用户名: 密码: 验证码:
水稻黄单胞菌Hpa1与AvrBs2蛋白调控植物生长与抗病性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
革兰氏阴性植物病原细菌Harpin与Avr蛋白代表Ⅲ型泌出蛋白的不同类型,对致病性与植物抗病防卫反应起不同作用。Avr蛋白属于致病效应因子,需要从细菌细胞转移到植物细胞,才能行使致病功能。Harpin蛋白作为转运子起作用,帮助致病效应蛋白转位。同时,无论是Harpin蛋白还是Avr蛋白,对致病性与植物抗病防卫反应都有双重影响,而Harpin蛋白还有促进植物生长的作用。对这种多重功能的分子机制,目前还不完全清楚。本文选用以前了解比较多的Harpin蛋白Hpal,研究其促进植物生长与抗病防卫反应的分子机理,探讨蛋白结构与亚细胞定位对其功能的影响。另外,还研究了水稻黄单胞菌(Xanthomonas oryzae)AvrBs2的致病作用,为今后探讨Harpin与Avr蛋白之间的功能关系提供基础。
     1.Hpal利用乙烯和赤霉素信号调控植物生长与生长相关基因表达
     前人研究表明,Harpin通过乙烯信号及其调控因子EIN5来促进植物生长,这一效应主要涉及植物伸展素蛋白(expansin, EXP)的作用。植物EXP构成一个很大的蛋白家族,其成员受不同激素的调控,松弛细胞壁、促进细胞伸展,影响植物不同器官或组织的生长。EXP蛋白家族何种成员受何种激素信号调控,还不完全清楚。因此,本文研究了水稻白叶枯病菌Hpa1诱导EXP基因表达与促进植物生长的关系,着重探讨乙烯与赤霉素在这个过程中所起的作用。研究结果表明,当用Hpa1分别处理拟南芥、番茄、烟草和水稻时,植物的生长速度加快,同时叶片含氮量、叶绿素含量及叶绿素a和叶绿素b的比率提高。对Hpa1诱导的EXP基因表达分析结果显示:有11个组织特异性的EXP基因被Hpa1诱导表达,其中有4个与Hpa1诱导的信号通路相关,还有4个是最新鉴定的在烟草或水稻叶片中特异表达的基因。Hpa1处理能够诱导乙烯信号通路关键基因的上调表达,而阻断乙烯信号的响应,能够抑制Hpa1诱导的EXP基因表达和植物促生长作用。在水稻中,Hpa1诱导EXP基因表达和促生长效应与GA3作用类似,而阻断赤霉素的生物合成,Hpa1诱导的EXP基因表达和促进植物生长的作用也会被抑制。由此说明,Hpa1诱导EXP基因表达和促进植物生长需要ET和GA信号的参与。
     2.Hpa1蛋白生物学功能行使与促进植物生长的作用必需其N-端序列
     水稻黄单胞菌的Hpa1蛋白,能够促进植物生长,增强植物防卫反应与抗逆性,但机制还没研究清楚。已有研究表明,Hpal N-端氨基酸对其在非寄主烟草上产生HR是必需的。为了研究Hpa1N-端氨基酸对其生物学功能及植物生长的影响,我们分别构建了全长Hpal和Hpal N-端缺失突变体的原核表达载体,得到了全长Hpa1蛋白和缺失N端的Hpa1蛋白(Hpa1ΔNT).分别用Hpa1和Hpa1ΔNT处理植物,发现HpalΔNT丧失了激发烟草产生HR的能力,同时也大大减弱了植物的抗病防卫反应及抗逆性。对植物生长能力的测定结果表明,Hpa1能够促进植物的营养生长,但不影响生殖生长;Hpa1处理能增强植物生长相关基因的表达和植物叶片细胞的伸长生长;Hpa1处理能促进植物叶片叶的CO2的传导及光合作用,而HpalΔNT则大大削弱了Hpa1所诱导的促生长效应。由此说明,Hpal N-端对其生物学功能的行使及促进植物生长是必需的。
     3.质外体和细胞质Hpal对H2O2的产生与抗病性发挥不同作用
     革兰氏阴性植物病原细菌分泌的Harpin蛋白能够激活植物防卫反应信号通路,诱导植物产生抗病性,其中包括Harpin诱导的活性氧爆发,尤其是质外体中H2O2的产生。但是,Harpin蛋白在防卫反应信号通路中是如何被识别的以及产生于植物细胞质外体中的H2O2是如何参与防卫反应的,目前还不是很清楚。本研究以水稻白叶枯病菌的Harpin蛋白Hpa1为研究对象,解析其亚细胞定位是否影响了H2O2的产生以及H2O2是如何参与调控植物抗病性的。分别把Hpal和融合了质外体定位信号基因(S)的Hpal(SHpa1)转入拟南芥,产生了转基因拟南芥植株HETAt (Hpal-expressing transgenic Arabidopsis thaliana)&SHETAt (SHpal-expressing transgenic Arabidopsis thaliana)。研究发现,转基因拟南芥对丁香假单胞菌Pst DC3000和大白菜软腐病菌Pcc RL4具有抗性。亚细胞定位显示,Hpa1定位于HETAt的细胞质及SHETAt的质外体和细胞膜。通过对植物中H2O2的检测发现,H2O2主要积累于HETAt的细胞质及SHETA的质外体和细胞质。药理学试验结果表明,H2O产生于HETAt的细胞质和SHETAt的质外体,并且产生于质外体的H2O2依赖于NOX。外源喷施Hpa1处理野生型拟南芥时,其主要定位于细胞质外体并能诱导H2O2在质外体产生,且质外体H2O2能转运至细胞质。用DPI处理喷施Hpa1的野生型拟南芥和SHETAt植物后,抑制了质外体H202的产生,且细胞质中H2O2的积累也大大减少,同时也削弱了植物的抗病能力。以上结果表明,受Hpa1诱导且在质外体产生的H2O2需要从质外体运转到细胞质中才能参与植物防卫反应过程。
     4.水稻条斑病菌Ⅲ型效应因子AvrBs2的病理功能研究
     水稻黄单胞菌通过Ⅲ型分泌系统将大量的效应因子注入寄主细胞,使寄主产生抗(感)病性。虽然越来越多的Ⅲ型效应蛋白包括Avr蛋白被鉴定出来,但是关于其蛋白结构与生物学功能的研究目前还不是很多。AvrBs2是第一个被证明能够增强病原细菌在寄主植物中繁殖的Ⅲ型效应蛋白,能够增强野油菜黄单胞菌Xanthomonas campestris pv. vesicatoria(Xcv)的毒性,但是高度保守的AvrBs2效应因子在其它黄单胞菌中的生物学功能目前研究的还不是很清楚,尤其是水稻黄单胞菌。本文拟研究Xoc菌株RS105的AvrBs2效应因子的蛋白结构与生物学功能。通过同源交换,我们获得了avrBs2xoc基因插入突变体。接种试验结果表明,avrBs2突变体和野生型虽然在烟草上引起过敏反应的能力没有明显差异,但突变体却显著降低了病原菌在水稻IR24上的致病性,同时增强了植物病程相关蛋白基因PR-laΔPR-1b的表达。由此我们判断,AvrBs2xoc是一个致病效应因子,且能抑制寄主植物的免疫反应。
