用户名: 密码: 验证码:
基于风险的电力系统暂态稳定评估与协调控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保证电力系统的安全稳定运行一直是电力工作者们研究的重要内容,其对国家经济发展和人民日常生活具有重要意义。近年来随着新能源的大规模接入和极端气象灾害的频繁发生,关于电力系统安全稳定不确定性的研究正逐渐引起学术界的重视。相对于确定性方法,基于风险的分析方法综合考虑了各种扰动发生的概率和严重程度,不但能够客观、全面地评估电力系统的安全稳定水平,并且通过基于风险的优化控制可以实现电力系统经济性与安全稳定性的协调。本文将基于风险的分析方法引入到电力系统的暂态稳定评估与协调控制问题中,在基于风险的暂态稳定评估、暂态稳定预防与紧急协调控制和低频减载(Under Frequency Load Shedding, UFLS)3个方面进行了一定的研究。
     第一,在基于风险的电力系统暂态稳定评估方面,为了分析灾害天气对电力系统安全稳定水平的影响,提出了一种台风天气条件下的电网暂态稳定风险评估方法。该方法通过建立台风天气条件下的输电线路故障率模型,得到未来短期内输电线路发生故障的概率。对于故障后不满足暂态稳定约束或静态安全约束的情况,建立了以切机切负荷为控制措施的紧急控制优化模型,并以最小紧急控制成本作为故障严重程度的量化指标。通过新英格兰10机39节点系统算例验证了所提风险评估方法的有效性。
     第二,在基于风险的暂态稳定预防和紧急协调控制方面,指出该协调控制属于大规模的混合整数非线性优化问题,其优化求解具有一定的挑战。本文分别从优化问题分解和优化问题转化的角度提出了求解该协调控制问题的两种新方法:
     1)从优化问题分解的角度,提出了基于暂态安全风险指标的协调控制问题求解方法。该方法定义了一个系统暂态安全风险指标,并将其作为约束引入到协调控制问题中,进而将该问题分解为相对容易求解的暂态安全风险约束预防控制子问题和后续各故障下的暂态稳定约束紧急控制子问题。在此基础上建立了一个二层优化模型,其中上层通过引入风险协调参数来调整系统暂态安全风险约束的门槛值,进而改变下层预防控制子问题和后续各紧急控制子问题的最优解,以优化协调控制总成本。提出了一种黄金分割法和逐次线性规划法相结合的混合方法求解该二层优化模型。通过新英格兰10机39节点系统和一个实际系统算例验证了所提方法的有效性,并分析了风险协调参数与预防控制成本和紧急控制总期望成本之间的关系。
     2)从优化问题转化的角度,提出了求解协调控制问题的连续化方法。通过引入非线性互补函数,将离散的紧急控制变量转化为等价的连续变量,从而将协调控制问题转化为一般的非线性优化问题,并采用逐次线性规划法求解转化后的优化问题。在迭代求解过程中,针对预防控制变量和紧急控制变量之间的耦合关系,进一步引入Benders分解算法以加快线性优化模型的求解速度。最后通过新英格兰10机39节点系统算例验证了所提方法的有效性。
     第三,在基于风险的UFLS参数优化方面,指出UFLS的切负荷量和系统频率的暂态过程有着紧密联系,在传统的控制代价最小模型基础上,提出了一种协调切负荷量和暂态频率恢复性能的综合性价比优化模型,同时考虑了各种预设场景的风险概率因素。在采用改进差分进化算法求解该问题的过程中,针对优化问题的稳态约束和超调约束提出分段惩罚函数法的处理策略来提高算法的执行效率;为了防止算法收敛到局部最优解,当算法出现停滞现象时引入混沌变异来增强种群的多样性。通过一个实际电力系统的算例验证了所提模型和算法的可行性和有效性,并表明所提模型比控制代价最小模型具有更好的综合表现。
Power system stability and security are concerned with the system's capability to withstand all kinds of potential disturbances and they have always been focuses of power system operation and control. In recent years, with the penetration of large-scale renewable energy generation and the frequent occurrence of extreme disaster weathers, the research on the impact of the embedded uncertainties on power system operation and the corresponding measures to improve system performance under these circumstances have become greater concern than ever. In essence, risk-based method can take into account both the occurrence probability and severity of all probable disturbances. The purpose of this dissertation is to introduce a risk-based analysis framework into the transient stability assessment and coordination control. The methods proposed here can not only assess the security level of system operation, but also can consider security and economy tradeoff through a risk-based security control.
