用户名: 密码: 验证码:
棉纤维起始发育过程中microRNA的鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的天然纤维来源之一,在纺织业中具有重要作用,同时还是纤维素合成以及细胞伸长研究的模式植物。棉纤维是从胚珠表皮上分化和突起的单细胞,与拟南芥表皮毛具有很大的相似性,后者可以作为棉纤维研究的模式。棉纤维包括长绒(lint)和短绒(fuzz),前者在开花当天从棉花胚珠外珠被表皮层分化突起,后者在开花后4-5天时从外珠被表皮上突起。microRNA (miRNA)是真核生物中发现的一类内源性的具有调控功能的非编码小分子RNA,通过碱基互补配对的方式识别靶标mRNA,通过靶基因切割或翻译抑制的方式调控靶基因表达。miRNA在植物生长发育各个方面和生物非生物胁迫抗性调节中发挥重要的作用。
     本研究利用高通量测序方法测序3个纤维起始发育突变体(XZ142FLM, MD17FLM和SL1-7-1FLM),2个短绒起始发育突变体(N1NSM和n2NSM)和正常纤维TM-1六个材料棉纤维起始发育期的小RNA,利用雷蒙德氏棉和陆地棉基因组序列鉴定棉花MIRNA前体,用Northern blotting验证新miRNA在棉花中的表达;根据miRNA在野生型和突变体中的表达差异鉴定棉纤维起始调控的关键miRNA;用转录组数字表达谱验证miRNA靶基因的表达;利用5'RACE验证miRNA对靶基因mRNA的剪切。研究结果如下:
     1.陆地棉胚珠早期发育过程中miRNA的鉴定
     以陆地棉遗传标准系TM-1为研究材料,建立了棉花纤维起始发育时期和短绒起始发育时期的小RNA混库,TM-LA(-3,-1,0,1DPA)和TM-LB (-1,0,1,3,5DPA)。利用HiSeq测序技术共检测到了三千万条小RNA序列,共检测到33个已知miRNA家族表达。利用雷蒙德氏棉基因组序列,成功鉴定出了93个新的MIRNAs前体,包括28个已知miRNA家族的新成员,它们属于10个家族;另外65为全新的miRNA,它们可以产生43个不同成熟体,将其编号为miR7234-miR7276。Northern blotting验证发现miR7235,miR7244和miR7251在-3DPA和3DPA的胚珠中的表达量相同,与测序结果一致。miR7235可以靶向肌动蛋白ATP酶超家族蛋白基因,它可以介导该家族基因Gra#S24823914和Ghi#S42313172mRNA的切割,切点位于miRNA与mRNA的互补区域miR7235第10和第11个碱基之间。
     2.陆地棉基因组序列在microRNA鉴定中的应用
     以三个纤维起始发育突变体为材料,建立了棉花纤维起始发育时期(-3,-1,0,1DPA)的小RNA混库;以短绒起始发育突变体为材料,构建短绒起始发育时期(-1,0,1,3,5DPA)的小RNA混库;结合野生型小RNA混库(TM-LA和TM-LB),共七个库,每个库的小RNAs序列超过了16M。利用陆地棉基因组组装序列鉴定出322个新的棉花MIRNAs前体。这些前体的长度变化很大,从79nt到544nt不等,主要集中在80-200nt,平均长度是149.8nt。它们所形成的miRNA成熟体中,74.2%第一个碱基是“尿嘧啶”。这322条MIRNAs中,197个前体属于38个已知家族;剩余125条不与miRBase库(Release20)中任何miRNA同源,为新的miRNA.这125个新miRNA前体可以产生102条不同的miRNA成熟体,归类于86个新的miRNA家族,将其命名为ghr-miRn01-86。
     58条新MIRNAs前体获得的成熟体序列存在一定变异,包括长度的变异和位置变异。同一家族中不同成熟体序列的差异主要是成熟体5’端和3’端起止位置存在差异和碱基的变异,它们的表达差异非常大。以miR156/535家族成员为例证明了成熟体序列差异对于靶基因的选择和靶基因mRNA的切割位点造成影响。
     3.棉花miRNA在纤维起始发育过程中功能分析
     利用七个棉纤维起始时期小RNA库鉴定这148个miRNA家族在野生型和突变体中的表达。在野生型TM-1中下调而在突变体中共同上调表达的miRNA,包括miRl56,miR160, miR160*, miR166, miR167, miR171,miR535, miR827等保守家族,miR2948*, miR3476, miR7495, miR7504, miR7505, miR7508等非保守家族,以及miRn13, miRn21, miRn51, miRn60, miRn77, miRn80等七个新家族。在野生型TM-1中上调表达而在突变体中共同下调表达的miRNA,包括miR162, miR164, miR166*, miR172, miR396*, miR403, miR482*等保守家族,miR2949, miR7122, miR7502, miR7511四个非保守家族,以及新家族的miRn08和miRn81。野生型TM-1与突变体比较,在三个纤维起始突变体中共同上调表达而在两个短绒起始突变体中共同下调表达的miRNA,包括miR169, miR172*, miR390, miR390*, miR394, miR396, miR482等保守家族,非保守家族的miR2948,以及新鉴定家族的miRn07, miRn76, miRn85, miRn85*。用六种实验材料-3,-1,1,3和5DPA胚珠的转录组表达谱验证miRNA靶基因的表达,发现差异表达的39个miRNA家族的靶基因有237个。经过对靶基因的表达模式分析,鉴定出73个基因可能受对应的miRNA调控。用5'RACE验证了8个miRNA对11个靶基因的剪切。结果显示miR164, miR171, miR394和miR396介导7个基因mRNA剪切的切点位于miRNA的第10和第11个碱基之间;miR397, miR530和miRn20介导的靶基因切割位点位于mRNA和miRNA结合区域上游6-10nt的位置;miRn80的靶基因Chi#S28642014的切割位点位于结合区域的下游80nt处。切点位置偏离miRNA的第10和第11个碱基之间的mRNA切割事件是由其他小RNA切割导致。