Harpin and Avr proteins are representative type III effectors secreted by Gram-negative phytopathogenic bacteria, that regulate the pathogenicity and the plant defense response to pathogens. Avr proteins are pathogenic effectors and must be translocated from bacteria into plant cell to pathopoiesis. Harpin protein function as a translocator to translocate the effectors. Whether the Harpin or Avr proteins are double effects on the pathogenicity and plant defense response to pathogens, and also the Harpin can induce plant growrh enhancement, however, the molecular mechanism is unclear. In this study, we chose the Hpal protein, focusing on analysis of the molecular mechanism that plant growth enhancement and pathogen defense response induced by Hpal and the effects of the protein structure and subcellular localization on its function. We also analysis the function of the type III effector protein AvrBs2produced by X. oryzae, and focusing on analysis of its effects on pathogenicity.
     1. Expansin gene expression and plant growth regulated by ethylene and gibbrellin in response to Hpal
     In early studys, ethylene signal and regulator of EIN5can induce plant growth enhancement in response to Harpin and the expansin protein act importantly on the effects. Expansins act to loose cell walls and modulate growth of the cell and plant mediated by some hormones. However, it's not clear whether a hormone is specific and distinct hormones interact to regulate EXP activity. In this study, we report the effect that expansin gene expression and plant growth enhancement (PGE) in response to Hpal, the type-Ⅲ effector produced by X. oryzae pv. oryzae and the roles of ethylene and gibbrellin in both responses. Our results show that when applied to Arabidopsis thaliana, tomato, tobacco and rice, Hpal can markedly increase these plants growth concomitantly with the leaf nitrogen, chlorophylls and chlorophyll a/b ratio, which can basally affect plant biosynthesis and productivity. RT-PCR assay of EXP genes revealed that eleven of organ-specific EXPs expression was affected in response to Hpal. Four of eleven EXPs behaved in consistence with the Hpal signaling process and the other four were newly identified as specifically expressed in leaves of tobacco or rice. Using genetic and chemical methods to block ET perception can arrested EXP expression and PGE in the four plants in response to Hpal.In rice, Hpal simulated GA3to induce EXP expression and PGE. Whether disrupting either of ET perception or GA biosynthesis, both effects were impaired. These results suggest that both events of EXP expression and PGE require GA and ET in plants responding to Hpal.
     2. The Hpal Harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis
     Hpal is a Harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpal, we generated an inactive variant protein, HpalΔNT, by deleting the nitroxyl-terminal region of the Hpal sequence and compared HpalΔNT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpal was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes and cell growth in plant leaves. The growth-promoting activity of Hpal was further correlated with a physiological consequence shown as promotions in stomatal and mesophyll CO2conductance and leaf photosynthesis. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the HaplΔNT treatment. These analyses suggest that Hpal requires the nitroxyl-terminus to facilitate CO2transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.
     3. Apoplastic and cytoplasmic location of Harpin protein Hpal plays different roles in H2O2generation and pathogen resistance in Arabidopsis.
