用户名: 密码: 验证码:
直流接地极温度特性计算与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国特高压直流输电工程的蓬勃发展,直流接地极在设计上也更加复杂。由于直流输电系统电压等级的不断升高以及直流系统共用接地极情况的增多,使得流过直流接地极的电流不断增大,接地极的温升将会更加严重。在传统温升的计算过程中,认为接地极周围土壤各参数为恒定值。而实际情况下土壤参数对温度变化十分敏感,温度升高将会改变极址土壤参数,进而影响接地极及其附近土壤的温升情况。本文针对上述情况开展了直流接地极温升试验和数值仿真计算研究,建立了考虑土壤参数变化情况的直流接地极温度场计算模型,并在1000kV特高压交流试验基地开展了垂直型和水平型两类直流接地极的温升试验。本文的主要研究工作如下:
     (1)直流接地极电流场与温度场的耦合计算。模型以电流场计算结果为依托,采用有限元法对直流接地极温度场的暂态过程和稳态分布进行了计算。为解决有限元法在计算开域问题时剖分量巨大甚至无法计算的问题,计算模型中采用有限元、无限元相结合的方法,用无限元来模拟远场效应,用有限元模拟近场效应。将有限元与无限元的耦合算法计算结果与有限元算法计算结果进行比较,证明耦合算法能减少剖分量且不影响计算精度,并由于其计算上考虑了无限远边界,减少了由人为定义截断边界所带来的误差。
     (2)不同性质土壤中直流接地极温升特性的计算。实际情况下土壤分散性很大,文中考察了不同土壤性质对接地极温升的影响,具有较大热导率的土壤中接地极的稳态温度较低且温度分布更均匀,土壤热容率与热导率比值较小的土壤达到热稳定所需时间较短,且接地体整体达到热稳定的时间相差较小,选择极址时应考虑热导率与热容率大的土壤。
     (3)土壤电阻率变化时不同性质土壤中直流接地极温升特性的计算。土壤电阻率对接地极温升影响巨大,接地极上的散流分布随着土壤电阻率增大变得越来越不均匀,并导致接地极的稳态温度分布也更不均匀。实际情况中,土壤电阻率是一个随温度变化而改变的量,当温度高于某一临界值时,土壤电阻率会迅速增大,电极温度也随之上升,且不会达到稳定,而与时间呈指数增长的关系。文中在计算中考虑了这一情况,建议在进行接地极设计时应将土壤电阻率这一变化特性纳入考虑,且接地极允许运行温度不应超过65℃。
     (4)垂直直流接地极的模拟试验。基于场的相似理论,开展了垂直直流接地极的模拟试验,试验采用霍尔电流传感器与热电偶温度传感器分别对三根接地极和单根接地极在持续注入直流情况下的电流散流和温度进行记录,得到接地极散流与温升规律。实验发现,由于端部效应,垂直接地极上的电流散流从接地极顶端到接地极底端逐渐增大,下端部10cm散流的密度要远远大于整个接地极的平均散流密度。越靠近接地极的底端温升开始的时间越早,上升的速率越高,幅值也越大,随着时间的推移,接地极温升的上升速率会减小;接地极底端具有最大温升。
     (5)水平直流接地极的模拟试验。基于场的相似理论,开展了水平直流接地极的模拟试验,试验采用霍尔电流传感器与光纤光栅感温光缆对单根水平直线型接地极在持续注入直流情况下的电流散流和温度上升进行记录,得到接地极散流与温升规律。实验发现,接地极上的散流呈现明显的端部效应,散流大小由两端向中间部分依次递减,并基本呈对称分布;接地极温度分布符合两端高,中问低的规律,在试验初始阶段,温度上升较快,随着电流加载时间的增大,温升速率逐渐变慢。试验同时发现,因土壤电阻率随温度上升发生变化,电流注入点的温升曲线在试验期间出现尾部曲线上扬的情况。
     (6)试验选址处土壤热参数选定与土壤电阻率的拟合。试验发现,因土壤电阻率随温度上升发生变化,电流注入点的温升曲线在试验期间出现尾部曲线上扬的情况。文中根据实测资料选取土壤热参数,并将其随温度变化的关系拟合成曲线加载到仿真计算过程中。根据Campbell土壤电导率经验公式对试验选址处土壤的土壤电阻率进行拟合,给出了拟合公式,并据此计算了接地极温升。通过对仿真结果与试验结果的比较,试验和计算具有较高的吻合程度。
Because of the development of UHV DC transmission, the DC grounding electrodebecomes more and morecomplex. The current flowing through the DC grounding electrode is increasing by the higher voltage level and more common and the tempturerise of grounding electrode will be more serious. The soil parameter considered as aconstant value in traditionaltemperature rise calculation, but in fact, the soil parameters are very sensitive to changes in temperature and will change bytemperature rise, thereby affecting the temperature of electrode and the nearbysoil. Thispaper established a model of DC ground electrode temperature field considering changes in soil parameters and carry out two types ofDC grounding electrode temperature rise testincluding vertical grounding electrode and horizontal grounding electrode in1000kV UHV AC test base. The main research works are as follows:
     (1) Acoupling calculation model of DC grounding electrode current field and temperature field is established, which is based on the results of current fieldcalculation. Thetransient process and steady-state temperature distribution in grounding electrodeare calculated. In this paper, the finite element (FE)-infinite element (IFE) coupling method is proposed to calculate current field, whose coupling method simulates far-field effect withinfinite element method and simulates near-field effect withfinite elementmethod. The comparison results indicate that the amount of subdivision is decreased with FE-IFE coupling method than that with FE method, and it reduced the error caused by artificially defined truncation boundary at infinity with FE method.
