用户名: 密码: 验证码:
快速检测农产品中大肠杆菌O157:H7的生物传感方法与仪器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文针对现有农产品安全快速检测领域中关于致病菌检测的重大技术需求,结合分子生物学、纳米技术、材料科学、传感技术、仪器分析技术等领域的最新研究成果,探索用于农产品中致病菌快速检测的新型生物传感方法。以大肠杆菌O157:H7为研究对象,在充分分析与总结现有大肠杆菌O157:H7检测方法的基础上,提出以生物传感方法为研究主线,研究两种非标记型大肠杆菌O157:H7生物传感方法,即基于表面等离子体共振(Surface Plasmon Resonance, SPR)的生物传感方法和基于电化学阻抗谱(Electrochemical Impedance Spectroscopy, EIS)的生物传感方法。对这两种检测技术在大肠杆菌O157:H7检测领域的应用现状进行了研究,总结了其目前所存在的技术瓶颈。利用新型生物识别分子和纳米材料,解决这两种检测技术在大肠杆菌O157:H7快速、灵敏、方便检测中存在的问题,为寻求更为快捷、性能更高的大肠杆菌O157:H7检测方法提供理论依据。同时,结合仪器分析技术,开发便携式SPR检测仪和手持式阻抗仪,搭建用于现场样品中大肠杆菌O157:H7快速检测的平台。
     主要研究内容、结果和结论如下:
     (1)快速检测大肠杆菌O157:H7的SPR生物传感方法研究
     基于消减抑制原理的SPR生物传感方法检测大肠杆菌O157:H7
     分析和总结了直接SPR生物传感方法检测致病菌所存在的缺陷(致病菌体积超过了SPR分析方法300nm的最佳检测范围),提出了一种基于消减抑制原理的SPR生物传感方法,并验证了其检测大肠杆菌O157:H7的可行性。在消减抑制检测过程中,目标菌大肠杆菌O157:H7首先与抗体混合一段时间,再通过梯度离心过程来分离得到未与目标菌结合的剩余抗体,然后将分离得到的剩余抗体流动注射到修饰有二抗的SPR传感芯片表面,当抗体被二抗捕获后,便产生SPR信号。利用SPR信号与目标菌之间的关系,建立消减抑制SPR生物传感方法检测大肠杆菌O157:H7的模型。结果表明:该新型检测方法产生的SPR信号与浓度为3.0×104~3.0×108cfu mL-1的大肠杆菌O157:H7成反比。相比于直接SPR法和酶联免疫吸附测定法(检测限均为3.0×105cfu mL-1),消减抑制SPR生物传感方法有效提高了检测方法的灵敏度,其检测限整整下降了一个数量级(3.0×104cfu mL-1)。基于消减抑制原理的SPR生物传感方法有效地解决了直接SPR法存在的灵敏度低等缺陷,为SPR技术检测其它较大体积的分析物(细菌、真菌、细胞等)提供了新思路.
     基于凝集素生物识别分子的SPR生物传感方法检测大肠杆菌O157:H7
     针对抗体作为生物识别分子检测致病菌所存在的问题(抗体筛选过程复杂、成本高、易失活),提出了一种以凝集素作为生物识别分子的新型SPR生物传感方法,并验证了其检测农产品中大肠杆菌O157:H7的可行性。凝集素能与细菌表面的糖基进行特异性地结合,同时具有合成简便、成本低廉、体积小等优点。实验过程中,凝集素首先通过单分子自组装层固定在SPR芯片表面,当目标菌流过芯片表面时,凝集素分子就会将其捕获,利用SPR仪记录目标菌捕获后的SPR信号变化,从而达到检测目标菌的目的。选用五种凝集素(麦胚凝集素、刀豆凝集素、荆豆凝集素、花生凝集素、山槐凝集素)和三种细菌(大肠杆菌O157:H7、大肠杆菌DH5α、李斯特菌)进行筛选,得到对大肠杆菌O157:H7具有高亲和力、高特异性的凝集素。结果表明:当以麦胚凝集素修饰的SPR芯片来检测大肠杆菌O157:H7时,SPR信号最强,其与浓度范围为3×105~3×108cfu mL-1的目标菌成线性关系,检测限为3×103cfu mL-1。此外,将该新型SPR生物传感方法用于检测农产品样品(黄瓜和牛肉)中的大肠杆菌O157:H7,其检测限分别为3×104cfu mL-1和3×105cfu mL-1。基于凝集素生物识别分子的SPR生物传感方法有效地解决了抗体作为生物识别分子存在的成本高、稳定性差等缺陷,为SPR技术检测致病菌提供了新途径,同时也为开发低成本的SPR传感芯片用于致病菌的检测提供了借鉴。
     (2)快速检测大肠杆菌O157:H7的EIS生物传感方法研究
     基于纳米可抛弃传感器的EIS生物传感方法检测大肠杆菌O157:H7
     针对现有EIS生物传感方法检测致病菌所存在的传感器昂贵、灵敏度不高等问题,提出了一种基于纳米可抛弃传感器的EIS生物传感方法,并验证了其检测大肠杆菌O157:H7的可行性。纳米可抛弃传感器是以商业化的丝网印刷电极为基底,采用电化学方法在其表面依次电沉积石墨烯和金纳米颗粒。其中石墨烯层采用先滴涂后还原的方法制备,即先电极表面滴涂一层氧化石墨烯,然后利用电流-时间曲线法将其还原为石墨烯。而金纳米颗粒层则是通过电流-时间曲线法一步电沉积在石墨烯层表面。大肠杆菌O157:H7抗体通过其与金纳米颗粒之间的静电吸附作用固定在电极表面,BSA用来封闭金颗粒表面的空余位点。当大肠杆菌O157:H7被电极表面的抗体捕获后,阻碍了电极表面的电子转移,从而使得电子转移电阻增大。结果表明:电子转移电阻的变化与浓度在1.5×103~1.5×107cfu mL-1之间的大肠杆菌O157:H7成正比,检测限为1.5×103cfu mL-1。特异性测试表明该纳米可抛弃传感器对非目标菌大肠杆菌DH5α、李斯特菌、金黄色葡萄球菌无明显响应信号。基于纳米可抛弃传感器的EIS生物传感方法具有分析速度快、灵敏度高、成本低等特点,为今后开发用于大规模样品筛选的低成本工具提供了可行的参考依据。
     基于石墨烯纸传感器的EIS生物传感方法检测大肠杆菌O157:H7
     结合当前传感技术领域的研究现状,提出了一种基于纸传感器的新型EIS生物传感方法,并验证了其快速检测农产品中大肠杆菌O157:H7的可行性。纸传感器采用石墨烯纸作为基底,并在其表面修饰金纳米颗粒层用以固定抗体。石墨烯纸通过真空抽滤和碘化氢还原两个步骤制取,金纳米颗粒修饰层则采用电流-时间曲线法一步电沉积在石墨烯纸表面。抗体通过生物素-亲和素法固定在金纳米颗粒表面位点,多余的位点则用BSA封闭,当大肠杆菌与纸传感器表面的抗体结合后,会引起纸传感器表面的界面特性变化。利用EIS来研究这种界面特性变化,发现EIS中的电子转移电阻值与纸传感器表面目标菌的捕获量成一定的正比关系。结果表明:该新型EIS生物传感方法可以检测浓度范围为1.5×102~1.5×107cfu mL-1的大肠杆菌O157:H7,检测限为1.5×102cfu mL-1。此外,该新型传感方法还具有较高的特异性、较好的重复性和稳定性及较高的机械强度。基于石墨烯纸传感器的EIS生物传感方法为研发低成本、高灵敏、快速简便的致病菌检测方法提供了新思路。
     (3)检测大肠杆菌O157:H7的便携式仪器
     基于SPR技术的小型化大肠杆菌O157:H7快速检测仪
     探索搭建基于SPR技术的小型化大肠杆菌O157:H7快速检测仪的可行性。小型化SPR检测仪是由集成式SpreetaTM SPR传感系统和本实验室开发的传感控制硬件及软件构成。硬件部分主要包括主控部分设计,软件部分包括芯片程序和仪器上位机软件两部分。通过检测乙醇和葡萄糖溶液,验证了该仪器检测结果的稳定性和准确性。结合前期研究的SPR生物传感方法,将上述开发的小型化SPR检测仪用于大肠杆菌O157:H7的检测。结果显示,该小型化SPR检测仪能够用于样品中3.0×105~3.0×108cfu mL-1浓度范围内大肠杆菌O157:H7的检测。此外,该分析仪器还能实现多通道同时检测,且检测速度快、样品用量少、小型便携,可以作为一种用于大肠杆菌O157:H7现场快速检测的有效分析工具。
     基于阻抗技术的手持式大肠杆菌O157:H7快速检测仪
     探索搭建基于阻抗技术的手持式大肠杆菌O157:H7快速检测仪的可行性。手持式阻抗检测仪是由纳米材料修饰的丝网印刷电极和本实验室开发的小型阻抗仪构成。结合前期研究的纳米材料修饰方法来制备丝网印刷电极,首先在丝网印刷电极表面滴涂一层氧化石墨烯膜,然后使用电化学法进行还原,接着通过电化学方法沉积一层金纳米颗粒,最后抗体通过静电吸附固定在金纳米颗粒表面。研究表明,小型阻抗仪在1kHz频率下测试到的阻抗值与大肠杆菌O157:H7的浓度成正比。该小型阻抗传感器对大肠杆菌O157:H7的检测范围为1.5×104~1.5×107cfu mL-1,检测限为1.5×104cfumL-1。该小型阻抗仪具有测量结果准确,精度高,检测速度快等特点,同时小型便携,可以作为一种用于大肠杆菌O157:H7现场快速检测的有效分析工具。
This work aimed to develop novel biosensing methods for the detection of foodborne pathogens in agricultrual products by using the latest research achievements in the field of molecular biology, nanotechnology, material science, sensing technique, and instrumental analysis technique. The Escherichia coli O157:H7(E. coli O157:H7) was selected as the target bacteria. After the careful study on the current detection methods for E. coli O157:H7, we chose two kinds of unlabeled biosensing methods for E. coli O157:H7detection in our study, including surface plasmon resonance (SPR) based biosensing method and electrochemical impedance spectroscopy (EIS) based biosensing method. However, some limitations still remain as the challenges when dealing with large-scale applications. Here, we used novel detection mode, bio-recognition molecule (e.g. lectin) and nanomaterials (e.g. gold nanoparticles and graphene) to develop novel biosensing methods for rapid and sensitive detection of E. coli O157:H7. Furthermore, we developed a portable SPR instrument and a handheld impedance instrument for E. coli O157:H7detection. This work provides several effective and useful biosensing methods for the detection of E. coli O157:H7, which may hold great promising in routine sensing applications.