Cotton is the source of the most important renewable, natural textile fiber in the world and is of significant importance in the textile industry. Meanwhile, Cotton provides a novel system in which to better understand the genetic and biochemical control of cell elongation as well as cellulose biosynthesis. Cotton'fibers'are trichomes derived from epidermal cells of the developing seed. These trichomes share many similarities with those found on Arabidopsis thaliana leaves and which could serve as a model for elucidating the genetic mechanisms that control cotton fiber and seed development. MicroRNAs (miRNAs) are endogenous20-24nucleotides in length, non-coding RNAs, serving as a class of post-transcriptional regulators in eukaryotic organism. MiRNAs negatively regulate their target genes by mRNA cleavage or translation expression via extensive complementarity between miRNAs and their targets. Increasing evidence has demonstrated that plant miRNAs have functions in a wide range of developmental processes and biotic and abiotic stress.
     In this study, we sequenced seven small RNA libraries constructed from young ovules during fiber initial period using three fibreless mutants (XZ142FLM, MD17FLM, SL1-7-1FLM), two fuzzless mutants (N1NSM, n2NSM) and wild type TM-1. New MIRNAs precursors were predicted in cotton using genome sequence of Gossypium raimondii and Gossypium hirsutum. Some of the novel miRNAs and candidate target genes were validated by the Northern blot and5'RACE. MiRNAs associated with fiber initiation were identified according to different expression between WT and the five mutants. Targets genes expression were validated using transcriptome profiling and the cleavage sites were validated using5' RACE. The main results were as follows:
     1. Genome-wide identification of miRNAs during fiber and ovule initial development
     The Upland cotton Texas Marker-1(TM-1) was used to construct small RNA libraries from young ovules during lint and fuzz initial period. TM-LA was pooled from-3,-1,0and1DPA, and TM-LB was pooled from-1,0,1,3and5DPA. A total of33million small RNA sequences were obtained, and33known miRNA families were expressed in TM-1ovules. Overall,93new miRNA precursors were identified, of which28belonged to10known families and the other65were considered to be novel miRNAs.65precursors containing43small RNAs which were numbered in consecutive order from miR7234to miR7276. Northern blotting validated that miR7235, miR7244and miR7251expressed equally between-1DPA and3DPA as the same as the deep sequencing results. It was predicted miR7235could target a series of Actin-like ATPase superfamily protein, two of which were validated using5'RACE with cleavage sites between the10th and11th nucleotide of miR7235.