     (2) Temperature rise of DC grounding electrode is calculated numerically in miscellaneous soils. In practical cases, parameters vary with different typeofsoil. In the numerical calculation, considering the influence of soil parameters, the calculation results of temperature rise show:with higher soil heat conductivity, the steady-state temperature of DC ground electrode is lower, with more uniform temperature distribution; with smaller ratio of soil thermal capacity and thermal conductivity, it has smaller thermal time constancy. Therefore, it's better to select places with high thermal capacity and thermal conductivity to set the DC grounding electrode.
     (3) The influence of soil resistivity on temperature rise of DC grounding electrode is researched with soil of different type. The soil resistivity has a significant influence on temperature rise of DC grounding electrode. The current diffusion tends to be more non-uniform with higher soil resistivity, resulting in a more non-uniform steady-state distribution of temperature. In practical cases, soil resistivity is a function of temperature. And it increases rapidly when the temperature is higher than some critical value. In this case, the temperature increases exponentially with the soil resistivity. Considering this case in the calculation, it's proposed that the variation of soil resistivity should be considered in the design of ground electrode and the temperature should not exceed65℃.
     (4) Temperature rise tests based on field similarity theory were conducted for vertical ground electrode. DC current was applied to the ground electrode and the temperature rise and current diffusion? of ground electrode were measured by thermocouple and hall current sensors. With the influence of end effect, the disperse current density is gradually increasesfrom head to toe, and disperse current density in the bottom of10cmis far greater thanthe average disperse current density of the whole electrode. Closer to the bottom of the electrode, temperature rise is earlier, rising rate is higher,amplitude is larger, With the passage of time, the temperature rising rate decreased and the largest temperature rise in the bottom ofelectrode.
     (5) Simulation tests based on field similarity theory were conducted further to study temperature rise of horizontal ground electrode. Single linear grounding electrode was applied, and the temperature rise and current diffusion of ground electrode were studied. There's a significant end effect on the ground electrode, resulting in an symmetrical current divergence distribution that the current divergence decreased from two ends to the middle of the electrode; the temperature distribution of grounding electrode is high at both ends, low in the middle.At the beginning of the test, temperature rise is faster and it is gradually slow downwith the increase of current load time. A special phenomenon occurred in tests that the temperature curve at the injecting point tended to be upturn, was mainly caused by the evaporation of water with high temperature.
     (6)It's fitted soil resistivity and determined soil thermal parameters oftest location. Tests' results show that the soil resistivity rises with the temperature rise and the temperature rise curve upturns at the injecting point. Soil thermal parametersvary with temperature was determinedbased on the measured data and loaded into simulation.Soil resistance of test soil was fitted according to Campbell empirical equation of soil electric conductivity and a fitted equation is given out in this paper. And the simulation results with the fitted equation are much closer to practical tests.