     This dissertation is organized into three parts. In the first part, a new method to assess the transient stability risk of power systems under typhoon weather conditions is proposed, so as to analyze the influence of disaster weather on the security level of power system operation. This method models the contingency rate of transmission lines under typhoon weather, then obtain corresponding short-term contingency probabilities. For the contingency which could not satisfy transient stability constraints or post-contingency static security constraints, an optimization model for emergency control is formulated, and the minimal control cost is used to quantify the severity of the contingency. The New England10-generation39-bus system is used to demonstrate the effectiveness of the proposed method.
     The second part of this dissertation focuses on the coordination of preventive and emergency controls for transient stability enhancement, which is is a large-scale mixed integer nonlinear programming problem. Two new methods are proposed to solve this problem.
     1) The first method solves the coordination problem by decomposing it into two less complicated sub-problems. Firstly, a transient security risk index is defined and introduced as a constraint into the coordination problem, in which case the coordination problem can be decomposed into a transient security risk constrained preventive control sub-problem and transient stability constrained emergency control sub-problems. Furthermore, a bi-level optimization model of coordination control is developed, in which on the upper level a risk coordination parameter is adjusted to minimized the total coordination cost; the lower level includes preventive and emergency control sub-problems. Finally, a hybrid method that combines the golden section search method and the successive linear programming method is proposed to solve the bi-level optimization model. The effectiveness of the proposed method is demonstrated by using the New England10-generation39-bus system and a real power system.
     2) The second method transforms the coordination problem into a continuous problem that can be solved by traditional nonlinear optimization algorithms. By introducing a set of nonlinear complementary problems, discrete emergency control variables are equivalently transformed into continuous variables, and the coordination problem is subsequently transformed into an ordinary nonlinear programming problem, which is solved by the successive linear programming method. Furthermore, Benders decomposition is introduced to speed up the computation efficiency of linear optimization model. The test on New England10-generator39-bus system demonstrates the effectiveness of the proposed method.
     In the third part of this dissertation, a new UFLS parameter optimization model is developed, which considers both the load shedding amount and the frequency recovery performance during the transient period, and the risk of different operating scenarios is synthesized in addition. Further, a solution approach based on improved differential evolution algorithm is proposed, in which both steady frequency constraints and frequency overshoot constraints in UFLS are judiciously treated. A chaotic behavior is introduced into the algorithm to enhance the population diversity when the stagnation symptom occurs. The feasibility and effectiveness of the proposed model and algorithm are validated by the simulation study based on the UFLS optimization problem in a real power system.
引文
[1]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002.
    [2]韩祯祥.电力系统分析[M].杭州:浙江大学出版社,1993.
    [3]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2006.
    [4]Kundur P. Power system stability and control[M]. New York:McGraw-Hill,1994.
    [5]中国电力企业联合会.中国电力行业年度发展报告2011[M].北京:中国市场出版社,2011.
    [6]宋卫东.世界跨国互联电网现状及发展趋势[J].电力技术经济,2009,21(5):62-67.
    [7]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [8]何大愚.柔性交流输电技术的定义、机遇及局限性[J].电网技术,1996,20(6):18-24.
    [9]何大愚.电力电子技术的进步与柔性交流输电技术的换代发展[J].电网技术,1999,23(10):1-4,23.
    [10]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4,9.
    [11]林伟芳,汤涌,孙华东,等.巴西“2·4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5.
    [12]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J].电力系统自动化,2003,27(18):1-5,37.
    [13]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [14]DL755-2001.电力系统安全稳定导则[S].2001.
    [15]薛禹胜,李威.关于暂态稳定控制决策优化方法的思考[J].电力系统自动化,2003,27(10):15-21.