     Harpins produced by Gram-negative phytopathogenic bacteria have been shown to activate plant defense pathways which involve the production of the reactive oxygen species, especially transduction of hydrogen peroxide signal generated in the apoplast. But how a Harpin is recognized in the pathway and how the apoplastic H2O2anticipates in defense responses are not clear. Here we use Hpal, a Harpin protein that produced by rice bacterial leaf blight pathogen X. oryzae pv. oryzae, to study if the cellular location of it impacts H2O2production and how the H2O2regulates pathogen resistance in nonhost Arabidopsis thaliana. Hpal gene and Hpal fused to an apoplastic localization signal (S) were transformed into Arabidopsis thaliana using the Agrobacterium tumefaciens and generated HETAt (Hpal-expressing transgenic Arabidopsis thaliana) and SHETAt (SHpal-expressing transgenic Arabidopsis thaliana) transgenic plants, respectively. Our results show that the HETAt and SHETAt plants are resistant to pathogen Pseudomonas syringae pv. tomato DC3000and Pectobacterium carotovora subsp. carotovora RL4. In HETAt, Hpal was found to associate with the cytoplasm and in SHETAt it was found in the apoplast and cytomembrane, which accompany with H2O2accumulation in cytoplasts in HETAt and in apoplasts of SHETAt as well. This study also demonstrate that H2O2was generated in cytoplasm in HETAt and was generated in a NOX-dependent manner in apoplasts in SHETAt. When applied to Arabidopsis, Hpal located and induced H2O2generation in apoplasts and caused H2O2accumulation in both apoplasts and cytoplasts. Treatment with the SHETAt and Hpal-treated parent plants using DPI, however, can inhibit apoplastic H2O2generation accompanying with less cytoplasmic H2O2accumulation and reduce plant resistance to bacterial pathogens. These results suggest that the apoplastic H2O2generation induced by Hpal is subject to translocation into cytoplasm for participation in the regulation of pathogen resistance in the plant.
     4. The function study of Avrbs2protein that secreted through the type III secretion system of the Xanthomonas oryzae pv. oryzicola
     Xanthomonas oryzae is the causal agent of bacterial disease in rice which can secrete many effectors into plant cells through the type III secretion apparatus. More and more type III effectors including Avr proteins have been indentificated, however, the function studys of many of them are unclear. AvrBs2is the first type III effector that has been shown to enhance bacterial multiplication within host tissue, a virulence contribution only observed in the strains of X. campestris pv.vesicatoria. However, the function of other Xanthomonads AvrBs2proteins is unclear though they are widely conserved in many Xanthomonads especially in Xanthomonas oryzae. Here, we examined the function of AvrBs2by inserted mutation in X. oryzae pv. oryzicola RS105. The mutation of avrBs2xoc resulted in reduced pathogenicity on host rice plants IR24and enhanced the expression of pathogen-related1a and1b protein relative to the wild-type strain RS105, but not affect the hypersensitive response (HR) in non-host Nicotiana benthamiana. These results suggest that the AvrBs2xoc effector protein is a virulence factor and suppress the host defence response in plant.
引文
1. Abramovitch RB, Anderson JC and Martin GB.2006 Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology.7:601-611.
    2. Abramovitch RB, Janjusevic R, Stebbins CE, et al.2006 Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl. Acad. Sci. USA.103:2851-2856.
    3. Alexander D, Goodman RM, Gut-Rella M, et al.1993 Increased resistance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA.90:7327-7331.
    4. Alfano JR and Collmer A.1996 Bacterial pathogens in plants:life up against the wall. Plant Cell.8: 1683-1698.
    5. Alfano JR and Collmer A.1997 The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking Harpins, Avr proteins, and death. J Bacteriol.179:5655-5662.
    6. Alfano JR and Collmer A.2004 Type III secretion system effector proteins:Double agents in bacterial disease and plant defense. Annual Review of Phytopathology.42:385-414.
    7. Alfano JR., Charkowski AO, Deng WL, et al.2000 The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretions genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA.97:4856-4861.
    8. Ali W, Isayenkov SV, Zhao F, et al.2009 Arsenite transport in plants. Cell Mol. Life Sci.66: 2329-2339.
    9. Arlat M, Van Gijsegem F, Huet JC, et al.1994 PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J.13:543-553.
    10. Ashtamker C, Kiss V, Sagi M, et al.2007 Diverse subcellular locations of crytogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol.143:1817-1826.
    11. Bae EK, Lee H, Lee JS, et al.2011 Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba ×P. tremula var. glandulosa). Gene.483:43-48.
    12. Baker CJ, Orlandi EW and Mock NW.1993 Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol.102:1341-1344.
    13. Bartsev AV, Deakin WJ, Boukli NM, et al.2004 NopL, an effector protein of Rhizobium sp.NGR234, thwarts activation of plant defence reactions. Plant Physiol.134:871-879.
    14. Bauer DW, Bogdanove AJ, Beer SV, et al.1994 Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact.7:573-581.
    15. Bauer DW, Wei ZM, Beer SV, et al.1995 Erwinia chrysanthemi HarpinEch:An elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant Microbe Interact.8: 484-491.
    16. Bidwell RG, Levin WB and Shephard DC.1970 Intermediates of photosynthesis in Acetabularia mediterranie chloroplasts. Plant Physiol. Jan.45:70-75.
    17. Boccara M, Schwartz W, Guiot E, et al.2007 Early chloroplastic alterations analysed by optical coherence tomography during a Harpin-induced hypersensitive response. Plant J.50:338-346.
    18. Bogdanove AJ, Wei ZM, Zhao LP, et al.1996 Erwinia amylovora secretes Harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J Bacteriol.178:1720-30.
    19. Bonas U, Stall RE and Staskawicz B.1989 Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet.218:127-136.
    20. Bowler C, Montagu MV and Inze D.1992 Superoxide dismutase and stress tolernace. Annu. Rev. Plant Physiol. Plant Mol. Biol.43:83-116.
    21. Brzoska P and Boos W.1988 Characteristics of a ugp-encoded and phoB dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the Ugp transport system of Escherichia coli. J. Bacteriol.170:4125-4135.
    22. Biittner D and Bonas U.2002 Port of entry-the type III secretion translocon. Trends Microbiol.10: 186-192.
    23. Buttner D, Giirlebeck D, Noel LD and Bonas U.2004 HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III dependent protein secretion. Molecular Microbiology.54:755-768.