引文
[1].浙江大学发电教研组直流输电科研组.直流输电[M].北京:水利电力出版社,1985:155-163.
    [2].赵畹君.高压直流输电工程技术[M],北京:中国电力出版社,2004:27-56.
    [3].袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.
    [4].张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术,2010,34(9):1-9.
    [5].迟兴和,张玉军.直流接地极与大地中金属管道的防护距离[J].电网技术,2008,32(2):71-74.
    [6].刘连光,崔明德,孙中明,等.±800kV直流接地极对交流电网的影响范围[J].高电压技术,2009,35(6):1243-1247.
    [7].李占元,赵伟,丁健,等.国华台山发电厂主变直流偏磁问题分析与治理[J].电网技术,2009,33(06):33-38.
    [8].李兴源.高压直流输电系统[M].北京:科学出版社,2010:72-80.
    [9].钱之银,郁祖培.南桥500kV直流接地极故障原因分析[J].华东电力,1995,(6):1-4.
    [10].蒯狄正,万达,邹云.直流输电地中电流对电网设备影响的分析与处理[J].电力系统自动化,2005,29(2):81-82.
    [11].王明新,张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术,2005,29(03):9-14.
    [12].曹林,曾嵘,赵杰,等.高压直流输电系统接地极电流对电力变压器运行影响的研究[J].高压电器,2006,42(5):346-348.
    [13].黄道春,魏远航,钟连宏,等.我国发展特高压直流输电中一些问题的探讨[J].电网技术,2007,31(08):6-12.
    [14].张露,潘卓洪,雷鸣,等.水电站主变的直流偏磁的评估与抑制[J].电机与控制学报,2010,14(7):29-35.
    [15].鲁海亮,文习山,蓝磊,等.变压器直流偏磁对无功补偿电容器的影响[J].高电压技术,2010,36(5):1124-1130.
    [16]. Xiaoping Li, Xishan Wen, Penn N. Markham, et al. Analysis of nonlinear characteristics for a three-phase, five-limb transformer under dc bias[J]. IEEE TRANSACTIONS ON POWER DELIVERY,2010,25 (4):2504-2510.
    [17].解广润.电力系统接地技术[M],北京:水利电力出版社,1991:77-105.
    [18].何金良.电力系统接地技术[M],北京:科学出版社,2006:124-210.
    [19]. Yang J J Y L Chow, Srivastava K D. Complex image of a grounding electrode in layered soils[J]. Journal of Applied Physics,1992,1(1):1120-1125.
    [20]. Ma J, Dawalibi F.P, Daily W.K. Analysis of grounding systems in soils with hemispherical layering[J]. IEEE Transactions on Power Delivery,1993,8(4):1773-1781.
    [21].戴传友,文习山,方瑜.垂直多层土壤接地电阻的计算[J].高电压技术,1996,17(06):133-137.
    [22]. Ma Jinxi, Dawalibi F P. Analysis of grounding systems in soils with cylindrical soil volumes[J], IEEE Trans on Power Delivery,2000,15(3):913-918.
    [23].郭剑,邹军,何金良,等.水平分层土壤中点电流源格林函数的递推算法[J].中国电机工程学报,2004,24(7):101-105.
    [24].袁建生,李中新.求解多层媒质中点源电场问题的复镜像法[J].清华大学学报(自然科学版),1999,39(5):51-53.
    [25]. F. Dawalibi, C. J. Blattner. Earth Resistivity Murement Interpretation Techniques[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(2):374-382.
    [26]. J.Nahman, D.Salamon. A practical method for the interpretation of earth resistivity data obtained from driven rod tests[J]. IEEE Transactions on Power Delivery,1988,3(4): 1375-1379.
    [27]. Takehiko Taliahashi, Taroh Kawase. Analysis of apparent resistivity in a multilayer earth structure[J]. IEEE Transactions on Power Delivery,1990,5(2):604-612.
    [28]. J.L. del Alamo. A Second Order Gradient Technique For An Improved Estimation of Soil Parameters in A Two-Layer Earth[J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1991,6(3):1166-1170.