     Main results and conclusions are as follows:
     (1) SPR biosensing methods for E. coli O157:H7detection
     Subtractive inhibition mechanism based SPR biosensing method for E. coli O157:H7detection
     A novel SPR biosensing method by means of a subtractive inhibition assay was developed for the sensitive detection of E. coli O157:H7in order to solve the problems in direct SPR detection method. In the subtractive inhibition assay, E. coli O157:H7cells and goat polyclonal antibodies for E. coli O157:H7were firstly incubated for a while. Then, the E. coli O157:H7cells that bound with antibodies were removed by stepwise centrifugation process. The remaining free unbound antibodies were detected through interaction with rabbit anti-goat IgG polyclonal antibodies immobilized on the sensor chip using BIAcore3000biosensor. We used the relationship between SPR signal and concentrations of E. coli O157:H7to establish the detection model. Results show that the signal was inversely correlated with the concentrations of E. coli O157:H7cells in a range from3.0x104to3.0x108cfu mL-1with the detection limit of3.0x104cfu mL-1. This detection limit was lower than those obtained by direct SPR method (in which the antibodies was firstly immobilized on the chip surface and then to capture E. coli O157:H7) and ELISA. The subtractive inhibition mechanism based SPR biosensing method could solve the drawbacks in current direct SPR method (e.g. low sensitivity), which may provide a useful way to implement SPR technique for other pathogens detection.
     Lectin based SPR biosensing method for E. coli O157:H7detection
     A novel SPR biosensing method using lectin as bio-recognition molecule was developed for the rapid and sensitive detection of E. coli O157:H7. The selective interaction of lectins with carbohydrate components on the surface of bacterial cells was used as the recognition principle for the detection of E. coli O157:H7. This novel bio-recognition molecule shows some intrinsic advantages over antibodies, such as inexpensive and physicochemical stable. In the detection procedure, lectin molecules were firstly immobilized onto the chip surface via molecular self-assembly layer. When the target bacteria was captured by the lectins immobilized on the chip, the SPR signal increased, which was correlated with the concentrations of bacteria cells. Five types of lectins from Triticum vulgaris, Canavailia ensiformis, Ulex europaeus, Arachis hypogaea, and Maackia amurensis, were employed to evaluate the selectivity of the approach for binding E. coli O157:H7effectively. A linear range of3×105-3×108cfu mL-1and a detection limit of3x103cfu mL-1were obtained for determination of E. coli O157:H7when using the lectin from Triticum vulgaris as the bio-recognition element. Furthermore, the proposed biosensor was used to detect E. coli O157:H7in agricultural products. The detection limits in case of E. coli O157:H7contaminated cucumber samples and ground beef samples were3.0×104and3.0×105cfu mL-1, respectively. This work firstly reveals that the lectin could be an effective and promising bio-recognition material for constructing SPR biosensors for pathogens detection, which may have wide applications in routine sensing applications.
     (2) EIS biosensing methods for E. coli O157:H7detection
     Disposable nanocomposite sensor based EIS biosensing method for E. coli O157:H7detection
     A novel EIS biosensing method using disposable nanocomposite sensor for the low-cost and high-sensitive detection of E. coli O157:H7was developed. The commercial screen-printed electrode was used as the substrate in the proposed sensor. Then, a graphene oxide film was formed on the surface of screen-printed electrode using simple drop-coating method. The reduction of graphene oxide into graphene was performed by amperometric i-t curve method. Then, one-step electrodeposition method was employed to prepare gold nanoparticles on the graphene film surface. Antibody was immobilized on the surface of gold nanoparticles through electrostatic adsorption, and then BSA was used to block the redundant active sites on gold nanoparticles. When E. coli O157:H7was captured by the disposable sensor, the electron transfer kinetics on electrode surface was hindered, inducing the increase on electron transfer resistance. Results show that the change of electron transfer resistance is directly proportional to concentrations of E. coli O157:H7. A wide linear range of1.5×103-1.5×107cfu mL-1and a low detection limit of1.5×103cfu mL-1were obtained using the developed biosensing method. Additionally, nontarget bacteria, such as E. coli DH5a, Listeria monocytogenes, Staphylococcus aureus, were used to demonstrate the high selectivity and specificity of the biosensor. High-performance, low cost, and easy operation make the developed EIS biosensing method very attractive in routine sensing applications.