    [16]薛禹胜.时空协调的大停电防御框架(三)各道防线内部的优化和不同防线之间的协调[J].电力系统自动化,2006,30(3):1-10,106.
    [17]甘德强,辛焕海,王建全,等.暂态稳定预防控制和优化新进展[J].电力系统自动化,2004,28(10):1-7.
    [18]孙元章,杨新林,王海风.考虑暂态稳定性约束的最优潮流问题[J].电力系统自动化,2005,29(16):56-59,83.
    [19]薛禹胜,任先成,韦化.关于低频低压切负荷决策优化协调的评述[J].电力系统自动化,2009,33(9):100-107.
    [20]薛禹胜,刘强,DONG Z,等.关于暂态稳定不确定性分析的评述[J].电力系统自动化,2007,31(14):1-6,75.
    [21]吴文传,宁辽逸,张伯明,等.电力系统在线运行风险评估与决策[J].电力科学与技术学报,2009,24(2):28-34.
    [22]李碧君,方勇杰,徐泰山.关于电网运行安全风险在线评估的评述[J].电力系统自动化,2012,36(18):171-177.
    [23]The North American Reliability Council. NERC planning standards[S].1997.
    [24]Kirschen D S, Jayaweera D. Comparison of risk-based and deterministic security assessments[J]. IET Generation Transmission & Distribution,2007,1(4):527-533.
    [25]McCalley J D, Vittal V, Abi-Samra N. An overview of risk based security assessment[C]//Proceedings of IEEE Power Engineering Society Summer Meeting, July 18-22,1999:173-178.
    [26]赖业宁,薛禹胜,王海风.电力市场稳定性及其风险管理[J].电力系统自动化,2003,27(12):18-24.
    [27]Xiao F, McCalley J D. Risk-based security and economy tradeoff analysis for real-time operation[J]. IEEE Transactions on Power Systems,2007,22(4):2287-2288.
    [28]Li W. Risk assessment of power systems:Models, methods, and applications[M]. Hoboken, NJ, USA:Wiley,2005.
    [29]IEEE Std 100-1992. The IEEE Standard Dictionary of Electrical and Electronics Terms[S].1992.
    [30]Brostrom E, Soder L. Modeling of ice storms for power transmission reliability calculations[C]//Proceedings of Power Systems Computation Conference, August 22-26,2005:1-7.
    [31]孙荣富,程林,孙元章.基于恶劣气候条件的停运率建模及电网充裕度评估[J].电力系统自动化,2009,33(13):7-12,88.
    [32]韩卫恒,刘俊勇,张建明,等.冰冻灾害下计入地形及冰厚影响的分时段电网可靠性分析[J].电力系统保护与控制,2010,38(15):81-86.
    [33]Xiao F, McCalley J D, Ou Y, et al. Contingency probability estimation using weather and geographical data for on-line security assessment[C]//Proceedings of International Conference on Probabilistic Methods Applied to Power Systems, June 11-15,2006:1-7.
    [34]徐文军,杨洪明,赵俊华,等.冰风暴灾害下电力断线倒塔的概率计算[J].电力系统自动化,2011,35(1):13-17.
    [35]宁辽逸,吴文传,张伯明.电力系统运行风险评估中元件时变停运模型分析[J].电力系统自动化,2009,33(16):7-12.
    [36]宁辽逸,吴文传,张伯明.运行风险评估中的变压器时变停运模型(一)基于运行工况的变压器内部潜伏性故障的故障率估计方法[J].电力系统自动化,2010,34(15):9-13,95.
    [37]宁辽逸,吴文传,张伯明.运行风险评估中的变压器时变停运模型(二)基于延迟半马尔可夫过程的变压器时变停运模型[J].电力系统自动化,2010,34(16):24-28.
    [38]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估 [J].电网技术,2006,30(13):14-19,25.
    [39]张国华,张建华,杨志栋,等.电力系统N-K故障的风险评估方法[J].电网技术,2009,33(5):17-21,27.
    [40]何剑,程林,孙元章,等.条件相依的输变电设备短期可靠性模型[J].中国电机工程学报,2009,29(7):39-46.