    [29]. J.L. del Alamo. Comparison Among Eight Different Techniques to Achieve an Optimum Estimation of Electrical Grounding Parameters in Two Layered Earth[J]. IEEE TRANSACTIONS ON POWER DELIVERY,1991,8(4):1890-1899.
    [30]. J.K. Arora Hans R. Seedher. Estimation of Two Layer Soil Parameters Using Finite Wenner Resistivity Expressioms[J]. IEEE TRANSACTIONS ON POWER DELIVERY,1992,7(3): 1213-1213.
    [31]. P.J. Lagace, E.D. Crainic. Interpretation of Resistivity Sounding Measurements in N-Layer Soil using Electrostatic Images[J]. IEEE TRANSACTIONS ON POWER DELIVERY,1996, 11(3):1349-1354.
    [32]. Jiansheng Yuan Huina Yang, and Wei Zong. Determination of Three-Layer Earth Model from Wenner Four-Probe Test Data[J]. IEEE TRANSACTIONS ON MAGNETICS,2001,37(5),: 3684-3687.
    [33].杨慧娜,袁建生.利用Wenner四极法确定三层土壤模型[J].清华大学学报(自然科学版),2002,42(3),291-294.
    [34]. J. Zou, J. L. He, R. Zeng,等.Two-Stage Algorithm for Inverting Structure Parameters of the Horizontal Multilayer Soil[J]. IEEE Transactions on Magnetics,2004,40(2),1136-1139.
    [35]. Xiang Cui Bo Zhang, Lin Li, Jinliang He. Parameter Estimation of Horizontal Multilayer Earth by Complex Image Method[J]. IEEE Transactions on Power Delivery,2005,20(2), 1394-1401.
    [36]. Ioannis F. Gonos, Ioannis A. Stathopulos. Estimation of Multilayer Soil Parameters Using Genetic Algorithms [J]. IEEE Transactions on Power Delivery,2005,20(1),100-106.
    [37].何金良,康鹏,曾嵘,等.青藏铁路110kV输变电工程五道梁和沱沱河变电站的土壤结构模型分析[J].电网技术,2005,29(20),10-14.
    [38]. Pierre Jean Lagace, Mai Hoa Vuong, Mario Lefebvre,等.Multilayer Resistivity Interpretation and Error Estimation Using Electrostatic Images[J]. IEEE TRANSACTIONS ON POWER DELIVERY,2006,21(4),1954-1960.
    [39].付龙海,吴广宁,王颢,等.青藏铁路望楚段变电站土壤结构参数的确定[J].高电压技术,2006,32(2),84-86.
    [40]. Campbell G S. Soil Physics with BASIC-Transport Models for Soil-Plant Systems[M]. NewYork:Elsevier,1985.
    [41].何智强,蒋正龙,周卫华,等.利用遗传算法对土壤模型的反演计算[J].高电压技术,2007,33(9),90-94.
    [42]. K. Norsangsri, T. Kulworawanichpong. Estimation of Earth Resistivity Based on Multispectral Image Classification [J]. IEEE Transactions on Power Delivery,2011, 26(02),1280-1281.
    [43].刘曲,郑健超,潘文,等.变压器铁心承受直流能力的仿真和分析[J].变压器,2006,43(09),5-10.
    [44].刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D],北京:清华大学,2007.
    [45].刘曲,李立涅,郑健超.复合土壤模型下HVDC系统单极大地运行时的电流分布[J].中国电机工程学报,2007,27(36),8-13.
    [46].刘曲,郑健超,李立涅.考虑海洋影响的直流输电单极大地运行时变压器中性点直流电流研究[J].电网技术,2007,31(2),57-65.
    [47].刘曲,郑健超,李立涅.直流输电系统变压器中性点电流分布的影响因素[J].高电压技术,2008,34(04),643-646.
    [48].陆继明,肖冬,毛承雄,等.直流输电接地极对地表电位分布的影响[J].高电压技术,2006,32(09),55-58+91.
    [49].郝治国,余洋,张保会,等.高压直流输电单极大地方式运行时地表电位分布规律[J].电力自动化设备,2009,29(6),10-14.
    [50].任志超,续建国,张一坤,等.交直流互联系统直流地表电位简易算式[J].电工技术学报,2011,26(07),256-263.