    24. Buttner D, Lorenz C, Weber E, et al.2006 Targeting of two effector protein classes to the type III secretion systerm by a HpaC-and HpaB- dependent protein complex from Xanthomonas campestris pv. vesicatoria. Molecular Microbiology.59:513-527.
    25. Canonne J, Marino D, Jauneau A, et al.2011 The Xanthomonas Type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. The Plant Cell.23:3498-3511.
    26. Carney BF and Denny TP.1990 A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. Journal of Bacteriology. 172:4836-4843.
    27. Casper-Lindley C, Dahlbeck D, Clark ET, et al.2002 Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proceedings of the National Academy of Sciences USA.99:8336-8341.
    28. Chen F, Dahal P and Bradford KJ.2001 Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol.127:928-936.
    29. Chen GY and Wang J.2003 Exchangeability of two hrp gene fragments from Xanthomonas oryzae pv. oryzae and pv. oryzicola for hypersensitive response on tobacco and pathogenicity on rice. Chinese Agricural Scienees.2:975-981.
    30. Chen L, Qian J, Qu SP, et al.2008 Identification of specific fragments of HpaGXooc, a Harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology.98:781-791.
    31. Chen L, Zhang S-S, Qu SP, et al.2008 A selected fragment of HpaGXooc,a Harpin protein from Xanthomonas oryzae pv. oryzicola, affects disease reduction and grain yield of rice in extensive grower plantings. Phytopathology.98:792-802.
    32. Cho HT and Cosgrove DJ.2002 Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell.14:3237-3253.
    33. Cho HT and Kende H.1997. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell.9:1661-1671.
    34. Choi DS, Lee Y, Cho HT, et al.2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell.15:1386-1398.
    35. Choi SH and Leach JE.1994 Genetic manipulation of Xanthomonas oryzae pv. oryzae. International Rice Research Notes.19:31-32.
    36. Collmer A, Badel JL, Charkowski AO, et al.2000 Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Ntal. Acad. Sci. USA.97:8770-8777.
    37. Cornelis GR and VanGijsegem F.2000 Assembly and function of type III secretion systems.Annu Rev Microbiol.54:735-774.
    38. Cox MC, Benschop JJ, Vreeburg RA, et al.2004 The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol.136: 2948-2960.
    39. Da Cunha L, Sreerekha MV and Mackey D.2007 Defense suppression by virulence effectors of bacterial phytopathogens. Current Opinion in Plant Biology.10:349-357.
    40. de Groot BL and Hub JS 2011 A decade of debate:significance of CO2 permeation through membrane channels still controversial. Chemphyschem.12:1021-1022.
    41. Deng BL, Deng S, Sun F, et al.2011 Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol. Biol.77:185-201.
    42. Deng S, Yu M, Wang Y, et al.2010 The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS J.277:5097-5111.
    43. Desikan R, Hancock JT, Ichimura K, et al.2001 Harpin induced activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol.126:1579-1587.
    44. Desikan R, Reynolds A, Hancock JT, et al.1998 Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem. J.330:115-120.
    45. Desveaux D, Singer AU, Wu AJ, et al.2007 Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathogens.3:456-469.
    46. Dong H, Delaney TP, Bauer DW, et al.1999 Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    47. Dong HP, Peng J, Bao Z, et al.2004 Downstream divergence of the ethylene signaling pathway for Harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    48. Dong HP, Yu H, Bao Z, et al.2005 The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta.221:313-327.
    49. Downes BP and Crowell DN.1998 Cytokinin regulates the expression of a soybean beta-expansin gene by a post-transcriptional mechanism. Plant Mol. Biol.37:437-444.
    50. Duan Y, Zhai C, Li H, et al.2012 An efficient and high-throughput protocol for Agrobacterium-mediated transformation based onphosphomannose isomerase positive selection in Japonica rice(Oryza sativa L.). Plant Cell Reports.31:1611-1624.
    51. Escolar L, Van Den Ackerveken G, Pieplow S, et al.2001 Type Ⅲ secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBsl and AvrBsT. Mol Plant Pathol.2: 287-296.
    52. Evans JR, Kaldenhoff R, Genty B, et al.2009 Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot.60:2235-2248
    53. Eyal Y, Meller Y, Lev-Yadun S, et al.1993 A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J.4:225-234.
    54. Feldman, MF and Cornelis GR.2003 The multitalented type III chaperones:all you can do with 15 kDa. FEMS Microbiol. Lett.219:151-158.
    55. Feng F, Yang F, Rong W, et al.2012 AXanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature.485:114-118.
    56. Flexas J, Barbour MM, Brendel O, et al.2012 Mesophyll diffusion conductance to CO2:an unappreciated central player in photosynthesis. Plant Sci.193-194:70-84.
    57. Flexas J, Ribas-carbo M, Diaz-espejo A, et al.2008 Mesophyll conductance to CO2 current knowledge and future prospects. Plant, Cell & Environment.31:602-621.
    58. Flor HH.1971 Current status of the gene-for-gene concept. Annu. Rev. Phytopathol.9:275-296.
    59. Furutani A, Nakayama T, Ochiai H, et al.2006 Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a-10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett.259:133-141.
    60. Gaastra P.1959 Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Mededelingen van Landbouwhogeschool te Wageningen, Nederland.59:1-68.
    61. Gal TZ, Aussenberg ER, Burdman S, et al.2006 Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta.224:155-162.
    62. Galan JE and Collmer A.1999 Type III secretion machines:bacterial devices for protein delivery into host cells. Science.284:1322-1328.