     Graphene paper sensor based EIS biosensing method for E. coli O157:H7detection
     In this study, a low-cost and robust impedimetric immunosensor based on gold nanoparticles modified free-standing graphene paper electrode for rapid and sensitive detection of E. coli O157:H7was developed. Graphene paper was prepared by chemical reduction of graphene oxide paper obtained from vacuum filtration method. Scanning electron microscope, Raman spectroscopy and X-ray diffraction techniques were employed to investigate the surface morphology and crystal structure of the prepared graphene paper. The gold nanoparticles were grown on the surface of graphene paper electrode by one-step electrodeposition technique. The immobilization of anti-E. coli O157:H7antibodies on paper electrode were performed via biotin-streptavidin system. Electrochemical impedance spectroscopy was used to detect E. coli O157:H7captured on the paper electrode. Results show that the developed paper immunosensor possesses greatly enhanced sensing performance, such as wide liner range (1.5×102-1.5×107cfu mL-1), low detection limit (1.5×102cfu mL-1), and excellent specificity. Furthermore, flexible test demonstrate the graphene paper based sensing device has high tolerability to mechanical stress. The strategy of structurally integrating metal nanomaterials, graphene paper, and biorecognition molecules would provide new insights into design of flexible immunosensors for routine sensing applications.
     (3) Portable instruments for the detection of E. coli O157:H7
     Construction of portable SPR instrument for rapid detection of E. coli O157:H7
     The feasibility of the construction of portable SPR instrument for the rapid detection of E. coli O157:H7was investigated. This instrument is composed of commercial integrated SpreetaTM SPR sensor system and sensing control part developed by our laboratory. The sensing control part includes hardware and supported software. The stability and precision of the developed instrument was verified by testing the ethanol and glucose solutions. Furthermore, the developed instrument was employed to detection E. coli O157:H7by combining with the established SPR biosensing methods in previous work. Results show that the miniature SPR instrument could be used to detect E. coli O157:H7in the range of3.0×105-3.0×108cfu mL-1. Additionally, this instrument could achieve multi-channel simultaneous detection of various samples. Fast, less sample, and portable make the developed instrument as an effective tool for on-site and rapid detection of E. coli O157:H7.
     Construction of handheld impedance instrument for rapid detection of E. coli O157:H7
     The feasibility of the construction of handheld impedance instrument for the rapid detection of E. coli O157:H7was investigated. This instrument consists of nanomaterials modified screen-printed electrode and handheld impedance meter. The screen-printed electrode was prepared with the same method mentioned in the previous work. When E. coli O157:H7was captured by antibody modified electrode, the impedance at the frequency of1kHz measured by handheld impedance meter increased. The portable instrument was used for the detection of E. coli O157:H7at the range of1.5×104-1.5x107cfu mL-1and detection limit of1.5x104cfu mL-1. Excellent accuracy, precision, and portability make the developed instrument as an effective tool for on-site and rapid detection of E. coli O157:H7.
引文
1. Who. Background Paper:Developing A Food Safety Strategy Draft.2001.
    2.李少彤,栾玉明,蒋卓勤.食源性致病菌检测现状与食品微生物危险性评估的研究进展.现代预防医学.2006,33(9):1556-1557.
    3.刘秀梅.我国食品卫生微生物学30年来的热点研究及主要进展.中国食品卫生杂志.2009,21(4):289-295.
    4. Estimates of Foodborne Illness in the United States. Centers for Disease Control and Prevention. [2013-4-22]. http://www.cdc.gov/Features/dsFoodborneEstimates/.
    5.李杜娟,王剑平,应义斌,李延斌.检测食源性致病菌的生物传感器.中国生物化学与分子生物学报.2007,23(3):194-199.
    6.陈萍,李泽鸿,邴伟.致泻性大肠杆菌研究进展.上海畜牧兽医通讯.2007,(4):11-13.
    7.徐尚荣.大肠杆菌O157:H7的生物学特性.青海畜牧兽医杂志.2008,38(4):56-57.
    8. Nestle Toll House Cookie Dough E. coli O157:H7 By the Numbers-76 Sickened in 31 States,11 with Hemolytic Uremic Syndrome. Marler Blog. [2009-7-14]. http://www.marlerblog.com/legal-cases/nestle-toll-house-cookie-dough-e-coli-o157h7-by-the-num bers-76-sickened-in-31-states-11-with-hemol/.
    9. E. coli O157:H7. Marler Blog. [2010-8-13]. http://www.marlerblog.com/e-coli-information/e-coli-o157h7/.
    10.肠出血性大肠杆菌(Enterohemorrhage Escherichia coli)食品伙伴网.[2011-5-28].http://www.foodmate.net/jianyan/1367/163786.html.
    11.李洪卫,景怀琦,逄波,赵广法,杨晋川,徐建国徐州市2002年肠出血性大肠埃希菌0157:H7感染性腹泻的调查.中华流行病学杂志.2002,23(2):119-122.
    12.施世锋,黄志成,张渝,王麟,孟冬梅,吴静芳,周勤,孙建荣,许珂,俞国强,李小仙,张燕琴,邓晶,余文炳.大肠杆菌O157:H7在浙江的发现及防制.中国人兽共患病杂志.1999,15(4):104-113.
    13.孟冬梅,孙建荣,许珂,张燕琴,潘劲草.浙江省首例肠出血性大肠杆菌O157:H7菌株的分离和鉴定.中国公共卫生.1999,15(4):346-347.
    14.徐建国,景怀奇.中国1997~1998年O157:H7大肠杆菌检测情况分析.疾病监测.1999,14(5):176-178.
    15.刘加彬,杨晋川,景怀琦,徐建国.1999-2006年江苏省徐州市肠出血性大肠埃希菌0157:H7感染状况的流行病学研究.疾病监测.2007,22(8):516-518.
    16.冉陆.肠出血性大肠杆菌(EHEC)流行趋势(综述).中国食品卫生杂志.1999,11(3):31-35.
    17.李志明.食品卫生微生物检验学.北京:化学工业出版社,2008.
    18.张伟,袁耀武.现代食品微生物检测技术.北京:化学工业出版社,2007.
    19. Xu, S. Electromechanical biosensors for pathogen detection. Microchimica Acta.2012,178(3-4): 245-260.
    20. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews.2008,108(2):462-493.
    21. Situ, C., Buijs, J., Mooney, M. H., Elliott, C. T. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trac-Trends in Analytical Chemistry. 2010,29(11):1305-1315.
    22. Green, R. J., Frazier, R. A., Shakesheff, K. M., Davies, M. C., Roberts, C. J., Tendler, S. J. B. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials.2000,21(18):1823-1835.
    23. Szunerits, S., Maalouli, N., Wijaya, E., Vilcot, J. P., Boukherroub, R. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Analytical and Bioanalytical Chemistry.2013,405(5):1435-1443.