    [51].李长云,李庆民,李贞,等.半岛地质条件下计算高压直流输电地中直流分布的扩展镜像法[J].高电压技术,2011,37(2),444-452.
    [52].任志超,吴广宁,甄威,等.直流入地电流经交流电网分流计算模型的简化及算法分析[J].高电压技术,2011,37(04),1008-1014.
    [53].孙结中,刘力.运用等值复数镜像法求解复合分层土壤结构的格林函数[J].中国电机工程学报,2003,23(9),6.
    [54].何俊佳,叶会生,林福昌,等.土壤结构对流入变压器中性点直流电流的影响[J].中国电机工程学报,2007,27(36),14-17.
    [55].曾嵘,周佩朋,王森,等.接地系统中接触电阻的仿真模型及其影响因素分析[J].高电压技术,2010,36(10),2393-2397.
    [56].高长征,赵志斌,李琳,等.变电站接地网的空问磁场快速计算方法[J].高电压技术,2009,35(08),1990-1993.
    [57].齐磊,崔翔,李慧奇.变电站接地网的频域有限元方法[J].中国电机工程学报,2007,6(2),62-66.
    [58]. Nekhoul B, Labie P, Zgainski F X, et al. Calculating the impedance of a grounding system[J]. IEEE Trans. on Magnetics,1996,32(3):1509-1512.
    [59]. Nekhoul B, Guerin C, Labie P, et al. A finite element method for calculating the electromagnetic fields generated by substation grounding systems[J]. IEEE Trans. on Magnetics,1995,31(3):2150-2153.
    [60]. Trlep M, Hamler A, Hribernik B. The analysis of complex grounding systems by FEM[J]. IEEE Trans. on Magnetics,1998,34(5):2521-2524.
    [61].甘艳,阮江军,陈允平.一维有限元与三维有限元耦合法在接地网特性分析中的应用[J].电网技术,2004,28(9):62-66.
    [62].王坚强,彭岳林,杨文兵.垂直层状介质中接地网接地参数的计算[J].电网技术,1995,19(12):27-33.
    [63].许军,蓝磊,文习山,等.三峡电站模型地网接地电阻小比例模型试验研究[J].电网技术,2003,27(01):38-40.
    [64].戴传友,文习山,方瑜.三峡电站接地电阻的初步计算[J].高电压技术,1997,2(23):47-50.
    [65]. JinxiMa, F.P Dawalibi. Analysis of grounding systems in soils with finite volumes of different resistivities[J]. IEEE TRANSACTIONS ON POWER DELIVERY,2002,17(2),596-602.
    [66]. P. Meliopoulos, G. Christoforidis. Effects of DC ground electrode on converter transformers[J]. IEEE Transactions on Power Delivery,1989,4(2):995-1002.
    [67]. D. H. Boteler, T. Watanabe, R. M. Shier, et al. Characteristics of Geomagnetically Induced Currents in the B. C. Hydro 500 kV System[J]. IEEE Transactions on Power Apparatus and Systems,1982,101(6):1447-1456.
    [68]. E. Emanuel, D. J. Pileggi, F. J. Levitsky. Direct Current Generation in Single-Phase Residential Systems DC Effects and Permissible Levels[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(8):2051-2057.
    [69]. P. Picher, L. Bolduc, V. O. Pham. Study of the Acceptalbe DC Current Limit in Core-From Power Transformers [J]. IEEE Trans on Power Delivery,1997,12(1):257-263.
    [70]. D. H. Boteler. Geomagnetically Induced Currents:Present Knowledge and Future Research[J]. IEEE Trans on Power Dilivery,1994,9(1):50-58.
    [71].薛向党,郭晖,郑云祥,等.在地磁感应电流作用时分析和计算电力变压器特性的一种新方法—时域和频域法[J].电工技术学报,2000,15(02):1-5.
    [72]. S. Lu, Y. Liu. FEM analysis of DC saturation to assess transformer susceptibility to geomagnetically induced currents[J]. IEEE Transactions on Power Delivery,1993,8(3): 1367-1376.