    63. Garmier M, Priault P, Vidal G, Driscoll S, et al.2007 Light and oxygen are not required for Harpin-induced cell death. J Biol Chem.282:37556-37566.
    64. Gassmann W, Dahlbeck D, Chesnokova O, et al.2000 Molecular Evolution of Virulence in Natural Field Strains of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology.182:7053-7059.
    65. Ghosh P.2004 Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev.68:771-795.
    66. Gijsegem V, Vasse FJ, Camus JC, et al.2000 Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol.36:249-260.
    67. Gurlebeck D, Thieme F and Bonas U.2006 Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology.163: 233-255.
    68. Gurlebeck D, Szurek B and Bonas U.2005 Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. Plant J.42:175-187.
    69. Hachez C, Zelazny E and Chaumont F.2006 Modulating the expression of aquaporin genes in planta:a key to understand their physiological functions? Biochim. Biophys. Acta.1758: 1142-1156.
    70. He SY, Huang HC and Collmer H.1993 Pseudomonas syringae pv. syringae Harpinpss:a protein that is secreted via the hrp pathway and elicits the hypersensitive response in Plants. Cell.73: 1255-1266.
    71. He SY, Nomura K and Whittam TS.2004 Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta.1694:181-206.
    72. He SY.1998 TypeⅢ protein secretion system in plant and animal pathogenic bacteria. Annual Review of Phytopathology.36:363-392.
    73. Heath MC.2000 Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology.3:315-319.
    74. Heckwolf M, Pater D, Hanson DT, et al.2011 The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J.67:795-804.
    75. Herbers K, Conrads-Strauch J and Bonas U.1992 Race-specific of plant resistance to bacterial spot disease determined by repetitious motifs in a baeterial avirulence protein. Nature.356:172-174.
    76. Hiwasa K, Rose JK, Nakano R, et al.2003 Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiol Plant.117:564-572.
    77. Holgate CS, Jackson P, Cowen PN, et al.1983 Immunogold silver staining:new method of immunostaining with enhanced sensitivity. J Histoehem Cytochem.31:938-944.
    78. Hooijmaijers C, Rhee JY, Kwak K.J, et al.2012 Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J. Plant Res.25:147-153.
    79. Hotson A, Chosed R, Shu H, et al.2003 Xanthomonas type Ⅲ effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol.50:377-389.
    80. Hoyos AE, Stanley CM, He SY, et al.1996 The interaction of Harpinpss with plant cell walls. Mol. Plant-Microbe Interact.9:608-618.
    81. Hu W, Yuan J, Jin QL, et al.2001 Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact.14:234-241.
    82. Jang YS, Sohn SI and Wang MH.2006 The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta.223:449-456.
    83. Jiang BL, He YQ, Cen WJ, et al.2008 The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol.159:216-220.
    84. Jiang M and Zhang J.2001 Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiol.42:1265-1273.
    85. Jones JD and Dangl JL.2006 The plant immune system. Nature.444:323-329.
    86. Jung C, Seo JS, Han SW, et al.2008 Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology.146:623-635.
    87. Kammerloher W, Fischer U, Piechottka GP, et al.1994 Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J.6:187-199.
    88. Kearney B and Staskawicz BJ.1990 Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature.346:385-386.
    89. Kim JF and Beer SV.2000 Hrp genes and Harpins of Erwinia amylovora:A decade of discovery; Pages 141-162 in:Fire Blight and Its Causative Agent, Erwinia amylovora. J. L. Vanneste, ed. CAB International, Wallingford, U.K.
    90. Kim JF, Beer SV.1998 HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol.180:5203-5210.
    91. Kim JG, Li X, Roden JA, et al.2009 Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell.21: 1305-1323.
    92. Kim JG, Park BK, Yoo CH, et al.2003 Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol.185:3155-66.
    93. Kim JQ Taylor KW, Hotson A, et al.2008 XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell.20:1915-1929.
    94. Kourill R, Ilik P, Naus J, et al.1999 On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynth. Res. 62:107-116.
    95. Kruger WM, Pritsch C, Chao S, et al.2002 Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Molecular Plant-Microbe Interactions.15:445-455.
    96. Lang CA.1958 Simple micro-determination of Kjeldahl nitrogen in biological materials. Analytical Chemistry.30:1692-1694.
    97. Leach JE and White FF.1996 Bacterial avirulence genes. Annual Rev Phytopathol.34:153-179.
    98. Lee BM, Park YJ, Park DS, et al.2005 The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research.33:577-586.
    99. Lee J, Klusener B, Tsiamis G, et al.2001 HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc. Natl Acad. Sci. USA.98:289-294.
    100. Lee SH, Chung GC, Jang JY, et al.2012 Overexpression of P1P2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol.159: 479-488.
    101. Lee YH, Kolade OO, Nomura K, et al.2005 Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type III secretion in Pseudomonas syringae pv. tomato. J. Biol. Chem.280: 21409-21417.
    102. Li B, Gao R, Cui R, et al.2012 Tobacco TTG2 suppresses resistance to pathogens by sequestering NPR1 from nuclear localization. Journal of Cell Science.125:4913-22.
    103. Li P, Lu X, Shao M, et al.2004 Genetic diversity of Harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Science in China Ser. C Life Sciences.47:461-469.
    104. Li YR, Xiao YL, Zou-LF, et al.2012 Identification of HrpX regulon genes in Xanthomonas oryzae pv. oryzicola using a GFP visualization technique. Arch Microbiol.194:281-91.