     2. Genome sequence of upland cotton was used in miRNAs identification.
     Three fibreless mutants (XZ142FLM, MD17FLM, SL1-7-1FLM) were used to construct small RNA libraries during fiber initial period (-3,-1,0and1DPA), and two fuzzless mutants (N1NSM, n2NSM) were used to construct small RNA libraries during fuzz initial period (-1,0,1,3and5DPA). Taken TM-LA and TM-LB together, seven libraries were constructed, each with more than16M reads. Using the genome sequence of upland cotton, a total of322new MIRNAs were identified in upland cotton. The precursors varied in length, from79to544nt, and had an average length of149.8nt. The majority of the miRNAs (74.2%) have a uridine at5'terminal. Among the322miRNAs,197belong to38known families, the other125have no homolog in miRBase (Release20), and we labeled them as novel miRNAs. Those novel MIRNA precursors produce102distinct miRNA mature sequence belonging to86families, and number them as ghr-miRn01-86.
     58of the new MIRNAs precursors produce mature sequences with variances in size or position. Distinct members of the same family have variances in start site or nucleotides. The expression of the members differs a lot. The members of miR156/535could target the same target genes with score and the cleavage products differ by two nucleotides depending on which miRNA guides the processing event.
     3. Function analysis of miRNA associated with fiber initiation
     Taken cotton known miRNA and the new miRNAs identified in this study together,62known families and86novel miRNA families were identified in upland cotton. MiRNA downregulated in wild type TM-1and upregulated in the five mutants include seven conserved families (miR156, miR160, miR160*, miR166, miR167, miR171, miR535, miR827), six less conserved miRNA families (miR2948*, miR3476, miR7495, miR7504, miR7505, miR7508) and six novel families (miRn13, miRn21, miRn51, miRn60, miRn77, miRn80). MiRNA upregulated in wild type TM-1and downregulated in the five mutants included seven conserved families (miR162, miR164, miR166*, miR172, miR396*, miR403, miR482*), four less conserved miRNA families (miR2949, miR7122, miR7502, miR7511) and two novel miRNAs (miRn08and miRn81). Compared with TM-1, miRNAs upregulated in fiberless mutants and downregulated in fuzzless mutants included miR169, miR172*, miR390, miR390*, miR394, miR396, miR482, miR2948, miRn07, miRn76, miRn85, miRn85*. Targets genes expression of the39differentially expressed miRNAs were validated using transcriptome profiling. Cluster analysis of227target genes showed that expression pattern of73genes were complementary with miRNA. Eleven target genes of eight miRNA were validated using5'RACE. Seven target genes of miR164, miR171, miR394and miR396were cleaved in the exact site between nucleotides10and11from the5'end of the miRNA. Target genes of miR397, miR530and miRn20were cleaved at6-1Ont upstream of complementary region. Target gene of miRn80was cleaved at80nt downstream of complementary region. We found cleavage sites away from the10th and11th nucleotide of miRNA were actually cleavage by other small RNA.
引文
1.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167.
    2.潘家驹.棉花育种学[M].北京:中国农业出版社,1998.
    3.万群.棉花显性光子基因(N1)的精细定位及其短绒初始发育时期的表达谱与microRNA分析.南京农业大学博士论文,2013.
    4.朱一超.棉花纤维发育转录因子的表达分析和两个基因的克隆与初步功能分析.南京农业大学博士论文,2009.
    5. Abdurakhmonov IY, Devor EJ, Buriev ZT, et al. Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. [J]. BMC Plant Biol,2008,8:93-105.
    6. Addo-Quaye C, Eshoo TW, Bartel DP, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome [J]. Curr Biol,2008,18:758-762.
    7. Adenot X, Elmayan T, Lauressergues D, et al. DRB4-dependent TAS3 trarns-acting siRNAs control leaf morphology through AGO7 [J]. Curr Biol,2006,16:927-932.
    8. Allen E, Xie Z, Gustafson AM, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J]. Nat Genet,2004,36:1282-1290.
    9. Alonso-Peral MM, Sun C, Millar AA. MicroRNA 159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis [J]. PLoS ONE,2012,7(4):e34751.
    10. Ambros V, Bartel B, Bartel DP. A uniform system for microRNA annotation [J]. RNA,2003,9: 277-279.
    11. Appasani K. MicroRNAs:from basic science to disease biology [M]. Cambridge University Press, 2008,Pp7-21.
    12. Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants [J]. Plant Cell,2005, 17:1658-1673.
    13. Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J]. Plant Physiol,2006,141:988-999.
    14. Barozai MYK, Irfan M, Yousaf R, et al. Identification of micro-RNAs in cotton [J]. Plant Physiol Biochem,2008,46:739-751.