    [73]. H. Greiss, B. L. Allen, P. J. Lagace, et al. HVDC Ground Electrode Heat Dissipation[J]. IEEE Transactions on Power Delivery,1987,2(4):1008-1017.
    [74]. H. Greiss, D. Mukhedkar, J. L. Houle, et al. HVDC ground electrode heat dissipation in an N-layer soil[J]. IEEE Transactions on Power Delivery,1988,3(4):1369-1374.
    [75]. H. Greiss, D. Mukhedkar, P. J. Lagace. Transient analysis of heat dissipation due to a HVDC ground electrode[J]. Power Delivery, IEEE Transactions on,1989,4(2):916-920.
    [76]. J. E. Villas, C. M. Portela. Soil heating around the ground electrode of an HVDC system by interaction of electrical, thermal, and electroosmotic phenomena[J]. IEEE Transactions on Power Delivery,2003,18(3):874-881.
    [77]. EPRI. HVDC ground electrode design[R]. United States:Electric Power Research Institute, 1981.
    [78].郭琮,盛勃,顾昌,等.HVDC圆环形直流接地极的发热分布研究[J].武汉水利电力学院学报,1990,23(6):104-111.
    [79].顾昌,郭琮,蔡建国.HVDC圆环形直流接地极的瞬态发热分布研究[J].武汉水利电力学院学报,1992,25(3):256-263.
    [80].陈凡,何金良,张波,等.特高压共用接地极热参数分析[J].高电压技术,2009.35(6):1267-1273.
    [81]. Fan Chen, Bo Zhang, Jinliang He. Influence of Coke Bed on HVDC Grounding Electrode Heat Dissipation[C]. IEEE TRANSACTIONS ON MAGNETICS, VOL.44, NO.6, JUNE 2008:826-829.
    [82].张哲任,徐政,徐韬,等.采用有限体积法的特高压直流输电系统接地极稳态温度场仿真分析[J].高电压技术,2012,2(38):328-334.
    [83]. J. E. T. Villas, C. M. Portela. Soil heating around the ground electrodeof an HVDC system by interaction of electrical, thermal, andelectroosmotic phenomena. IEEE Trans. Power Delivery, 2003,18(3):874-881.
    [84].杜忠东,王建武,刘熙.UHVDC圆环接地极接地性能分析[J].高电压技术,2006,32(12):146-149.
    [85].王建武,文习山,杜忠东,何钢.±800kV圆环接地极电流场温度场耦合计算[J].电工技术学报,2009,24(3):14-19.
    [86].王建武.±800kV直流接地极设计与接地特性研究[D].武汉:武汉大学,2008.
    [87].李毅,邵明安,王文焰,等.质地对土壤热性质的影响研究[J].农业工程学报,2003,(4):62-65.
    [88].任图生,邵明安,巨兆强,等.利用热脉冲—时域反射技术测定土壤水热动态和物理参数Ⅰ.原理[J].土壤学报,2004,41(2):225-229.
    [89].任图生,邵明安,巨兆强,等.利用热脉冲—时域反射技术测定土壤水热动态和物理参数Ⅱ.应用[J].土壤学报,2004,41(4):523-529.
    [90]. Wang Quanjiu, Ochsner T E, Horton R. Mathematicalanalysis of heat pulse signals for soil water fluxdetermination[J]. Water Resources Research,2002,8(6):27-1-7-7.
    [91]. Gao Zhiqiu, Fan Xingang, Bian Lingen. An analyticalsolution to one-dimensional thermal conduction-convection insoil[J]. Soil Science,2003,168(2):99-107.
    [92]. Bachmann J, Horton R, Ren Tusheng, et al. Comparison ofthe thermal properties of four wettable and four waterrepellent soils [J]. Soil Sci Soc Am J,2001,65:1675 - 1679.
    [93]. Ochsner T E,Horton R,Ren T S. A new perspective on soilthermal properties [J]. Soil Sci Soc Am J,2001,65:1641-1647.
    [94]. Mori Y, Hopmans J W, Mortensenan A P, et al.Multi-functional heat pulse probe for the simultaneousmeasurement of soil water content, solute concentration, andheat transport parameters [J]. Vadose Zone Journal,2003,2:561-571.