    105. Lindgren PB, Peet RC and Panopoulos NJ.1986 Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol.168:512-522.
    106. Liu F, Liu H, Jia Q, et al.2006 The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology.96:1052-1059.
    107. Liu R, Chen L, Jia Z, et al.2011 Transcription Factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a Harpin protein. Mol. Plant-Microbe Interact.24:377-389.
    108. Liu R, Lu B, Wang X, et al.2010 Thirty-seven transcription factor genes differentially respond to a Harpin protein and affect resistance to the green peach aphid in Arabidopsis. J. Biosci.35: 435-450.
    109. Liu YD and Zhang SQ.2004 Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell.16:3386-3399.
    110. Ludewig U and Dynowski M.2009 Plant aquaporin selectivity:where transport assays, computer simulations and physiology meet. Cell Mol. Life Sci.66:3161-3175.
    111. Lu B, Sun W, Zhang S, et al.2011 Hpal-induced deterrent effect on phloem feeding of the green peach aphid Myzuspersicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J. Biosci. 36:123-137.
    112. Marie C, Deakin WJ, Viprey V, et al.2003 Characterization of Nops, nodulation outer proteins, secreted via the Type III secretion system of NGR234. MPMI.16:743-751.
    113. Marois E, Van den Ackerveken G and Bonas U.2002 The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact.15:637-646.
    114. Martin GB, Bogdanove AJ and Sessa G. 2003 Understanding the function of plant disease proteins. Annu. Rev. Plant Biol.54:23-61.
    115. Maurel C.2007 Plant aquaporins:Novel functions and regulation properties. FEBS Lett.581: 2227-2236.
    116. Miao W, Wang X, Li M, et al.2010 Genetic transformation of cotton with a Harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol.10:67.
    117. Mongkolsuk S, Rabibhadana S, Sukchavalit R, et al.1998 Construction and physiological analysis of a Xanthomonas oryzae pv. oryzae recA mutant. FEMS MicroLett.169:269-275.
    118. Mudgett MB, Chesnokova O, Dahlbeck D, et al.2000 Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. PNAS. 97:13324-13329.
    119. Nanda AK, Andrio E, Marino D, et al.2010 Reactive oxygen species during plant-microorganism early interactions. J. Integr. Plant Biol.52:195-204.
    120. Nishimura MT and Dangl JL.2010 Arabidopsis and the plant immune system. Plant J.61: 1053-1066.
    121. Noel L, Thieme F, Nennstiel D, et al.2001 cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol.41: 1271-1281.
    122. Noel L, Thieme F, Nennstiel D, et al.2002 Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol.184: 1340-1348.
    123. Ochiai H, Inoue Y, Takeya M, et al.2005 Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Japan Agricultural Research Quarterly.39:275-287.
    124. Oh CS and Beer SV.2007 AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol.145:426-436.
    125. Oh J, Kim JG, Jeon E, et al.2007 Amyloidogenesis of type Ⅲ-dependent Harpins from plant pathogenic bacteria. J Biol Chem.282:13601-13609.
    126. Ohshima M, Itoh H, Matsuoka M, et al.1993 Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis-related la protein gene in transgenic tobacco. Plant Cell.2:95-106.
    127. O'Kennedy MM, Burger JT and Botha FC.2004 Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Reports.22:684-690.
    128. Pavli OI, Kelaidi GI, Tampakaki AP, et al.2011 The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS one.6:1-9.
    129. Peng J, Bao Z, Ren H, et al.2004 Expression of HarpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology.94:1048-1055.
    130. Peng JL, Dong H, Dong HP, et al.2003 Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62:317-326.
    131. Peng JL, Bao ZL, Li P, et al.2004 Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Botanica Sinica.46:1083-1090
    132. Perino C, Gaudriault S, Vian B, et al.1999 Visualization of Harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cell. Microbiol.1:131-141.
    133. Pien S, Wyrzykowska J, McQueen-Mason S, et al.2001 Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Nat. Acad. Sci. USA.98: 11812-11817.
    134. Preston G, Huang HC, He SY, et al.1995 The HrpZ proteins of Pseudomonas syringae pv. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol Plant Microbe Interact.8:717-732.
    135. Qu B, Li HP, Zhang JB, et al.2008 Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology.57:15-24.
    136. Reboutier D, Frankart C, Briand J, et al.2007 The Hpal Harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol. Plant-Microbe Interact.20:94-100.
    137. Ren H, Gu G, Long J, et al.2006 Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci.31:617-627.
    138. Ren H, Song T, Wu T, et al.2006 Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ⅲ effector; Ann. Microbiol.56:281-287.
    139. Ren X, Liu F, Bao Z, et al.2008 Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to Hpal, a bacterial protein of Harpin group. Plant Mol. Biol. Rep.26:225-240.
    140. Ren X, Zhang C, Bao Z, et al.2008 Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to Hpal, a bacterial protein of Harpin group. Plant Mol. Biol. Rep.31:617-627.
    141. Riganti C, Gazzano E, Polimeni M, et al.2004 Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. Journal of Biological Chemistry.279:47726-47731.
    142. Roden JA, Belt B, Ross JB, et al.2004 A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. PNAS.101:16624-16629.
    143. Roine E, Wei W, Yuan J, et al.1997 Hrp pilus:an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America.94:3459-3464.
    144. Rossier O and Bonas U.2000 HrpB2 and HrpF from Xanthomonas are type III secreted proteins and essential for pathogenicity and recognition by the host plant. Molecular Microbiology.38: 828-838.