    [41]Ni M, McCalley J D, Vittal V, et al. Online risk-based security assessment[J]. IEEE Transactions on Power Systems,2003,18(1):258-265.
    [42]Dissanayaka A, Annakkage U D, Jayasekara B, et al. Risk-based dynamic security assessment[J]. IEEE Trans on Power Systems,2011,26(3):1302-1308.
    [43]Fu C, Bose A. Contingency ranking based on severity indices in dynamic security Analysis[J]. IEEE Trans on Power Systems,1999,14(3):980-986.
    [44]Guang L, Rovnyak S M. Integral square generator angle index for stability ranking and control[J]. IEEE Trans on Power Systems,2005,20(2):926-934.
    [45]Vittal V, McCalley J D, Van Acker V, et al. Transient instability risk assessment[C]// Proceedings of IEEE Power Engineering Society Summer Meeting, July 18-22,1999: 206-211.
    [46]McCalley J, Fouad A, Vittal V, et al. A risk-based security index for determining operating limits in stability-mediated electric power systems[J]. IEEE Transactions on Power Systems,1997,12(3):1218-1219.
    [47]王伟,毛安家,张粒子,等.市场条件下电力系统暂态安全风险评估[J].中国电机工程学报,2009,29(1):68-73.
    [48]李锐,陈颖,梅生伟,等.基于停电风险评估的城市配电网应急预警方法[J].电力系统自动化,2010,34(16):19-23,63.
    [49]Wan H, McCalley J D, Vittal V. Increasing thermal rating by risk analysis[J]. IEEE Transactions on Power Systems,1999,14(3):815-821.
    [50]Fu W, McCalley J D, Vittal V. Risk assessment for transformer loading[J]. IEEE Transactions on Power Systems,2001,16(3):346-353.
    [51]Wan H, McCalley J D, Vittal V. Risk based voltage security assessment[J]. IEEE Transactions on Power Systems,2000,15(4):1247-1254.
    [52]Ni M, McCalley J D, Vittal V, et al. Software implementation of online risk-based security assessment[J]. IEEE Transactions on Power Systems,2003,18(3):1165-1172.
    [53]Fu W, McCalley J D. Risk based optimal power flow[C]//Proceedings of IEEE Porto Power Tech Conference, September 10-13,2001.
    [54]Xiao F, McCalley J D. Risk based multi-objective optimization for transmission loading relief strategies [C]//Proceedings of IEEE Power Engineering Society General Meeting, June 24-28,2007:1-7.
    [55]Xiao F, McCalley J D. Power system risk assessment and control in a multiobjective framework[J]. IEEE Transactions on Power Systems,2009,24(1):78-85.
    [56]Wang Q, McCalley J D, Zheng T, et al. A computational strategy to solve preventive risk-based security-constrained OPF[J]. IEEE Transactions on Power Systems,2013, 28(2):1666-1675.
    [57]冯永青,张伯明,吴文传,等.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展[J].电力系统自动化,2006,30(1):17-23.
    [58]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(二)理论基础[J].电力系统自动化,2006,30(2):11-15,21.
    [59]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(三)应用与工程实践[J].电力系统自动化,2006,30(3):11-16.
    [60]Feng Y. Wu W.Zhang B,et al.Power system operation risk assessment using credibility theory[J].IEEE Transactions on Power Systems,2008,23(3):1309-1318.
    [61]余娟,李文沅,颜伟.静态电压稳定风险评估[J].中国电机工程学报,2009,29(28): 40.46.
    [62]Rei A M,Schilling M T.Reliability assessment of the Brazilian power system using enumeration and Mont Carlo[J].IEEE Transactions On Power Systems,2008,23(3): 1480.1487.
    [63]Li W, Zhou J.Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation[J].IEEE Transactions on Power Systems,2009,23(2): 336-343.
    [64]汪隆君,李博,王钢,等.计及电网变化过程的地区电网运行风险评估[J].电力系统自动化,2011,35(1):18-22,28.
    [65]王守相,张伯明,郭琦.基于时间裕度的全局电力系统暂态安全风险评估[J].中国电机工程学报,2005,25(15):51-55.