    15. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116: 281-297.
    16. Basra AS, Malik CP. Development of the cotton fiber [J]. Int Rev Cytol Suppl,1984,89:65-113.
    17. Beasley CA, Ting IP. The effects of plant growth substance on in vitro fiber development from unfertilized cotton ovules [J]. Am J Bot,1974,61:188-194
    18. Berezikov E, Liu N, Flynt AS, et al. Evolutionary flux of canonical microRNAs and mirtrons in Drosophila [J]. Nat Genet,2010,42:6-9.
    19. Bologna NG, Mateos JL, Bresso EG, et al. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159 [J]. EMBO J,2009,28:3646-3656.
    20. Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility [J]. BMC Plant Biol,2010,10:64.
    21. Buxdorf K, Hendelman A, Stav R, et al. Identification and characterization of a novel miR159 target not related to MYB in tomato [J]. Planta,2010,232:1009-1022.
    22. Byrne ME. Shoot meristem function and leaf polarity:the role of Class III HD-ZIP genes [J]. PLoS Genet,2006,2(6):e89.
    23. Chellappan P, Xia J, Zhou X, et al. siRNAs from miRNA sites mediate DNA methylation of target genes [J]. Nucl Acids Res,2010,38:6883-6894.
    24. Chen D, Ren Y, Deng Y, et al. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities [J]. J Exp Bot,2010,61(6):1853-1867.
    25. Chen ZH, Bao ML, Sun YZ. et al. Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis [J]. Plant Mol Biol, 2011,77:619-629
    26. Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis [J]. Plant Cell,2006,18:412-421.
    27. Chuck G, Meeley R, Hake S. Floral eristeminitiation and eristemcell fate are regulated by the maize AP2 genes ids1 and sid1 [J]. Development,2008,135:3013-3019.
    28. Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries [J]. Development,2010,137:1243-1250.
    29. Cuperus JT, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis [J]. Nat Struct Mol Biol, 2010,17:997-1003.
    30. Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA Genes [J]. Plant Cell,2011,23:431-442.
    31. Ding YF, Zhu C. The role of microRNAs in copper and cadmium homeostasis [J]. Biochem Biophys Res Co,2009,386:6-10.
    32. Donner TG, Sherr I, Scarpella E, et al. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves [J]. Development,2009,136:3235-3246.
    33. Dugas DV, Bartel B. MicroRNA regulation of gene expression in plants [J]. Curr Opin Plant Biol, 2004,7:512-520.
    34. Eamens A, Wang MB, Smith NA, et al. RNA silencing in plants:yesterday, today, and tomorrow [J]. Plant Physiol,2008,147:456-468.
    35. Earley KW, Poethig RS. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis [J]. J Biol Chem,2011,286:38184-38189.
    36. Endrizzi JD, Turcotte EL, Kohel RJ. Genetics, cytology, and evolution of Gossypium [J]. Adv Genet, 1985,23:271-375.
    37. Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes [J]. PLoS One,2007,2:e219.
    38. Fahlgren N, Jogdeo S, Kasschau KD, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana [J]. Plant Cell,2010,22:1074-1089.
    39. Fahlgren N, Montgomery TA, Howell MD, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 tasiRNA affects developmental timing and patterning in Arabidopsis [J]. Curr Biol,2006,16: 939-944.
    40. Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response in Arabidopsis [J]. Curr Biol,2005,15:2038-2043.
    41. Gan Y, Kumimoto R, Liu C, et al. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis [J]. Plant Cell,2006,18:1383-1395.
    42. Gan Y, Liu C, Yu H, et al. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate [J]. Development, 2007,134:2073-2081.
    43. Gao P, Bai X, Yang L, et al. osa-MIR393:a salinity-and alkaline stress-related microRNA gene [J]. Mol Biol Rep,2011,38:237-242.
    44. Garcia D, Collier SA, Byrne ME, et al. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway [J]. Curr Biol,2006,16:933-938.
    45. Gasciolli V, Mallory AC, Bartel DP, et al. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs [J]. Curr Biol.2005, 15(16):1494-1500.
    46. George Chuck, A Mark Cigan, Koy Saeteurn, et al. The heterochronic maize mutant Corngrassl results from overexpression of a tandem microRNA [J]. Nat Genet,2007a,39:544-549.
    47. George Chuck, Robert Meeley, Erin Irish, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikeletl [J]. Nat Genet,2007b,39:1517-1521.