    145. Ryder MH, Tate ME and Jones GP.1984 Agrocinopine A, a tumorinducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose. J. Biol. Chem.259:9704-9710.
    146. Sabirzhanova IB, Sabirzhanov BE, Chemeris AV, et al.2005 Fast changes in expression of expansin gene and leaf extensibility in osmotically stressed maize plants. Plant Physiol. Biochem.43: 419-422.
    147. Salmond GP and Reeves PJ.1993 Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci.18:7-12.
    148. Salzberg SL, Sommer DD, Schatz MC, et al.2008 Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics.9:204-219.
    149. Sang S, Li X, Gao R, et al.2012 Apoplastic and cytoplasmic location of Harpin protein HpalXoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol. Biol. 79:375-391.
    150. Schechter LM, Roberts KA, Jamir Y, et al.2004 Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. Journal of Bacteriology.186:543-555.
    151. Shao E, Golstein C, Ade J, et al.2003 Cleavage of Arabidopsis PBS 1 by a bacterial type III effector. Science.301:101-112.
    152. Shao M, Wang J, Dean RA, et al.2008 Expression of a Harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J.6:73-81.
    153. Sisler EC and Serek M.1997. Inhibitors of ethylene responses in plants at the receptor level:recent development. Physiol. Plant 100:577-582.
    154. Snyrychova I, Ayaydin F and Hideg E.2009 Detecting hydrogen peroxide in leaves in vivo-a comparison of methods. Physiologia Plantarum.135:1-18.
    155. Sohn SI, Kim YH, Kim BR, et al.2007 Transgenic tobacco expressing the hrpNEP gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. Mol Cells.24:232-239.
    156. Song C and Yang B.2010 Mutagenesis of 18 type III effectors reveals virulence function of XopZPXO99 in Xanthomonas oryzae pv. oryzae. MPMI.23:893-902.
    157. Sponsel VM, Schmidt FW, Porter SG, et al.1997 Characterization of new gibberellin-responsive semidwarf mutants of Arabidopsis. Plant Physiol.115:1009-1020.
    158. Strobel RN, Gopalan JS, Kuc JA, et al.1996 Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J.9:431-439.
    159. Sun L, Ren H, Liu R, et al.2010 An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol. Plant-Microbe Interact.23:1470-1485.
    160. Swords KM, Dahlbeck D, Kearney B, et al.1996 Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. Bacteriol.178:4661-4669.
    161. Szurek B, Marois E, Bonas U, et al.2001 Eukaryotic features of the Xanthomonas type Ⅲ effector AvrBs3:protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J.26:523-34.
    162. Tampakaki AP and Panopoulos NJ.2000 Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol Plant Microbe Interact.13:1366-1374.
    163. Tampakaki AP, Fadouloglou VE, Gazi AD, et al.2004 Conserved features of type III secretion. Cell Microbiol.6:805-816.
    164. Taylor KW, Kim JG, Su XB, et al.2012 Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate Xanthomonas virulence. PLoS Pathog.8:e1002768. doi:10.1371/journal.ppat.1002768.
    165. Torres MA, Jones JD and Dangl JL.2006 Reactive oxygen species signaling in response to pathogens. Plant Physiol.141:373-378.
    166. Tsuge S, Furutani A, Fukunaka R, et al.2001 Growth complementation of hrpXo mutants of Xanthomonas oryzae pv. oryzae by virulent strains in rice cultivars resistant and susceptible to the parental strain. Journal of General Plant Pathology.67:51-57.
    167. Viprey V, Del Greco A, Golinowski W, et al.1998 Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol.28:1381-1389.
    168. Wang XY, Song CF, Miao WG, Ji ZL, et al.2008 Mutations in the N-terminal coding region of the Harpin protein Hpal from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechno.81:359-369.
    169. Wang Y, Liu R, Chen L, et al.2009 Nicotiana tabacum TTG1 contributes to ParA 1-induced signalling and cell death in leaf trichomes. J. Cell Sci.122:2673-2685.
    170. Warren CR and Adams MA.2004 Evergreen trees do not maximize photosynthesis. Trends in Plant Science.9:270-274.
    171. Weber E, Ojanen-Reuhs T, Huguet E, et al.2005 The type Ⅲ-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J. Bacteriol.187:2458-2468.
    172. Wei ZM and Beer S.1996 Harpin from Erwinia amylovora induces plant resistance. Acta Hortic. 411:223-225.
    173. Wei ZM, Laby RJ, Zumoff CH, et al.1992 Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science.257:85-88.
    174. Wei ZM, Qiu D, Kropp MJ, et al.1998 Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathol.88:S96.
    175. Wen W and Wang J.2001 Cloning and expressing a Harpin gene from Xanthomonas oryzae pv. oryzae. Acta Phytopathol. Sin.31:296-300.
    176. White FF, Potnis N, Jones JB, et al.2009 The type III effector of Xanthomonas.Molecular Plant Pathology.10:749-766.
    177. Wichmann G and Bergelson J.2004 Effector genes of Xanthamonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics.166:693-706.
    178. Wu TQ, GuoA, Zhao YY, et al.2010 Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathology.100:573-581.
    179. Wu X, Wu T, Long J, et al.2007 Productivity and biochemical properties of green tea in response to a bacterial type-Ⅲ effector protein and its variants. J Biosci.32:1119-1132.
    180. Xiang L, Zong N, Zou Y, et al.2007 Pseudomonas syringae efector AvrPto blocks innate immunity by targeting receptor kinases. Current Biology.18:74-80.
    181. Xie Z and Chen Z.2000. Harpin induced hypersensitive cell death is associated with altered mitocondrial functions in tobacco cells. Mol. Plant-Microbe Interact.13:183-190.