    [66]郭琦,张伯明,王守相,等.基于计算机集群的电力系统暂态风险评估[J].电网技术,2005,29(15):13-17,50.
    [67]刘新东,江全元,曹一家,等.基于风险理论和模糊推理的电力系统暂态安全风险评估[J].电力自动化设备,2009,29(2):15-20.
    [68]赵珊珊,仲悟之,张东霞,等.暂态电压稳定风险评估方法及应用[J].电力系统自动化,2009,33(19):1-4.
    [69]赵珊珊,周子冠,张东霞,等.大区互联电网动态稳定风险评估指标及应用[J].电网技术,2009,33(2):68-72.
    [70]王英,谈定中,王小英,等.基于风险的暂态稳定性安全评估方法在电力系统中的应用[J].电网技术,2003,27(12):37-41.
    [71]王克球,张保会,王立永,等.安全稳定控制系统的经济效益评价[J].电网技术,2007,31(6):31-37.
    [72]万黎,袁荣湘.最优潮流算法综述[J].电力系统保护与控制,2005,33(11):80-87.
    [73]倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析[M].北京:清华大学出版社,2005.
    [74]Xue Y,Vancutsem T,Ribbenspavella M.Extended equal area criterion jUStifications, generalizations,applications[J].IEEE Transactions on Power Systems,1989,4(1): 44-52.
    [75]Fouad A A, Stanton S E. Transient stability of a multi-machine power system parts I and II[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(7): 3408-3424.
    [76]Kakimoto N, Hayashi M. Transient stability analysis of multimachine power system by Lyapunov's direct method[C]//Proceedings of IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, December,1981:464-470.
    [77]Chiang H D, Wu F F, Varaiya P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Transactions on Power Systems,1994,9(3):1194-1200.
    [78]Maria G A, Tang C, Kim J. Hybrid transient stability analysis[J]. IEEE Transactions on Power Systems,1990,5(2):384-393.
    [79]Mansour Y, Vaahedi E, Chang A Y, et al. B.C. Hydro's online transient stability assessment (TSA) model development, analysis, and post-processing [J]. IEEE Transactions on Power Systems,1995,10(1):241-253.
    [80]Scala M L, Trovato M, Antonelli C. On-line dynamic preventive control:An algorithm for transient security dispatch[J]. IEEE Transactions on Power Systems,1998,13(2): 601-608.
    [81]De Tuglie E, La Scala M, Scarpellini P. Real-time preventive actions for the enhancement of voltage-degraded trajectories [J]. IEEE Transactions on Power Systems,1999,14(2):561-568.
    [82]De Tuglie E, Dicorato M, La Scala M, et al. A static optimization approach to assess dynamic available transfer capability[J]. IEEE Transactions on Power Systems,2000, 15(3):1069-1076.
    [83]De Tuglie E, Dicorato M, La Scala M, et al. A corrective control for angle and voltage stability enhancement on the transient time-scale[J]. IEEE Transactions Power Systems,2000,15(4):1345-1353.
    [84]Bruno S, De Tuglie E, La Scala M. Transient security dispatch for the concurrent optimization of plural postulated contingencies [J]. IEEE Transactions on Power Systems,2002,17(3):707-714.
    [85]Gan D Q, Thomas R J, Zimmerman R D. Stability-constrained optimal power flow[J]. IEEE Transactions on Power Systems,2000,15(2):535-540.
    [86]Gan D, Chattopadhyay D, Luo X. An improved method for optimal operation under stability constraints[C]// Proceedings of IEEE PES Transmission and Distribution Conference and Exposition, September 7-12,2003:683-688.
    [87]Yuan Y, Kubokawa J, Sasaki H. A solution of optimal power flow with multicontingency transient stability constraints [J]. IEEE Transactions on Power Systems,2003,18(3):1094-1102.
    [88]韦化,阳育德,李啸骢.多预想故障暂态稳定约束最优潮流[J].中国电机工程学报,2004,24(10):93-98.
    [89]吴荻,辛焕海,甘德强.考虑暂态稳定约束最优潮流的算例分析[J].电力系统自动化,2007,31(5):1-6.