    [95]. Nidal H A, Randall C R. Soil Thermal conductivity:effects ofdensity, moisture, salt concentration and organic matter[J].Soil Sci Soc Am J,2000,64:1285-1290.
    [96].秦耀东.土壤物理学[M].北京:高等教育出版社,2003:133-134.
    [97].邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [98].脱云飞,费良军,杨路华,等.秸秆覆盖对夏玉米农田土壤水分与热量影响的模拟研究[J].农业工程学报,2007,23(6):27-32.
    [99].李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2006,20(3):217-221.
    [100]. Hu Xuejiao, Du Jianhua, Lei Shuye, et al. A model for thethermal conductivity of unconsolidated porous media basedon capillary pressure-saturation relation[J]. InternationalJournal of Heat and Mass Transfer,2001,44:247-251.
    [101]. Hopmans J W, imunek J, Bristow K L. Indirect estimation ofsoil thermal properties and water flux using heat pulse probe64 measurements:Geometry and dispersion effects[J]. WaterResources Research,2002,38(1):7-1-7-14.
    [102]. Abu-Hamdeh N H, Reeder R C, Khdair A I, et al. Thermalconductivity of disturbed soils under laboratory conditions[J].American Society of Agricultural Engineers,2000,43(4):855-860.
    [103]. Campbell G S. Soil Physics with BASIC-Transport Modelsfor Soil-Plant Systems[M]. New York:Elsevier,1985.
    [104]. Bristow K L. Measurement of thermal properties and watercontent of unsaturated sandy soil using dual-probe heat-pulseprobes[J]. Agricultural and Forest Meteorology,1998,89:75-84.
    [105].李婷,王全九,樊军.土壤热参数确定方法比较与修正[J].农业工程学报,2008,24(3):59-64.
    [106].曹晓斌,吴广宁,付龙海,等.温度对土壤电阻率影响的研究[J].电工技术学报,2007,22(9):1-6.
    [107].韩立华,刘松玉,杜延军.温度对污染土电阻率影响的试验研究[J].岩土力学,2007,28(6):1151-1155.
    [108].周蜜.土壤电阻率测量影响因素的试验研究[D].武汉:武汉大学,2011.
    [109].司马文霞,骆玲,袁涛等.土壤电阻率的温度特性及其对直流接地极发热的影响[J].高电 压技术,2011,1(37):1192-1198.
    [110].骆玲.土壤温度特性试验及其对直流接地极温升过程影响研究[D].重庆:重庆大学,2012.
    [111].袁涛,骆玲,杨庆等.土壤温度特性试验及其对圆环型直流接地极发热影响分析[J].电机工程学报,2013,33(1):188-196.
    [112].张波.变电站接地网频域电磁场数值计算方法的研究[D].华北电力大学,2003.
    [113]. Zienkiewicz O C, Bettess P. Diffraction and refraction of surface wave using finite andinfiniteelements[J].InternationalJournalForNumericalMethods In Engineering,1977, 13(11):1271-1290.
    [114]. Zienkiewiez O C, Bando K, Bettess P, et. al. Mapped Infinite Elements for Exterior Wave Problems[J]. InternationalJournalForNumericalMethods In Engineering,1985, 21:1229-1251.
    [115]. AshleyR J, MacAulay G. J. Mapped Wave Envelope Elements for Acoustical Radiation and Scattering[J]. Journal of Vibration and Acoustics,1994,170(1):97-118.
    [116]. Ashley R J, Macaulay G J, Coyette J P, et. al. Three-dimensional Wave-envelope elementsofvariableorderforacoustic radiationandscattering.Partl. formulationinthefrequencydomain[J].TheJournaloftheAcousticalSocietyofAmerica,1998, 103(1):49-63.
    [117]. Cremers L, Fyfe K R, Coyette J P. A variable order infiniteacousticwaveenvelopeelement[J].JournalofSound and Vibration,1994,171(4):483-508
    [118]. Cremers L, Fyfe K R.On the use of variable order infinite waveenvelopeelementsforacousticradiationandscattering. TheJournaloftheAcousticalSociety of America,1995,97(4):2028-2040.
    [119]. Dreyer D, Estorff o. von. Improved conditioning of infinite elements for exterior acoustics[J].InternationalJournalForNumericalMethods In Engineering,2003,58(6):933-953.