    24. Ghosh, N., Gupta, G., Boopathi, M., Pal, V, Singh, A. K., Gopalan, N., Goel, A. K. Surface Plasmon Resonance Biosensor for Detection of Bacillus anthracis, the Causative Agent of Anthrax from Soil Samples Targeting Protective Antigen. Indian Journal of Microbiology.2013,53(1): 48-55.
    25. Fratamico, P. M., Strobaugh, T. P., Medina, M. B., Gehring, A. G. Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnology Techniques.1998,12(7): 571-576.
    26. Taylor, A. D., Yu, Q. M., Chen, S. F., Homola, J., Jiang, S. Y. Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors and Actuators B-Chemical.2005,107(1):202-208.
    27. Linman, M. J., Sugerman, K., Cheng, Q. Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sensors and Actuators B-Chemical.2010,145(2):613-619.
    28. Wang, J., Luo, Y, Zhang, B., Chen, M., Huang, J. F., Zhang, K. J., Gao, W. Y, Fu, W. L., Jiang, T. L., Liao, P. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance. Journal of Translational Medicine.2011,9:85.
    29. Zezza, F., Pascale, M., Mule, G., Visconti, A. Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. Journal of Microbiological Methods.2006,66(3): 529-537.
    30. Tawil, N., Mouawad, F., Levesque, S., Sacher, E., Mandeville, R., Meunier, M. The differential detection of methicillin-resistant, methicillin-susceptible and borderline oxacillin-resistant Staphylococcus aureus by surface plasmon resonance. Biosensors & Bioelectronics.2013,15(49): 334-340.
    31. Singh, A., Arutyunov, D., Mcdermott, M. T., Szymanski, C. M., Evoy, S. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst.2011,136(22):4780-4786.
    32. Arya, S. K., Singh, A., Naidoo, R., Wu, P., Mcdermott, M. T., Evoy, S. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst. 2011,136(3):486-492.
    33. Tawil, N., Sacher, E., Mandeville, R., Meunier, M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosensors & Bioelectronics.2012,37(1): 24-29.
    34. Sassolas, A., Blum, L. J., Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances.2012,30(3):489-511.
    35. Samanta, D., Sarkar, A. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chemical Society Reviews.2011,40(5):2567-2592.
    36. Siqueira, J. R., Caseli, L., Crespilho, F. N., Zucolotto, V., Oliveira, O. N. Immobilization of biomolecules on nanostructured films for biosensing. Biosensors & Bioelectronics.2010,25(6): 1254-1263.
    37. Subramanian, A., Irudayaraj, J., Ryan, T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli 0157:H7. Biosensors & Bioelectronics.2006, 21(7):998-1006.
    38. Jyoung, J. Y., Hong, S. H., Lee, W., Choi, J. W. Immunosensor for the detection of Vibrio cholerae 01 using surface plasmon resonance. Biosensors & Bioelectronics.2006,21(12):2315-2319.
    39.斯城燕.小型化Spreeta SPR免反传感器在大肠杆菌0157:H7检测中的研究[硕士论文].杭州:浙江大学.2012.
    40. Taylor, A. D., Ladd, J., Yu, Q. M., Chen, S. F., Homola, J., Jiang, S. Y. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors & Bioelectronics.2006,22(5):752-758.
    41. Dudak, F. C., Boyaci, I. H. Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International.2007,40(7): 803-807.
    42. Torun, O., Boyaci, I. H., Temur, E., Tamer, U. Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosensors & Bioelectronics.2012,37(1):53-60.
    43. Perez-Lopez, B., Merkoci, A. Nanoparticles for the development of improved (bio)sensing systems. Analytical and Bioanalytical Chemistry.2011,399(4):1577-1590.
    44. Gao, S. Y., Koshizaki, N., Tokuhisa, H., Koyama, E., Sasaki, T., Kim, J. K., Ryu, J., Kim, D. S., Shimizu, Y. Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors. Advanced Functional Materials.2010,20(1):78-86.
    45. Ghosh, S. K., Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications. Chemical Reviews.2007,107(11):4797-4862.
    46. He, L., Smith, E. A., Natan, M. J., Keating, C. D. The distance-dependence of colloidal Au-amplified surface plasmon resonance. Journal of Physical Chemistry B.2004,108(30): 10973-10980.
    47. Baccar, H., Mejri, M. B., Hafaiedh, I., Ktari, T., Aouni, M., Abdelghani, A. Surface plasmon resonance immunosensor for bacteria detection. Talanta.2010,82(2):810-814.
    48. Yao, H., Zhang, X. H., Yin, H. Z. Detection to E. coli 0157 by surface plasmon resonance immunosensor. Advanced Materials Research.2012,518-523:305-308.
    49. Eum, N. S., Yeom, S. H., Kwon, D. H., Kim, H. R., Kang, S. W. Enhancement of sensitivity using gold nanorods-Antibody conjugator for detection of E. coli O157:H7. Sensors and Actuators B-Chemical.2010,143(2):784-788.
    50. Rich, R. L., Myszka, D. G. Grading the commercial optical biosensor literature-Class of 2008:'The Mighty Binders'. Journal of Molecular Recognition.2010,23(1):1-64.
    51.葛晶.使用SPR生物传感器快速检测大肠杆菌的研究[博士论文].吉林:吉林大学.2005.
    52. Fernandez, F., Pinacho, D. G., Sanchez-Baeza, F., Marco, M. P. Portable Surface Plasmon Resonance Immunosensor for the Detection of Fluoroquinolone Antibiotic Residues in Milk. Journal of Agricultural and Food Chemistry.2011,59(9):5036-5043.
    53. Polonschii, C., David, S., Tombelli, S., Mascini, M., Gheorghiu, M. A novel low-cost and easy to develop functionalization platform. Case study:Aptamer-based detection of thrombin by surface plasmon resonance. Talanta.2010,80(5):2157-2164.
    54. Zhan, S. Y, Wang, X. P., Luo, Z. F., Zhou, H. M., Chen, H. B., Liu, Y. L. Study on design and application of fully automatic miniature surface plasmon resonance concentration analyzer. Sensors and Actuators B-Chemical.2011,153(2):427-433.
    55. Lan, Y. B., Wang, S. Z., Yin, Y. G., Hoffmann, W. C., Zheng, X. Z. Using a Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Chicken Carcass. Journal of Bionic Engineering.2008,5(3):239-246.
    56.王凯.使用SPR生物传感器快速检测微生物的实验研究[硕士论文].吉林:吉林大学.2003.
    57. Liu, Z. Y., Yang, L., Liu, L., Chong, X. Y, Guo, J., Ma, S. H., Ji, Y. H., He, Y. H. Parallel-scan based microarray imager capable of simultaneous surface plasmon resonance and hyperspectral fluorescence imaging. Biosensors & Bioelectronics.2011,30(1):180-187.
    58.申刚义,陈义,张轶鸣,崔箭.表面等离子体共振成像.化学进展.2010,22(8):1648-1655.
    59. Puttharugsa, C., Wangkam, T., Huangkamhang, N., Gajanandana, O., Himananto, O., Sutapun, B., Amarit, R., Somboonkaew, A., Srikhirin, T. Development of surface plasmon resonance imaging for detection of Acidovorax avenae subsp citrulli (Aac) using specific monoclonal antibody. Biosensors & Bioelectronics.2011,26(5):2341-2346.