    [90]Jiang Q Y, Geng G C. A reduced-space interior point method for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems,2010,25(3): 1232-1240.
    [91]Jiang Q Y, Huang Z G An enhanced numerical discretization method for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2010,25(4):1790-1797.
    [92]Geng G C, Jiang Q Y. A two-level parallel decomposition approach for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2012,27(4):2063-2073.
    [93]Chen L N, Tada Y, Okamoto H, et al. Optimal operation solutions of power systems with transient stability constraints[J]. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications,2001,48(3):327-339.
    [94]Sun Y, Xinlin Y, Wang H F. Approach for optimal power flow with transient stability constraints[J]. IEE Proceedings-Generation Transmission and Distribution, 2004, 151(1):8-18.
    [95]Xia Y, Chan K W, Liu M. Direct nonlinear primal-dual interior-point method for transient stability constrained optimal power flow[J]. IEE Proceedings-Generation Transmission and Distribution,2005,152(1):11-16.
    [96]Ruiz-Vega D, Pavella M. A comprehensive approach to transient stability control. I. Near optimal preventive control[J]. IEEE Trans on Power Systems,2003,18(4): 1446-1453.
    [97]孙景强,房大中,锺德成.暂态稳定约束下的最优潮流[J].中国电机工程学报,2005,25(12):12-17.
    [98]Nguyen T B, Pai M A. Dynamic security-constrained rescheduling of power systems using trajectory sensitivities [J]. IEEE Transactions on Power Systems,2003,18(2): 848-854.
    [99]Li Y H, Yuan W P, Chan K W, et al. Coordinated preventive control of transient stability with multi-contingency in power systems using trajectory sensitivities[J]. International Journal of Electrical Power & Energy Systems,2011,33(1):147-153.
    [100]李贻凯,刘明波.多故障暂态稳定约束最优潮流的轨迹灵敏度法[J].中国电机工程学报,2009,29(16):42-48.
    [101]Zarate-Minano R, Van Cutsem T, Milano F, et al. Securing transient stability using time-domain simulations within an optimal power flow[J]. IEEE Transactions on Power Systems,2010,25(1):243-253.
    [102]Pizano-Martinez A, Fuerte-Esquivel C R, Ruiz-Vega D. Global transient stability-constrained optimal power flow using an OMIB reference trajectory [J]. IEEE Transactions on Power Systems,2010,25(1):392-403.
    [103]Pizano-Martinez A, Fuerte-Esquivel C R, Ruiz-Vega D. A new practical approach to transient stability-constrained optimal power flow[J]. IEEE Transactions on Power Systems,2011,26(3):1686-1696.
    [104]Cai H R, Chung C Y, Wong K P. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems,2008,23(2):719-728.
    [105]Mo N, Zou Z Y, Chan K W, et al. Transient stability constrained optimal power flow using particle swarm optimisation[J]. IET Generation Transmission & Distribution, 2007,1(3):476-483.
    [106]Xu Y, Dong Z Y, Meng K, et al. A hybrid method for transient stability-constrained optimal power flow computation[J]. IEEE Transactions on Power Systems,2012, 27(4):1769-1777.
    [107]IEEE guide for the application of protective relays ssed for abnormal frequency load shedding and restoration[S].2007.
    [108]DL 428-1991.电力系统自动低频减负荷技术规定[S].1991.
    [109]Concordia C, Fink L H, Poullikkas G Load shedding on an isolated system[J]. IEEE Transactions on Power Systems,1995,10(3):1467-1472.
    [110]国家电网公司.国家电网安全稳定计算技术规范(Q/GDW404-2010)[M].北京:中国电力出版社,2010.
    [ Ⅲ]Delfino B, Massucco S, Morini A, et al. Implementation and comparison of different under frequency load-shedding schemes[C]//Proceedings of IEEE Power Engineering Society Summer Meeting, July 15-19,2001:307-312.
    [112]熊小伏,周永忠,周家启.计及负荷频率特性的低频减载方案研究[J].中国电机工程学报,2005,25(19):48-51.