    48. German MA, Pillay M, Jeong DH, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends [J]. Nat Biotech,2008,26:941-946.
    49. Golden TA, Schauer SE, Lang JD, et al. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis [J]. Plant Physiol,2002,130:808-822.
    50. Guan XY, Yu N, Shangguan XX, et al. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chinese Sci Bull,2007,52:1734-1741.
    51. Guan XY, Li QJ, Shan CM, et al. The HD-Zip Ⅳ gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2 [J]. Physiol Plantarum,2008,134(1):174-182.
    52. Gutierrez L, Bussell JD, Pacurar DI, et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance [J]. Plant Cell,2009,21:3119-3132.
    53. He XF, Fang YY, Feng L, et al. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica [J]. FEBS Lett,2008,582:2445-2452.
    54. Hendrix DL. Carbohydrates and carbohydrate-enzymes in developing cotton ovules [J]. Physiol Plantarum,1990,78:85-92.
    55. Hendrix B, Stewart JM. Estimation of the nuclear DNA content of Gossypium species [J]. Ann Bot (Lond),2005,95:789-797
    56. Hoen PAC, Ariyurek Y, Thygesen HH. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms [J]. Nucleic Acids Res.2008;36:141-152.
    57. Hsieh LC, Lin SI, Shih AC, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing [J]. Plant Physiol,2009,151:2120-2132.
    58. Hu Z, Jiang QY, Ni ZY, et al. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger Secondary siRNA biogenesis [J]. J Integrative Plant Biology, 2013,55(2):160-176.
    59. Humphries JA, Walker AR, Timmis JN, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidposis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Bio,2005,57:67-81.
    60. Jay F, Wang Y, Yu A, et al. Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis [J]. PLoS Pathog,2011,7(5):e1002035.
    61. Jeong DH, Park S, Zhai J, et al. Massive analysis of rice small RNAs:mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage [J]. Plant Cell,2011,23(12): 4185-4207.
    62. Jeong DH, Thatcher SR, Brown RS, et al. Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage [J]. Plant Physiol,2013,162(3):1225-45.
    63. Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice [J]. Nature Genet,2010,42(6):541-544.
    64. Johnson C, Kasprzewska A, Tennessen K, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice [J]. Genome Res,2009,19(8):1429-1440.
    65. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J]. Mol Cell,2004,14:787-799.
    66. Jung JH, Seo YH, Seo PJ, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis [J]. Plant Cell,2007,19:2736-2748.
    67. Kantar M, Lucas SJ, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress [J]. Planta,2011,233:471-484.
    68. Karginov FV, Cheloufi S, Chong MMW, et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, DROSHA, and additional nucleases [J]. Mol Cell,2010,38:781-788.
    69. Kawashima CG, Matthewman CA, Huang S, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis [J]. Plant J,2011,66:863-876.
    70. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types [J]. Plant J,2009, 57(2):313-21.
    71. Kearney T, Harrison R. Inheritance of smooth seed in cotton [J]. J Agricultural Research,1927,35: 193-217.
    72. Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress [J]. Plant Cell, 2012,24(9):3590-3602.
    73. Kohel RJ. Genetic nomenclature in cotton [J]. J Hered,1973,64:291-295.
    74. Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data [J]. Nucleic Acids Res,2011,39:152-157.
    75. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis [J]. RNA,2006,12: 206-212.
    76. Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions [J]. Proc Natl Acad Sci U S A,2004,101:12753-12758.
    77. Kwak PB, Wang QQ, Chen XS, et al. Enrichment of a set of microRNAs during the cotton fiber development [J]. BMC Genomics,2009,10:456-467.
    78. Lauter N, Kampani A, Carlson S, et al. microRNA 172 downgulates glossy 15 to promote vegetative phase change in maize [J]. Proc Natl Acad Sci U S A,2005,102:9412-9417.
    79. Lee H, Yoo SJ, Lee JH, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis [J]. Nucleic Acids Res,2010,38:3081-3093.
    80. Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development [J]. Ann Bot,2007,100:1391-1401.
    81. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ[J]. EMBO J, 2004,23:4051-4060.
    82. Li CH, Zhu YP, Meng YL, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR [J]. Plant Sci,2002,163:1113-1120.
    83. Li H, Xu L, Wang H, et al. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA 165/166 in Arabidopsis leaf development [J]. Plant Cell,2005,17:2157-2171.