    60. Foudeh, A. M., Daoud, J. T., Faucher, S. P., Veres, T., Tabrizian, M. Sub-femtomole Detection of 16s rRNA from Legionella Pneumophila Using Surface Plasmon Resonance Imaging. Biosensors & Bioelectronics..
    61.曹楚南.腐蚀电化学.北京:化学工业出版社,1994.
    62. Daniels, J. S., Pourmand, N. Label-free impedance biosensors:Opportunities and challenges. Electroanalysis.2007,19(12):1239-1257.
    63. Katz, E., Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis.2003,15(11):913-947.
    64. Pejcic, B., De Marco, R. Impedance spectroscopy:Over 35 years of electrochemical sensor optimization. Electrochimica Acta.2006,51(28):6217-6229.
    65. Varshney, M., Li, Y. B. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosensors & Bioelectronics.2009,24(10):2951-2960.
    66. Yang, L., Bashir, R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances.2008,26(2):135-150.
    67. Yan, X. F., Wang, M. H., An, D. Progress of Interdigitated Array Microelectrodes Based Impedance Immunosensor. Chinese Journal of Analytical Chemistry.2011,39(10):1601-1610.
    68. Wang, R. H., Wang, Y., Lassiter, K., Li, Y. B., Hargis, B., Tung, S., Berghman, L., Bottje, W. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta.2009,79(2):159-164.
    69. Yang, L. J., Li, Y. B., Erf, G. F. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Analytical Chemistry.2004, 76(4):1107-1113.
    70. Radke, S. M., Alocilja, E. C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal.2005,5(4):744-750.
    71. Radke, S. M., Alocilja, E. C. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors Journal.2004,4(4):434-440.
    72. Ruan, C. M., Yang, L. J., Li, Y. B. Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Analytical Chemistry.2002,74(18): 4814-4820.
    73. Laczka, O., Baldrich, E., Del Campo, F. J., Munoz, F. X. Immunofunctionalisation of gold transducers for bacterial detection by physisorption. Analytical and Bioanalytical Chemistry.2008, 391(8):2825-2835.
    74. Dos Santos, M. B., Sporer, C., Sanvicens, N., Pascual, N., Errachid, A., Martinez, E., Marco, M. P., Teixeira, V., Samiter, J. Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy:Influence of the immobilization strategies on the sensor performance. Procedia Chemsitry.2009,1(1):1291-1294.
    75. Gamella, M., Campuzano, S., Parrado, C., Reviejo, A. J., Pingarron, J. M. Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta.2009,78(4-5): 1303-1309.
    76. Wan, Y, Zhang, D., Hou, B. Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay. Talanta.2009,80(1):218-223.
    77. Shabani, A., Zourob, M., Allain, B., Marquette, C. A., Lawrence, M. F., Mandeville, R. Bacteriophage-Modified Microarrays for the Direct Impedimetric Detection of Bacteria. Analytical Chemistry.2008,80(24):9475-9482.
    78. Gervals, L., Gel, M., Allain, B., Tolba, M., Brovko, L., Zourob, M., Mandeville, R., Griffiths, M., Evoy, S. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensors and Actuators B-Chemical.2007,125(2):615-621.
    79. Webster, M. S., Timoshkin, I. V., Macgregor, S. J., Mattey, M. Computer Aided Modelling of an Interdigitated Microelectrode Array Impedance Biosensor for the Detection of Bacteria. Ieee Transactions on Dielectrics and Electrical Insulation.2009,16(5):1356-1363.
    80. Kara, P., Meric, B., Ozsoz, M. Application of Impedimetric and Voltammetric Genosensor for Detection of a Biological Warfare:Anthrax. Electroanalysis.2008,20(24):2629-2634.
    81. Wang, L. J., Liu, Q. J., Hu, Z. Y, Zhang, Y F., Wu, C. S., Yang, M., Wang, P. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. Talanta.2009,78(3):647-652.
    82. Yan, S. C., Shi, Y, Xiao, Z. D., Zhou, M. M., Yan, W. F., Shen, H. L., Hu, D. Development of Biosensors Based on the One-Dimensional Semiconductor Nanomaterials. Journal of Nanoscience and Nanotechnology.2012,12(9):6873-6879.
    83. Ju, H. X. Sensitive biosensing strategy based on functional nanomaterials. Science China-Chemistry.2011,54(8):1202-1217.
    84. Perez-Lopez, B., Merkoci, A. Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology.2011,22(11):625-639.
    85. Song, H. S., Park, T. H. Integration of biomolecules and nanomaterials:Towards highly selective and sensitive biosensors. Biotechnology Journal.2011,6(11):1310-1316.
    86. Wan, Y, Zhang, D., Wang, Y, Hou, B. A 3D-impedimetric immunosensor based on foam Ni for detection of sulfate-reducing bacteria. Electrochemistry Communications.2010,12(2):288-291.
    87. Huang, J. L., Yang, G. J., Meng, W. J., Wu, L. P., Zhu, A. P., Jiao, X. A. An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients' stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosensors & Bioelectronics.2010,25(5):1204-1211.
    88. Yang, G. J., Huang, J. L., Meng, W. J., Shen, M., Jiao, X. A. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Analytica Chimica Acta.2009,647(2):159-166.
    89. Wang, R. H., Ruan, C. M., Kanayeva, D., Lassiter, K., Li, Y. B. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Letters.2008,8(9):2625-2631.
    90. Wan, Y., Lin, Z. F., Zhang, D., Wang, Y., Hou, B. R. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosensors & Bioelectronics.2011,26(5):1959-1964.
    91. Joung, C. K., Kim, H. N., Lim, M. C., Jeon, T. J., Kim, H. Y, Kim, Y R. A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosensors & Bioelectronics.2013,44:210-215.
    92. Tan, F., Leung, P. H. M., Liu, Z. B., Zhang, Y., Xiao, L. D., Ye, W. W., Zhang, X., Yi, L., Yang, M. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sensors and Actuators B-Chemical. 2011,159(1):328-335.
    93. Syed, L. U., Liu, J. W., Price, A. K., Li, Y F., Culbertson, C. T., Li, J. Dielectrophoretic capture of E. coli cells at micropatterned nanoelectrode arrays. Electrophoresis.2011,32(17):2358-2365.
    94. Varshney, M., Li, Y. B. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors & Bioelectronics.2007,22(11):2408-2414.
    95. Varshney, M., Li, Y B., Srinivasan, B., Tung, S. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B-Chemical. 2007,128(1):99-107.
    96. Maalouf, R., Hassen, W. M., Fournier-Wirth, C., Coste, J., Jaffrezic-Renault, N. Comparison of two innovatives approaches for bacterial detection:paramagnetic nanoparticles and self-assembled multilayer processes. Microchimica Acta.2008,163(3-4):157-161.
    97. Chan, K. Y, Ye, W. W., Zhang, Y, Xiao, L.D., Leung, P. H. M., Li, Y, Yang, M. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosensors & Bioelectronics.2013,41:532-537.
    98. Ramgir, N. S., Yang, Y, Zacharias, M. Nanowire-Based Sensors. Small.2010,6(16):1705-1722.
    99. Xu, Y H., Wang, E. K. Electrochemical biosensors based on magnetic micro/nano particles. Electrochimica Acta.2012,84:62-73.