    [113]赵强,刘肇旭,张丽.对中国低频减载方案制定中若干问题的探讨[J].电力系统自动化,2010,34(11):48-53.
    [114]Chuvychin V N, Gurov N S, Venkata S S, et al. An adaptive approach to load shedding and spinning reserve control during underfrequency conditions [J]. IEEE Transactions on Power Systems,1996,11(4):1805-1810.
    [115]Li Z, Jin Z. UFLS design by ssing f and integrating df/dt[C]//Proceedings of IEEE Power Systems Conference and Exposition, October 29-November 1,2006: 1840-1844.
    [116]Anderson P M, Mirheydar M. An adaptive method for setting underfrequency load shedding relays[J]. IEEE Transactions on Power Systems,1992,7(2):647-655.
    [117]Elkateb M M, Dias M F. New technique for adaptive-frequency load shedding suitable for industry with private generation[J]. Generation, Transmission and Distribution, IEE Proceedings C,1993,140(5):411-420.
    [118]Terzija V V. Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation[J]. IEEE Transactions on Power Systems,2006,21(3): 1260-1266.
    [119]Parniani M, Nasri A. SCADA based under frequency load shedding integrated with rate of frequency decline[C]//Proceedings of IEEE Power Engineering Society General Meeting,2006.
    [120]Hsu C, Chuang H, Chen C. Artificial neural network based adaptive load shedding for an industrial cogeneration facility [C]//Proceedings of IEEE Industry Applications Society Annual Meeting, October 5-9,2008:1-8.
    [121]徐泰山,李碧君,鲍颜红,等.考虑暂态安全性的低频低压减载量的全局优化[J]. 电力系统自动化,2003,27(22):12-15.
    [122]徐泰山,薛禹胜.暂态频率偏移可接受性的定量分析[J].电力系统自动化,2002,26(19):7-10.
    [123]李常刚,刘玉田,邱夕兆.基于暂态频率偏移安全性的低频减载方案优化[J].电力系统自动化,2013,37(4):51-56,61.
    [124]张恒旭,刘玉田,薛禹胜.考虑累积效应的频率偏移安全性量化评估[J].电力系统自动化,2010,34(24):5-10.
    [125]Thalassinakis E J, Dialynas E N. A Monte-Carlo simulation method for setting the underfrequency load shedding relays and selecting the spinning reserve policy in autonomous power systems[J]. IEEE Transactions on Power Systems,2004,19(4): 2044-2052.
    [126]Thalassinakis E J, Dialynas E N, Agoris D. Method combining ANNs and Monte Carlo simulation for the selection of the load shedding protection strategies in autonomous power systems[J]. IEEE Transactions on Power Systems,2006,21(4): 1574-1582.
    [127]李秀卿,蔡泽祥.电力系统低频减载控制优化算法[J].电力系统自动化,1998,22(10):23-25.
    [128]Halevi Y, Kottick D. Optimization of load shedding system[J]. IEEE Transactions on Energy Conversion,1993,8(2):207-213.
    [129]Denis Lee Hau A. A general-order system frequency response model incorporating load shedding:analytic modeling and applications [J]. IEEE Transactions on Power Systems,2006,21(2):709-717.
    [130]Wang G N, Xin H H, Gan D Q, et al. An investigation into WAMS-based Under-frequency load shedding[C]//Proceedings of IEEE Power and Energy Society General Meeting, July 22-26,2012.
    [131]Ceja-Gomez F, Qadri S S, Galiana F D. Under-frequency load shedding via integer programming[J]. IEEE Transactions on Power Systems,2012,27(3):1387-1394.
    [132]Hong Y Y, Wei S F. Multiobjective underfrequency load shedding in an autonomous system using hierarchical genetic algorithms[J]. IEEE Transactions on Power Delivery, 2010,25(3):1355-1362.
    [133]Sigrist L, Egido I, Rouco L. A method for the design of UFLS schemes of small isolated power systems [J]. IEEE Transactions on Power Systems,2012,27(2): 951-958.
    [134]谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131.
    [135]薛禹胜,费圣英,卜凡强.极端外部灾害中的停电防御系统构思(一)新的挑战与反思[J].电力系统自动化,2008,32(9):1-6.