    182. Yang B and White FF.2004 Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact,17: 1192-1200.
    183. Yang B, Zhu W, Johnson LB, et al.2000 The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent, nuclear-localized, double-stranded DNA binding protein. Proceedings of the National Academy of Sciences.97:9807-9812.
    184. Yang QH, Lu W, Hu ML, et al.2003 QTL and epistatic interaction underlying leaf chlorophyll and H2O2 contents variation in rice [Oryza sativa L.). Acta Genet.Sinica.30:245-250.
    185. Yoo S, Cho YH and Sheen J.2007 Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat. Protoc.2:1565-1572.
    186. Zawoznik MS, Ameneiros M, Benavides MP, et al.2011 Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl. Microbiol. Biotechnol.90: 1389-1397.
    187. Zhang C, Bao Z, Liang Y, et al.2007 Abscisic acid mediates Arabidopsis drought tolerance induced by Hpal in the absence of ethylene signaling. Plant Mol Biol Rept.25:94-114.
    188. Zhang C, Shi H, Chen L, et al.2011 Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol.11:11.
    189. Zhang GP.1997 Gibberellic acid3 modifies some growth and physiologic effects of Paclobutrazol. pp333 on wheat. J. Plant Growth Regul.16:21-25.
    190. Zhang L, Xiao SS, Li WQ, et al.2011 Overexpression of a Harpin-encoding gene hrfl in rice enhances drought tolerance. J. Exp. Bot.62:4229-4238.
    191. Zhang S, Yang X, Sun M, et al.2009 Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol.51:167-174.
    192. Zhao BY, Dahlbeck D, Krasileval KV, et al.2011 Computational and biochemical analysis of the Xanthomonas effector AvrBs2 and its role in the modulation of Xanthomonas type three effector delivery. PLoS Pathogens.7:e1002408. doi:10.1371/journal.ppat.1002408.
    193. Zhou W, Kolb FL, Bai G, et al.2002 Genetic analysis of scab resistance QTL in wheat wit h micro-satellite and AFLP markers. Genome.45:719-727.
    194. Zhu W, Magbanua MM and White FF.2000 Identification of two nove hyp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv.oryzae. J Bacteriol.182:1844-1853.
    195. Zhu W, Yang B, Wills N, et al.1999 The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. The Plant Cell.11: 1665-1674.
    196. Zou BH, Jia ZH, Tian SM, et al.2013 AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Functional Plant Biology. http://dx.doi.org/10.1071/FP12253
    197. Zou LF, Wang XP, Xiang Y, et al.2006 Elucidation of the hrp gene clusters ofXanthomonas oryzae pv. oryzicola that controls the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Appl Envir Microbiol.72:6212-6224.
    198.陈功友,王金生.2002植物病原细菌致病性决定因子.植物病理学报.32:1-7.
    199.陈功友,余晓江,王金生.2003水稻白叶枯病菌hrp调节基因hrpxoo的克隆与序列分析.中国农业科学.36:528-535.
    200.陈功友,邹丽芳,王邢平等.2004水稻白叶枯病菌致病性分子遗传学基础.中国农业科学.37:1301-1307.
    201.董汉松,王金生,方中达.1993大白菜根组织中细菌凝集素含量与软腐欧文氏菌吸附和侵染的关系.山东科学.6:65-69.
    202.董汉松,王金生,方中达.1995细菌凝集素与菌体脂多糖在大白菜与软腐欧氏杆菌接触识别中的作用.植物病理学报.23:51-56.
    203.郭倩倩,孙熙森,唐益雄等.2011新型筛选标记磷酸甘露糖异构酶基因在转基因植物中的应用.中国农业科技导报.13:12-19.
    204.贾高峰,陈佩度,秦跟基等.2005望水白和苏麦3号构建的DH群体赤霉病抗性比较.作物学报.31:1179-1185.
    205.康振生,黄丽丽,Buchenauer H等.2004a禾谷镰刀菌在小麦穗部侵染过程的细胞学研究.植物病理学报.34:329-335.
    206.李平,龙菊英,张燕等.2004水稻黄单胞细菌的无毒基因.南京农业大学学报.27:119-124.
    207.李玉蓉,邹丽芳,武晓敏等.2007稻黄单胞菌avrBs3/PthA家族基因研究进展.中国农业科学.40:2193-2199.
    208.裴俊国,邹丽芳,邹华松等.2010水稻条斑病菌xopQ1Xoc在病程中功能的初步研究.中国农业科学.43:3538-3546.
    209.任海英.2006生物激发子与氧化还原相关信号对植物生长和抗病性的调控作用.南京:南京农业大学.博士学位论文.
    210.王晓莉.2008生长素信号对植物生长与系统性获得抗性的调控作用.南京:南京农业大学.硕士学位论文.
    211.闻伟刚,王金生.2001水稻白叶枯病菌Harpin编码基因的克隆和表达.植物病理学报.31:295-300.
    212.薛应龙,欧阳光察,澳绍根.1983植物苯丙氨酸解氨酶的研究.植物生理学报.9:301-306.
    213.杨娟,许云鹤,邹丽芳等.2007白叶枯病菌xopXoo基因在致病性中的作用.中国水稻科学.21:242-246.
    214.俞刚,陈利锋,姚红燕等.2003脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用.植物病理学报.33:40-43.
    215.张春玲,付茂强,徐衡等.2012拟南芥韧皮部防卫反应转录调控与小麦抗蚜虫机制.南京农业大学学报.35:113-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700