    100. Gooneratne, C. P., Liang, C., Giouroudi, I., Kosel, J. An integrated micro-chip for rapid detection of magnetic particles. Journal of Applied Physics.2012,111(7):327-330.
    101. Chen, A. Q., Bao, Y W., Ge, X. X., Shin, Y, Du, D., Lin, Y H. Magnetic particle-based immunoassay of phosphorylated p53 using protein cage templated lead phosphate and carbon nanospheres for signal amplification. RSC Advances.2012,2(29):11029-11034.
    102. Altintas, Z., Kallempudi, S. S., Sezerman, U., Gurbuz, Y A novel magnetic particle-modified electrochemical sensor for immunosensor applications. Sensors and Actuators B-Chemical.2012, 174:187-194.
    103. Jiang, X. S., Wang, R. H., Wang, Y, Su, X. L., Ying, Y B., Wang, J. P., Li, Y B. Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of.E. coli O157:H7. Biosensors & Bioelectronics.2011,29(1):23-28.
    104. Qi, P., Wan, Y, Zhang, D. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosensors & Bioelectronics.2013,39(1):282-288.
    105. Wan, Y, Wang, Y, Wu, J. J., Zhag, D. Graphene Oxide Sheet-Mediated Silver Enhancement for Application to Electrochemical Biosensors. Analytical Chemistry.2011,83(3):648-653.
    106. Huang, Y X., Dong, X. C., Liu, Y X., Li, L. J., Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry.2011,21(33): 12358-12362.
    107. Teles, F. R. R., Fonseca, L. R. Trends in DNA biosensors. Talanta.2008,77(2):606-623.
    108. Wang, J. Y, Ren, L., Li, L., Liu, W. M., Zhou, J., Yu, W. H., Tong, D. W, Chen, S. L. Microfluidics: A new cosset for neurobiology. Lab on a Chip.2009,9(5):644-652.
    109. Gomez-Sjoberg, R., Morisette, D. T., Bashir, R. Impedance microbiology-on-a-chip:Microfluidic bioprocessor for rapid detection of bacterial metabolism. Journal of Microelectromechanical Systems.2005,14(4):829-838.
    110. Yang, L. J., Banada, P. P., Chatni, M. R., Lim, K. S., Bhunia, A. K., Ladisch, M., Bashir, R. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab on a Chip.2006,6(7):896-905.
    111. Zhu, T., Pei, Z. H., Huang, J. Y., Xiong, C. Y, Shi, S. G., Fang, J. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device. Lab on a Chip.2010,10(12): 1557-1560.
    112. Weiner, J. H., Bertsch, L. L., Kornberg, A. Deoxyribonucleic-acid unwinding protein of Escherichia coli-properties and functions in replication. Journal of Biological Chemistry.1975, 250(6):1972-1980.
    113. Hummers, W. S., Offeman, R. E. Prepapation of graphitic oxide. Journal of the American Chemical Society.1958,80(6):1339-1339.
    114. Biacore 3000. GE Healthcare. http://www.biacore.com/lifesciences/products/systems_overview/ 3000/system_information/index.html.
    115.万逸.硫酸盐还原菌的电化学快速检测研究[博士论文].青岛:中国科学院海洋研究所.2012.
    116. Lazcka, O., Del Campo, F. J., Munoz, F. X. Pathogen detection:A perspective of traditional methods and biosensors. Biosensors & Bioelectronics.2007,22(7):1205-1217.
    117. Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics.1999,14(7):599-624.
    118. Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E., Stricker, S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis.2000,12(5):317-325.
    119. Sanvicens, N., Pastells, C., Pascual, N., Marco, M. P. Nanoparticle-based biosensors for detection of pathogenic bacteria. Trac-Trends in Analytical Chemistry.2009,28(11):1243-1252.
    120. Wang, Y. X., Ye, Z. Z., Ying, Y B. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors.2012,12(3):3449-3471.
    121. Nanduri, V., Bhunia, A. K., Tu, S. I., Paoli, G. C., Brewster, J. D. SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosensors & Bioelectronics.2007,23(2): 248-252.
    122. Piliarik, M., Parova, L., Homola, J. High-throughput SPR sensor for food safety. Biosensors& Bioelectronics.2009,24(5):1399-1404.
    123. Zordan, M. D., Grafton, M. M. G., Acharya, G., Reece, L. M., Cooper, C. L., Aronson, A. I., Park, K., Leary, J. F. Detection of Pathogenic E. coli O157:H7 by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device. Cytometry Part A.2009,75A(2):155-162.
    124. Tanaka, H., Hanasaki, M., Isojima, T., Takeuchi, H., Shiroya, T., Kawaguchi, H. Enhancement of sensitivity of SPR protein microarray using a novel 3D protein immobilization. Colloids and Surfaces B-Biointerfaces.2009,70(2):259-265.
    125. Mazumdar, S. D., Hartmann, M., Kampfer, P., Keusgen, M. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors & Bioelectronics.2007, 22(9-10):2040-2046.
    126. Leonard, P., Hearty, S., Quinn, J., O'kennedy, R. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors & Bioelectronics.2004,19(10):1331-1335.
    127. Skottrup, P., Hearty, S., Frokiaer, H., Leonard, P., Hejgaard, J., O'kennedy, R., Nicolaisen, M., Justesen, A. F. Detection of fungal spores using a generic surface plasmon resonance immunoassay. Biosensors & Bioelectronics.2007,22(11):2724-2729.
    128. Haines, J., Patel, P. D. Detection of food borne pathogens using BIA. BIA Journal.1995,2(2):31.
    129. Skottrup, P. D., Nicolaisen, M., Justesen, A. F. Towards on-site pathogen detection using antibody-based sensors. Biosensors & Bioelectronics.2008,24(3):339-348.
    130. Bokken, G., Corbee, R. J., Van Knapen, F., Bergwerff, A. A. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. Ferns Microbiology Letters.2003,222(1):75-82.
    131. Liebana, S., Lermo, A., Campoy, S., Cortes, M. P., Alegret, S., Pividori, M. I. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosensors & Bioelectronics. 2009,25(2):510-513.
    132. Abu-Rabeah, K.., Ashkenazi, A., Atias, D., Amir, L., Marks, R. S. Highly sensitive amperometric immunosensor for the detection of Escherichia coli. Biosensors & Bioelectronics.2009,24(12): 3461-3466.
    133. Martinez-Paredes, G., Gonzalez-Garcia, M. B., Costa-Garcia, A. Genosensor for detection of four pneumoniae bacteria using gold nanostructured screen-printed carbon electrodes as transducers. Sensors and Actuators B-Chemical.2010,149(2):329-335.
    134. Farabullini, F., Lucarelli, F., Palchetti, I., Marrazza, G., Mascini, M. Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosensors & Bioelectronics.2007,22(7):1544-1549.
    135. Liu, Y. L., Elsholz, B., Enfors, S. O., Gabig-Ciminska, M. Critical factors for the performance of chip array-based electrical detection of DNA for analysis of pathogenic bacteria. Analytical Biochemistry.2008,382(2):77-86.
    136. Safina, G., Van Lier, M., Danielsson, B. Flow-injection assay of the pathogenic bacteria using lectin-based quartz crystal microbalance biosensor. Talanta.2008,77(2):468-472.