    [136]张锋,吴秋晗,李继红.台风“云娜”对浙江电网造成的危害与防范措施[J].中国电力,2005,8(5):39-42.
    [137]唐斯庆,张弥,李建设,等.海南电网“9.26”大面积停电事故的分析与总结[J].电 力系统自动化,2006,30(1):1-7,16.
    [138]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22.
    [139]俞小鼎.强对流天气的多普勒天气雷达探测和预警[J].气象科技进展,2011,1(3):31-41.
    [140]王昊昊,罗建裕,徐泰山,等.中国电网自然灾害防御技术现状调查与分析[J].电力系统自动化,2010,34(23):5-10,118.
    [141]Pai M A. Energy function analysis for power system stability[M]. USA: Kluwer Academic Publisher,1989.
    [142]Ruiz-Vega D, Pavella M. A comprehensive approach to transient stability control. II. Open loop emergency control[J]. IEEE Trans on Power Systems,2003,18(4): 1454-1460.
    [143]薛禹胜.暂态稳定预防控制和紧急控制的协调[J].电力系统自动化,2002,26(4):1-4,9.
    [144]薛禹胜,李威,D.J.Hill.暂态稳定混合控制的优化(一)单一失稳模式的故障集[J].电力系统自动化,2003,27(20):6-10.
    [145]李威,薛禹胜,D.J.Hill.暂态稳定混合控制的优化(二)不同失稳模式的故障集[J].电力系统自动化,2003,27(21):7-10,29.
    [146]罗运虎,薛禹胜,董朝阳,等.发电容量充裕性的混合优化[J].电力系统自动化,2007,31(12):30-35.
    [147]李天然,薛禹胜,谢东亮,等.通过风险分摊与迭代报价协调预防控制与紧急控制[J].电力系统自动化,2010,34(22):13-17,40.
    [148]Antoniou A, Lu W-S. Practical optimization:algorithms and engineering applications[M]. USA:Springer,2007.
    [149]Genc I, Diao R S, Vittal V, et al. Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems[J]. IEEE Transactions on Power Systems,2010,25(3):1611-1619.
    [150]李艳艳.0-1规划问题的连续化方法研究及应用[博士学位论文]:大连理工大学,2009.
    [151]Hu X M, Ralph D. Convergence of a penalty method for mathematical programming with complementarity constraints[J]. Journal of Optimization Theory and Applications, 2004,123(2):365-390.
    [152]Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints [J]. Siam Journal on Optimization,2001, 11(4):918-936.
    [153]Facchinei F, Jiang H Y, Qi L Q. A smoothing method for mathematical programs with equilibrium constraints [J]. Mathematical Programming,1999,85(1):107-134.
    [154]杨明,韩学山,梁军,等.基于等响应风险约束的动态经济调度[J].电力系统自动化,2009,33(1):14-17.
    [155]韦园清,李滨,韦化.基于凝聚函数的电力系统无功互补优化模型与算法[J].电网技术,2013,37(1):156-161.
    [156]Geoffrion A M. Generalized Benders decomposition[J]. Journal of Optimization Theory and Applications,1972,10(4):237-260.
    [157]GB 15945-2008.电能质量-电力系统频率偏差[S].2008.
    [158]DL 1040-2007.电网运行准则[S].2007.
    [159]Skogestad S, Postlethwaite I. Multivariable feedback control:Analysis and design[M]. John Wiley & Sons,2005.
    [160]Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11(4): 341-359.
    [161]Corne D, Dorigo M, Glover F. New ideas in optimization[M]. UK: McGraw-Hill, 1999.
    [162]Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physical D:Nonlinear Phenomena,1983,9(1-2):189-208.
    [163]Liu B, Wang L, Jin Y H, et al. Improved particle swarm optimization combined with chaos[J]. Chaos Solitons & Fractals,2005,25(5):1261-1271.
    [164]Wang Z, Chung C Y, Wong K P, et al. Robust power system stabiliser design under multi-operating conditions using differential evolution[J]. let Generation Transmission & Distribution,2008,2(5):690-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700