfur-doped photocatalyst under visible-light irradiation.Journal of Chemical Technology and Biotechnology,2010,85(4):485-492.
    [133] Yap P S, Cheah Y L, Srinivasan M, et al. Bimodal N-doped P25-TiO2/AC composite:Preparation, characterization, physical stability, and synergistic adsorptive-solarphotocatalytic removal of sulfamethazine. Applied Catalysis a-General,2012,427:125-136.
    [134] Xie Q, Meng Q Q, Zhuang G L, et al. Water oxidation on N-Doped TiO2nanotube arrays.International Journal of Quantum Chemistry,2012,112(13):2585-2590.
    [135] Wang Q Y, Yang X C, Wang X L, et al. Synthesis of N-doped TiO2mesosponge bysolvothermal transformation of anodic TiO2nanotubes and enhanced photoelectrochemicalperformance. Electrochimica Acta,2012,62:158-162.
    [136] Cheng X W, Yu X J, Xing Z P. Characterization and mechanism analysis of N doped TiO2with visible light response and its enhanced visible activity. Applied Surface Science,2012,258(7):3244-3248.
    [137] Li H, Lei Y K, Tu R, et al. Hole distribution in nitrogen-doped TiO2anatase nanoparticles.Physica Status Solidi B-Basic Solid State Physics,2011,248(7):1665-1670.
    [138] Yamanaka K, Morikawa T. Charge-carrier dynamics in nitrogen-doped TiO2powderstudied by femtosecond time-resolved diffuse reflectance spectroscopy. Journal of PhysicalChemistry C,2012,116(1):1286-1292.
    [139] Ao Y H, Xu J J, Fu D G. Study on the effect of different acids on the structure andphotocatalytic activity of mesoporous titania. Applied Surface Science,2009,256(1):239-245.
    [140] Carneiro J T, Savenije T J, Moulijn J A, et al. Toward a physically sound structure-activityrelationship of TiO2-based photocatalysts. Journal of Physical Chemistry C,114(1):327-332.
    [141] Yu C L, Fan C F, Meng X J, et al. A novel Ag/BiOBr nanoplate catalyst with highphotocatalytic activity in the decomposition of dyes. Reaction Kinetics Mechanisms andCatalysis,2011,103(1):141-151.
    [142] Zhang S C, Zhang C A, Man Y, et al. Visible-light-driven photocatalyst of Bi2WO6nanoparticles prepared via amorphous complex precursor and photocatalytic properties.Journal of Solid State Chemistry,2006,179(1):62-69.
    [143] Ge L. Novel Pd/BiVO4composite photocatalysts for efficient degradation of methyl orangeunder visible light irradiation. Materials Chemistry and Physics,2008,107(2-3):465-470.
    [144] Long R, Dai Y, Huang B. Structural and electronic properties of iodine-doped anatase andrutile TiO2. Computational Materials Science,2009,45(2):223-228.
    [145] Zhou X S, Peng F, Wang H J, et al. Effect of nitrogen-doping temperature on the structureand photocatalytic activity of the B, N-doped TiO2. Journal of Solid State Chemistry,2011,184(1):134-140.
    [146] Zhou B, Qu J, Zhao X, et al. Fabrication and photoelectrocatalytic properties ofnanocrystalline monoclinic BiVO4thin-film electrode. Journal of Environmental Sciences,2011,23(1):151-159.
    [147] Sajjad S, Leghari S A K, Chen F, et al. Bismuth-doped ordered mesoporous TiO2:Visible-light catalyst for simultaneous degradation of phenol and chromium. Chemistry-aEuropean Journal,2010,16(46):13795-13804.
    [148] Zhang Y, Zhang P, Huo Y N, et al. Ethanol supercritical route for fabricating bimodalcarbon modified mesoporous TiO2with enhanced photocatalytic capability in degradingphenol. Applied Catalysis B-Environmental,2012,115:236-244.
    [149] Huang C H, Lin Y M, Wang I K, et al. Photocatalytic activity and characterization ofcarbon-modified titania for visible-light-active photodegradation of nitrogen oxides.International Journal of Photoenergy, doi:10.1155/2012/548647.
    [150] Shi J W, Chen J W, Cui H J, et al. One template approach to synthesize C-doped titaniahollow spheres with high visible-light photocatalytic activity. Chemical EngineeringJournal,2012,195:226-232.
    [151] Parayil S K, Kibombo H S, Wu C M, et al. Enhanced photocatalytic water splitting activityof carbon-modified TiO2composite materials synthesized by a green synthetic approach.International Journal of Hydrogen Energy,2012,37(10):8257-8267.