    84. Li Q, Jin X, Zhu YX. Identification and analyses of miRNA genes in allotetraploid Gossypium hirsutum fiber cells based on the sequenced diploid G. raimondii genome [J]. J Genet Genomics, 2012,39(7):351-360.
    85. Liu N, Yang J, Guo S, et al. Genome-wide identification and comparative analysis of conserved and novel MicroRNAs in grafted watermelon by high-throughput sequencing [J]. PLoS One,2013, 8(2):e57359.
    86. Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages [J]. Plant J,2007,52: 133-146.
    87. Liu X, Huang J, Wang Y, et al. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression [J]. Plant J,2010,62:416-428.
    88. Llave C, Xie Z, Kasschau KD. Carrington JC:Claevage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA [J]. Science,2002,297:2053-2056.
    89. Loguercio LL, Zhang JQ, Wilkins TA. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol Genet Genomics,1999,261:660-671.
    90. Lolle SJ, Cheung AY, Sussex IM. Fiddlehead:an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells [J]. Dev Biol,1992,152: 383-392.
    91. MacRae IJ, Zhou KH, Li F, et al. Structural Basis for Double-Stranded RNA Processing by Dicer [J]. Science,2006,311:195-198.
    92. Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes [J]. Plant Cell,2005,17:1360-1375.
    93. Mallory AC, Reinhart BJ, Jones-Rhoades MW, et al. MicroRNA control of PHABULOSA in leaf development:importance of pairing to the microRNA 5'region [J]. EMBO J,2004,23:3356-3364.
    94. Manavella P, Koenig D, Rubio-Somoza I, et al. Tissue-specific silencing of Arabidopsis thaliana SUVH8 by miR171a star [J]. Plant Physiol,2013,161(2):805-12.
    95. Margis R, Fusaro AF, Smith NA, et al. The evolution and diversification of Dicers in plants [J]. FEBS Lett,2006,580:2442-2450.
    96. Marschner H. Mineral Nutrition of Higher Plants(2nd edn) [M],1995, Academic Press.
    97. Megraw M, Baev V, Rusinov V, et al. MicroRNA promoter element discovery in Arabidopsis [J]. RNA,2006,12:1612-1619.
    98. Meng Y, Chen D, Ma X, et al. Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr [J]. Plant Signal Behav,2010,5:252-254.
    99. Meyers BC, Axtell MJ, Bartel B, et al. Criteria for annotation of plant MicroRNAs [J]. Plant Cell, 2008,20:3186-3190.
    100. Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5'terminal nucleotide [J]. Cell,2008,133:116-127.
    101. Montgomery TA, Howell MD, Cuperus JT, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation [J]. Cell,2008a,133: 128-141.
    102. Montgomery TA, Yoo SJ, Fahlgren N, et al. AGO1-miR173 complex initiates phased siRNA formation in plants [J]. Proc Natl Acad Sci U S A,2008b,105:20055-20062.
    103.Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Res,2009,19:1825-1835.
    104. Mwanda OW, Otieno CF, Omonge E. Acute aflatoxicosis:case report [J]. East Afr Med J,2005,82: 320-324.
    105. Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis [J]. Proc Natl Acad Sci U S A,2009,106:22534-22539.
    106. Naqvi AR, Haq QM, Mukherjee SK. MicroRNA profiling of tomato leaf curl New Delhi virus(tolcndv) infected tomato leaves indicates that deregulation of miR159/319 and miR172 might be linked with leaf curl disease [J]. Virol J,2010,7:281.
    107. Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling [J]. Science,2006,312:436-439.
    108. Noda K, Glover BJ, Linstead P, et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor [J]. Nature,1994,369:661-664.
    109. Nogueira FT, Chitwood DH, Madi S, et al. Regulation of small RNA accumulation in the maize shoot apex [J]. PLoS Genet,2009,5:e1000320.
    110. Notle KD, Hendrix DL, Radin JW, et al. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules [J]. Plant Physiol,1995,109:1285-1293.
    111. Ochando I, Jover-Gil S, Ripoll JJ, et al. Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis [J]. Plant Physiol,2006,141(2):607-619.
    112. Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs [J]. Nature,2003, 425:257-263.
    113. Pang MX, Woodward AW, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.) [J]. Genome Biol,2009,10:R122.
    114. Pant BD, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing [J]. Plant Physiol,2009,150:1541-1555.
    115. Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis [J]. Plant J,2010,62:960-976.