    137.Ngundi, M. M., Kulagina, N. V., Anderson, G. P., Taitt, C. R. Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Review of Proteomics.2006,3(5): 511-524.
    138. Bertok, T., Katrlik, J., Gemeiner, P., Tkac, J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta.2013,180(1-2):1-13.
    139. Oliveira, M. D. L., Nogueira, M. L., Correia, M. T. S., Coelho, L., Andrade, C. a. S. Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sensors and Actuators B-Chemical.2011,155(2):789-795.
    140. Vedala, H., Chen, Y. A., Cecioni, S., Imberty, A., Vidal, S., Star, A. Nanoelectronic Detection of Lectin-Carbohydrate Interactions Using Carbon Nanotubes. Nano Letters.2011,11(1):170-175.
    141.K.ikkeri, R., Garcia-Rubio, I., Seeberger, P. H. Ru(II)-carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chemical Communications.2009, (2):235-237.
    142. Gao, J. Q., Liu, C., Liu, D. J., Wang, Z. X., Dong, S. J. Antibody microarray-based strategies for detection of bacteria by lectin-conjugated gold nanoparticle probes. Talanta.2010,81(4-5): 1816-1820.
    143. Xi, F. N., Gao, J. Q., Wang, J. N., Wang, Z. X. Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. Journal of Electroanalytical Chemistry.2011,656(1-2):252-257.
    144. Serra, B., Gamella, M., Reviejo, A. J., Pingarron, J. M. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Analytical and Bioanalytical Chemistry.2008,391(5): 1853-1860.
    145. Shen, Z. H., Huang, M. C., Xiao, C. D., Zhang, Y., Zeng, X. Q., Wang, P. G. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Analytical Chemistry.2007,79(6):2312-2319.
    146. Yakovleva, M. E., Moran, A. P., Safina, G. R., Wadstrom, T., Danielsson, B. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique. Analytica Chimica Acta. 2011,694(1-2):1-5.
    147. Linman, M. J., Abbas, A., Cheng, Q. A. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst.2010,135(11):2759-2767.
    148. Abbas, A., Linman, M. J., Cheng, Q. A. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors & Bioelectronics.2011,26(5):1815-1824.
    149. Hoa, X. D., Kirk, A. G., Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors:A review of recent progress. Biosensors & Bioelectronics.2007,23(2):151-160.
    150. Shankaran, D. R., Gobi, K. V. A., Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B-Chemical.2007,121(1):158-177.
    151. Geng, P., Zhang, X. N., Meng, W. W., Wang, Q. J., Zhang, W., Jin, L. T., Feng, Z., Wu, Z. R. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochimica Acta.2008,53(14):4663-4668.
    152. Mao, X. L., Yang, L. J., Su, X. L., Li, Y. B. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli 0157:H7. Biosensors & Bioelectronics.2006,21(7):1178-1185.
    153. Wong, Y. Y, Ng, S. P., Ng, M. H., Si, S. H.,Yao, S. Z., Fung, Y. S. Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosensors & Bioelectronics.2002,17(8):676-684.
    154. Su, X. L., Li, Y. B. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosensors & Bioelectronics.2004,19(6):563-574.
    155. Lindholm-Sethson, B., Nystrom, J., Malmsten, M., Ringstad, L., Nelson, A., Geladi, P. Electrochemical impedance spectroscopy in label-free biosensor applications:multivariate data analysis for an objective interpretation. Analytical and Bioanalytical Chemistry.2010,398(6): 2341-2349.
    156. Li, M., Li, Y. T., Li, D. W., Long, Y. T. Recent developments and applications of screen-printed electrodes in environmental assays-A review. Analytica Chimica Acta.2012,734:31-44.
    157. Alonso-Lomillo, M. A., Dominguez-Renedo, O., Arcos-Martinez, M. J. Screen-printed biosensors in microbiology; a review. Talanta.2010,82(5):1629-1636.
    158. Renedo, O. D., Alonso-Lomillo, M. A., Martinez, M. J. A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta.2007,73(2):202-219.
    159. Tudorache, M., Bala, C. Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry.2007,388(3):565-578.
    160. Hu, X., Dou, W. C., Fu, L. L., Zhao, G. Y. A disposable immunosensor for Enterobacter sakazakii based on an electrochemically reduced graphene oxide-modified electrode. Analytical Biochemistry.2013,434(2):218-220.
    161. Obuchowska, A. Quantitation of bacteria through adsorption of intracellular biomolecules on carbon paste and screen-printed carbon electrodes and voltammetry of redox-active probes. Analytical and Bioanalytical Chemistry.2008,390(5):1361-1371.
    162. Viswanathan, S., Rani, C., Ho, J. a. A. Electrochemical immunosensor for multiplexed detection of foodborne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta.2012,94:315-319.
    163. Park, S., Lee, K. S., Bozoklu, G., Cai, W., Nguyen, S. T., Ruoff, R. S. Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking. ACS Nano.2008,2(3):572-578.
    164. Ping, J. F., Wang, Y. X., Ying, Y. B., Wu, J. Application of Electrochemically Reduced Graphene Oxide on Screen-Printed Ion-Selective Electrode. Analytical Chemistry.2012,84(7):3473-3479.
    165. Ping, J. F., Wu, J., Wang, Y. X., Ying, Y. B. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosensors& Bioelectronics.2012,34(1):70-76.
    166. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S. Graphene-based composite materials. Nature.2006, 442(7100):282-286.
    167. Eissa, S., Tlili, C., L'hocine, L., Zourob, M. Electrochemical immunosensor for the milk allergen beta-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors & Bioelectronics.2012,38(1):308-313.
    168. Yan, M., Zang, D. J., Ge, S. G., Ge, L., Yu, J. H. A disposable electrochenilcal immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosensors & Bioelectronics.2012,38(1):355-361.
    169. Huang, X., Yin, Z. Y, Wu, S. X., Qi, X. Y, He, Q. Y, Zhang, Q. C., Yan, Q. Y, Boey, F., Zhang, H. Graphene-Based Materials:Synthesis, Characterization, Properties, and Applications. Small.2011, 7(14):1876-1902.
    170. Geim, A. K. Graphene:Status and Prospects. Science.2009,324(5934):1530-1584.
    171. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., Govindaraj, A. Graphene:The New Two-Dimensional Nanomaterial. Angewandte Chemie-International Edition.2009,48(42): 7752-7777.
    172. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology.2008,3(2):101-105.
    173. Qi, X. Y, Pu, K. Y, Li, H., Zhou, X. Z., Wu, S. X., Fan, Q. L., Liu, B., Boey, F., Huang, W., Zhang, H. Amphiphilic Graphene Composites. Angewandte Chemie-International Edition.2010,49(49): 9426-9429.
    174. He, Q. Y, Sudibya, H. G., Yin, Z. Y, Wu, S. X., Li, H., Boey, F., Huang, W., Chen, P., Zhang, H. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films:Fabrication and Sensing Applications. ACS Nano.2010,4(6):3201-3208.
    175. Fan, X. B., Peng, W. C., Li, Y, Li, X. Y, Wang, S. L., Zhang, G. L., Zhang, F. B. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. Advanced Materials.2008,20(23):4490-4493.