    [152] Ming H, Huang H, Pan K M, et al. C/TiO2nanohybrids co-doped by N and their enhancedphotocatalytic ability. Journal of Solid State Chemistry,2012,192:305-311.
    [153] Li Y J, Zhou X M, Chen W, et al. Photodecolorization of rhodamine B on tungsten-dopedTiO2/activated carbon under visible-light irradiation. Journal of Hazardous Materials,2012,227:25-33.
    [154] Lin X X, Rong F, Ji X A, et al. Carbon-doped mesoporous TiO2film and its photocatalyticactivity. Microporous and Mesoporous Materials,2011,142(1):276-281.
    [155] Cong Y, Li X K, Qin Y, et al. Carbon-doped TiO2coating on multiwalled carbon nanotubeswith higher visible light photocatalytic activity. Applied Catalysis B-Environmental,2011,107(1-2):128-134.
    [156] Cong Y, Qin Y, Li X K, et al. Preparation and visible light photocatalytic activity oftitanium dioxide coated multiwalled carbon nanotubes. Acta Physico-Chimica Sinica,2011,27(6):1509-1515.
    [157] Lee W J, Lee J M, Kochuveedu S T, et al. Biomineralized N-Doped CNT/TiO2core/shellnanowires for visible light photocatalysis. Acs Nano,2012,6(1):935-943.
    [158] Zhan Z Y, Zheng L X, Pan Y Z, et al. Self-powered, visible-light photodetector based onthermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure. Journal ofMaterials Chemistry,2012,22(6):2589-2595.
    [159] Khalid N R, Hong Z L, Ahmed E, et al. Synergistic effects of Fe and graphene onphotocatalytic activity enhancement of TiO2under visible light. Applied Surface Science,2012,258(15):5827-5834.
    [160] Khalid N R, Ahmed E, Hong Z L, et al. Nitrogen doped TiO2nanoparticles decorated ongraphene sheets for photocatalysis applications. Current Applied Physics,2012,12(6):1485-1492.
    [161] Gao Y Y, Pu X P, Zhang D F, et al. Combustion synthesis of graphene oxide-TiO2hybridmaterials for photodegradation of methyl orange. Carbon,2012,50(11):4093-4101.
    [162] Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocompositeas a highly efficient visible-light plasmonic photocatalyst. Acs Nano,2011,5(6):4529-4536.
    [163] Zhang Y, Tang Z-R, Fu X, et al. Engineering the unique2D mat of graphene to achievegraphene-TiO2nanocomposite for photocatalytic selective transformation: What advantagedoes graphene have over its forebear carbon nanotube? Acs Nano,2011,5(9):7426-7435.
    [164] Zhang N, Zhang Y, Pan X, et al. Assembly of CdS nanoparticles on the two-dimensionalgraphene scaffold as visible-light-driven photocatalyst for selective organic transformationunder ambient conditions. Journal of Physical Chemistry C,2011,115(47):23501-23511.
    [165] Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for the degradation ofdyes under visible light irradiation. Journal of Materials Chemistry,2011,21(11):3634-3640.
    [166] Kim H-i, Moon G-h, Monllor-Satoca D, et al. Solar photoconversion using graphene/TiO2composites: Nanographene shell on TiO2core versus TiO2nanoparticles on graphene sheet.Journal of Physical Chemistry C,2011,116(1):1535-1543.
    [167] Ng Y H, Lightcap I V, Goodwin K, et al. To what extent do graphene scaffolds improve thephotovoltaic and photocatalytic response of TiO2nanostructured films? Journal of PhysicalChemistry Letters,2010,1(15):2222-2227.
    [168] Du J A, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporousTiO2-graphene composite films: Improved mass transfer, reduced charge recombination,and their enhanced photocatalytic activities. Acs Nano,2010,5(1):590-596.
    [169] Kuvarega A T, Krause R W M, Mamba B B. Multiwalled carbon nanotubes decorated withnitrogen, palladium co-doped TiO2(MWCNT/N, Pd co-doped TiO2) for visible lightphotocatalytic degradation of Eosin Yellow in water. Journal of Nanoparticle Research,2012,14(4):776.
    [170] Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhancedplasmonic photocatalytic activity under visible light. Environmental Science&Technology,2011,45(13):5731-5736.
    [171] Zhang S, Zhang C, Man Y, et al. Visible-light-driven photocatalyst of Bi2WO6nanoparticles prepared via amorphous complex precursor and photocatalytic properties.Journal of Solid State Chemistry,2006,179(1):62-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700