    116. Parizotto EA, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA [J]. Genes Dev,2004,18(18):2237-2242.
    117. Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis [J]. Proc.Natl. Acad. Sci. U S A,2005,102:3691-3696.
    118. Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana [J]. Curr Biol,2002,12:1484-1495.
    119. Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres [J]. Nature,2012,492(7429):423-427.
    120. Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1 [J]. Genetics,2000,156:1349-1362.
    121. Perez-Rodriguez M, Jaffe FW, Butelli E, et al. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers [J]. Development,2005,132:359-370.
    122.Pruitt RE, Vielle-Calzada JP, Ploense SE, et al. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme [J]. Proc Nail Acad Sci U S A,2000,97:1311-1316.
    123. Pruss GJ, Nester EW, Vance V. Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone [J]. Mol Plant Microbe Interact,2008, 21:1528-1538.
    124. Pu L, Li Q, Fan X, et al. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development [J]. Genetics,2008,180:811-820.
    125. Qiu CX, Xie FL, Zhu YY, et al. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags [J]. Gene,2007,395:49-61.
    126. Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis [J]. Science,2008,321:1490-1492.
    127. Ramsey JC, Berlin JD. Ultrastructural of early stages of cotton fiber differentiation [J]. Bot Gaz, 1976a,137(1):11-19.
    128. Ramsey JC, Berlin JD. Ultrastructural aspects of early stages in cotton fiber elongation [J]. Am J Bot,1976b,63(6):868-876.
    129. Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants [J]. Genes Dev,2002,16: 1616-1626.
    130. Rhoades MW, Reinhart BJ, Lim LP,et al. Prediction of plant microRNA targets [J]. Cell,2002,110: 513-520.
    131. Rogers K, Chen X. microRNA Biogenesis and Turnover in Plants [J]. Cold Spring Harb Symp Quant Biol,2013, Published online.doi:10.1101/sqb.2013.77.014530.
    132. Ruan MB, Zhao YT,Meng ZH, et al. Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing [J]. Genomics,2009,94:263-268.
    133. Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol,1998,118 (2):399-406.
    134. Ruan YL, Llewellyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell,2003,15:952-964.
    135. Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin [J]. Plant Cell,2001,13:47-60.
    136. Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants [J]. Trends Plant Sci,2011,16(5):258-264.
    137. Sashital DG, Doudna JA. Structural insights into RNA interference [J]. Curr Opin Struct Biol,2010, 20:90-97.
    138. Serna L, Martin C. Trichomes:Different regulatory networks lead to convergent structures [J]. Trends Plant Sci,2006,11:274-280.
    139. Shangguan XX, Xu B, Yu ZX, et al. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco [J]. J Exp Bot,2008,59(13):3533-3542.
    140. Shikata M, Koyama T, Mitsuda N, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase [J]. Plant Cell Physiol,2009,50(12):2133-2145.
    141. Shin C, Nam JW, Farh KKH, et al. Expanding the microRNA targeting code:functional sites with centered pairing [J]. Mol Cell,2010,38:789-802.
    142. Shi YH, Zhu SW, Mao XZ, et al. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell,2006,18:651-664
    143. Song L, Axtelll MJ, Fedoroff NV. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis [J]. Curr biol,20(1):37-41.
    144. Sun Y, Fokar M, Asami T, et al. Characterization of the brassinosteroid insensitive 1 genes of cotton [J]. Plant Mol Biol,2004,54:221-232
    145. Sun Y, Veerabomma S, Abdel-Mageed HA, et al. Brassinosteroid regulates fiber development on cultured cotton ovules [J]. Plant Cell Physiol,2005,46:1384-1391
    146. Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J]. Trends Plant Sci,2007,12:301-309.
    147. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance [J]. Plant Cell,2006,18:2051-2065.
    148. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell,2004,16:2001-2019.
    149. Suo JF, Pu L, Liang XE, et al. Identification of an endothelium-specific gene GhIAA16 in cotton (Gossypium hirsutum L.) [J]. Acta Botanica Sinica,2004,46(4):472-479.
    150. Takeda A, Iwasaki S, Watanabe T, et al. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins [J]. Plant Cell Physiol,2008,49:493-500.