    176. Dua, V, Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., Manohar, S. K. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angewandte Chemie-International Edition.2010,49(12):2154-2157.
    177. Wang, Z. J., Zhou, X. Z., Zhang, J., Boey, F., Zhang, H. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. Journal of Physical Chemistry C.2009,113(32):14071-14075.
    178. Guo, H. L., Wang, X. F., Qian, Q. Y, Wang, F. B., Xia, X. H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano.2009,3(9):2653-2659.
    179. Ramesha, G. K., Sampath, S. Electrochemical Reduction of Oriented Graphene Oxide Films:An in Situ Raman Spectroelectrochemical Study. Journal of Physical Chemistry C.2009,113(19): 7985-7989.
    180. Zhou, M., Wang, Y. L., Zhai, Y M., Zhai, J. F., Ren, W., Wang, F. A., Dong, S. J. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry-A European Journal.2009,15(25):6116-6120.
    181. Zhou, X. Z., Huang, X., Qi, X. Y, Wu, S. X., Xue, C., Boey, F. Y C., Yan, Q. Y, Chen, P., Zhang, H. In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. Journal of Physical Chemistry C.2009,113(25):10842-10846.
    182. Huang, X., Zhou, X. Z., Wu, S. X., Wei, Y Y, Qi, X. Y, Zhang, J., Boey, F., Zhang, H. Reduced Graphene Oxide-Templated Photochemical Synthesis and in situ Assembly of Au Nanodots to Orderly Patterned Au Nanodot Chains. Small.2010,6(4):513-516.
    183. Liu, J. B., Fu, S. H., Yuan, B., Li, Y L., Deng, Z. X. Toward a Universal "Adhesive Nanosheet" for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. Journal of the American Chemical Society.2010,132(21):7279-7281.
    184. Bosch-Navarro, C., Coronado, E., Marti-Gastaldo, C. Controllable coverage of chemically modified graphene sheets with gold nanoparticles by thermal treatment of graphite oxide with N,N-dimethylformamide. Carbon.2013,54:201-207.
    185. Han, S. T., Zhou, Y., Wang, C. D., He, L. F., Zhang, W. J., Roy, V. a. L. Layer-by-Layer-Assembled Reduced Graphene Oxide/Gold Nanoparticle Hybrid Double-Floating-Gate Structure for Low-Voltage Flexible Flash Memory. Advanced Materials.2013,25(6):872-877.
    186. Cui, F., Zhang, X. L. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry.2012,669: 35-41.
    187. Fan, Y, Yang, X., Yang, C. P., Liu, J. H. Au-TiO2/Graphene Nanocomposite Film for Electrochemical Sensing of Hydrogen Peroxide and NADH. Electroanalysis.2012,24(6): 1334-1339.
    188. Liu, B., Lu, L. S., Hua, E. H., Jiang, S. T., Xie, G. M. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchimica Acta.2012,178(1-2):163-170.
    189. Liu, M., Zhao, H. M., Chen, S., Yu, H. T., Quan, X. Interface Engineering Catalytic Graphene for Smart Colorimetric Biosensing. ACS Nano.2012,6(4):3142-3151.
    190. Liu, R. J., Li, S. W., Yu, X. L., Zhang, G. J., Zhang, S. J., Yao, J. N., Keita, B., Nadjo, L., Zhi, L. J. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids:An Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide. Small.2012,8(9):1398-1406.
    191. Villalonga, R., Diez, P., Eguilaz, M., Martinez, P., Pingarron, J. M. Supramolecular Immobilization of Xanthine Oxidase on Electropolymerized Matrix of Functionalized Hybrid Gold Nanoparticles/Single-Walled Carbon Nanotubes for the Preparation of Electrochemical Biosensors. ACS Applied Materials & Interfaces.2012,4(8):4312-4319.
    192. Wang, L., Zhu, H. Z., Hou, H. Q., Zhang, Z. Y, Xiao, X. P., Song, Y H. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. Journal of Solid State Electrochemistry.2012,16(4): 1693-1700.
    193. Zhang, L., Long, L. J., Zhang, W. Y., Du, D., Lin, Y. H. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor. Electroanalysis.2012,24(8):1745-1750.
    194. Zhang, Q., Wu, S. Y, He, M. W., Zhang, L., Liu, Y, Li, J. H., Song, X. M. Preparation and Bioelectrochemical Application of Gold Nanoparticles-Chitosan-Graphene Nanomaterials. Acta Chimica Sinica.2012,70(21):2213-2219.
    195. Jiang, B. Y, Wang, M., Chen, Y, Xie, J. Q., Xiang, Y Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosensors & Bioelectronics.2012,32(1):305-308.
    196. Mejri, M. B., Baccar, H., Baldrich, E., Del Campo, F. J., Helali, S., Ktari, T., Simonian, A., Aouni, M., Abdelghani, A. Impedance biosensing using phages for bacteria detection:Generation of dual signals as the clue for in-chip assay confirmation. Biosensors & Bioelectronics.2010,26(4): 1261-1267.
    197. Ornatska, M., Sharpe, E., Andreescu, D., Andreescu, S. Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Analytical Chemistry.2011,83(11):4273-4280.
    198. Wang, L. B., Chen, W., Xu, D. H., Shim, B. S., Zhu, Y. Y., Sun, F. X., Liu, L. Q., Peng, C. F, Jin, Z. Y, Xu, C. L., Kotov, N. A. Simple, Rapid, Sensitive, and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA. Nano Letters.2009,9(12):4147-4152.
    199. Yuan, J. P., Gaponik, N., Eychmuller, A. Application of Polymer Quantum Dot-Enzyme Hybrids in the Biosensor Development and Test Paper Fabrication. Analytical Chemistry.2012,84(11): 5047-5052.
    200. Liu, H., Xiang, Y, Lu, Y, Crooks, R. M. Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. Angewandte Chemie-International Edition.2012,51(28): 6925-6928.
    201. Li, C. Z., Vandenberg, K., Prabhulkar, S., Zhu, X. N., Schneper, L., Methee, K., Rosser, C. J., Almeide, E. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosensors & Bioelectronics.2011,26(11):4342-4348.
    202. Ge, S. G., Ge, L., Yan, M., Song, X. R., Yu, J. H., Huang, J. D. A disposable paper-based electrochemical sensor with an addressable electrode array for cancer screening. Chemical Communications.2012,48(75):9397-9399.
    203. Xiao, F., Li Y. Q., Zan, X. L., Liao, K., Xu, R., Duan, H. W. Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Advanced Functional Materials.2012,22:2487-2494.
    204. Xiao, F., Song, J. B., Gao, H. C., Zan, X. L., Xu, R., Duan, H. W. CoatingGraphenePaper with 2D-Assembly of Electrocatalytic Nanoparticles:A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano.2012,6(1):100-110.
    205. Chan, K. Y, Ye, W. W., Zhang, Y, Xiao, L. D., Leung, P. H. M., Li, Y, Yang, M. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosensors & Bioelectronics.2013,41:532-537.
    206. Laczka, O., Baldrich, E., Munoz, F. X., Del Campo, F. J. Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors:The importance of transducer geometry. Analytical Chemistry.2008,80(19):7239-7247.
    207.李杜娟.快速检测致病性微生物的免疫生物传感器研究[博士论文].杭州:浙江大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700