    151. Taliercio EW, Boykin D. Analysis of gene expression in cotton fiber initials [J]. BMC Plant Biology, 2007,7:22.
    152. Turley RB, Kloth RH. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.) [J]. J Hered,2002,93(5):359-364.
    153. Valoczi A, Varallyay E, Kauppinen S, et al. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues [J]. Plant J,2006, (1):140-151.
    154. Voinnet O. Origin, biogenesis, and activity of plant micrornas [J]. Cell,2009,136:669-687.
    155. Wang JW, Wang LJ, Mao YB, et al. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis[J]. Plant Cell,2005,17:2204-2216.
    156. Wang K, Wang Z, Li F, et al. The draft genome of a diploid cotton Gossypium raimondii [J]. Nat Genet,2012,44(10):1098-1103.
    157. Wang QQ, Liu F, Chen XS, et al. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant [J]. Genomics,2010,96(6):369-376.
    158. Wang S, Wang JW, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene [J]. Plant Cell,2004,16:2323-2334.
    159. Wang XJ, Reyes JL, Chua NH, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets [J]. Genome Biol,2004,5:R65.
    160. Wang ZM, Xue W, Dong CH, et al. A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules [J]. Mol Plant,2011,5(4): 889-900.
    161. Ware J, Benedict L, Rolfe W. A recessive naked-seed character in upland cotton [J]. J Hered,1947, 38:313.
    162. Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton [J]. Adv Agron,2003,78: 139-186.
    163. Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis [J]. Cell,2009,138:750-759.
    164. Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction [J]. Development,2006,133(21): 4211-4218.
    165. Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes [J]. Plant Physiol,2005, 138:2145-2154.
    166. Xie Z, Kasschau KD, Carrington JC. Negative feed-back regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation [J]. Curr Biol,2003,13:784-789.
    167. Xin M, Wang Y, Yao Y, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) [J]. BMC Plant Biol,2010,10:123.
    168. Yang JH, Han SJ, Yoon EK, et al. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells [J]. Nucleic Acids Res,2006a, 34(6):1892-1899.
    169. Yang L, Liu Z, Lu F, et al. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis [J]. Plant J,2006b,47:841-850.
    170. Yang SS, Cheung F, Lee JJ, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton [J]. Plant J,2006,47:761-775.
    171. Yant L, Mathieu J, Dinh TT, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2 [J]. Plant Cell,2010,22: 2156-2170.
    172. Yephremov A, Wisman E, Huijser P, et al. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis [J]. Plant Cell,1999,11:2187-2201.
    173. Yin ZJ, Li Y, Han XL, et al. Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium adhliae-inoculated cotton roots [J]. PLoS One,2012,7(4):e35765.
    174. Yoon EK, Yang JH, Lim J. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development [J]. Nucleic Acids Res,2010, 38(4):1382-1391.
    175. Yu B, Bi L, Zheng B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis [J]. Proc Natl Acad Sci U S A,2008,105:10073-10078.
    176. Yu L, Yu X, Shen R, et al. HYL1 gene maintains venation and polarity of leaves [J]. Planta,2005, 221:231-242.
    177. Yu N, Cai WJ, Wang SC, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana [J]. Plant Cell,2010,22:2322-2335.
    178. Zhai L, Liu Z, Zou X, et al. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings [J]. Physiol Plant,2013,147(2):181-193.
    179. Zhang B, Pan X, Cannon CH, et al. Conservation and divergence of plant microRNA genes [J]. Plant J,2006,46:243-259.
    180. Zhang B, Wang Q, Wang K, et al. Identification of cotton microRNAs and their targets [J]. Gene, 2007,397:26-37.
    181. Zhang H, Wan W, Ye WX, et al. Genome-wide Analysis of Small RNA and Novel MicroRNA Discovery During Fiber and Seed Initial Development in Gossypium hirsution. L. PLoS One,2013, 8(7):e69743.
    182. Zhang RX, Marshall D, Bryan GJ, et al. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing [J]. PLoS One,2013,8(2):e57233.
    183. Zhang TZ, Pan JJ. Genetic analysis of a fuzzless-lintless mutant in Gossypiu, hirsutum L [J]. Jiangsu Journal of Agricultural Sciences,1991,7(3):13-16.
    184. Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA 169 confers enhanced drought tolerance to tomato [J]. Biotechnol Lett,2011,33:403-409.
    185. Zhao M, Ding H, Zhu JK, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis [J]. New Phytol,2011,190:906-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700