    [120]. Li LX, Sun JS, Sakamoto H. A Generalized Infinite Element for Acoustic Radiation[J]. Journal of Vibration and Acoustics,2005,127(1):2-11.
    [121]. Burnett D S, Holford R L. Prolate and oblate spheroidal acoustic infinite elements[JI. Computer Methods in AppliedMechanics and Engineering,1998,158:117-141.
    [122].应隆安.无限单元法[M].北京大学出版社,1992.
    [123].李培芳.无限元在电磁场计算中的应用[J].电工技术杂志,1987,5:1-3.
    [124].汪金山,李朗如.二维稳态电磁场数值计算中的无限元方法[J].电工技术学报,1996,11(3):56-59.
    [125].孙跃.直流电阻率法的三维有限元无限元数值分析[J].岩土工程学报,2005,27(7):733-737.
    [126]].公劲喆.有限元一无限元藕合法在三维直流电和电磁数值模拟中的应用[D].中南大学,2009.
    [127]. PeterBettess.InfiniteElements[M].Dunham PenshawPress.1992.
    [128]1.谢德馨,杨仕友.工程电磁场数值分析与综合[M].2009.
    [129].王静爱,左伟.中国地理图集[M].北京:中国地图出版社,2010.46.
    [130]].邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [131].李良福.气象因素与土壤性质耦合效应对土壤电导的影响[D].重庆:西南大学博士学位论文,2010.
    [132].G.夏里克.候景韩译.接地工程[M]..北京:人民邮电出版社,1998:15-28.
    [133].国家能源局.DLT 437-2012高压直流接地极技术导则[S].北京:2012
    [134]. F. Dawalibi, D. Mukhedkar and D. Bensted, Measured and Computed Current Densities inBuried Ground Conductors[J]. IEEE Trans. on Power Apparatus and Systems, 1981,100(8):4083-4092.
    [135].黄文武,文习山,谢俊.接地网轴向电流分布的模拟试验[J].高电压技术,2005,31(6):76-78.
    [136]. M. Mousa. The Soil Ionization Gradient Associated with Discharge of High Currents intoConcentrated Electrodes[J]. IEEE Trans. Power Del.,1994,9(3):1669-1677.
    [137]. Yanqing Gao, Jinliang He, Jun Zou, et al. Fractal Simulation of Soil Breakdown underLightningCurrent[J]. Journal of Electrostatics,2004, (61):197-207.
    [138].高延庆.土壤冲击击穿机理及接地系统暂态特性研究[D].北京:清华大学博士学位论文,2003.
    [139]. Song Zcqing, He Jingliang, M.R. Raghuveer. Experimental Study on Lightning BreakdownChannels in the Soils[J]. IEE High Voltage Engineering Symp,1999,467(2): 426-429.
    [140]. Song Zcqing, He Jingliang M.R. Raghuveer. Influence of the Nature of Impulse CurrentPropagation in Soils on Transient Impedance Characteristics[J].2000 Conf. ElectricalInsulation and Dielectric Phenomena,2000, pp:739-742.
    [141]. N. Mohamad Nor, A. Haddad, H. Griffiths. Determination of Threshold Electric Field Ec ofSoil Under High Impulse Currents[J]. IEEE Transactions on Power Delivery,2005, 20(3):2108-2113.
    [142]. N. Mohamad Nor, A. Haddad, H. Griffiths. Characterization of Ionization Phenomena in Soilsunder Fast Impulses[J]. IEEE Transactions On Power Delivery,2006,21(1):353-361.
    [143]. Hideki Motoyama. Electromagnetic Transient Response of Buried Bare Wire and GroundGrid[J]. IEEE Transactions On Power Delivery,2007,22(3):1673-1679.
    [144], Hideki Motoyama. Experimental and Analytical Studies on Lightning Surge Characteristics of aBuried Bare Wire[J]. Electrical Engineering in Japan,2008,164(3):35-41.
    [145]. Hideki Motoyama. Experimental and Analytical Studies on Lightning Surge Characteristics ofGround Mesh[J]. Electrical Engineering in Japan,2007,160(4):16-23.
    [146]. Erler J. W., Snowden D. P. High Resolution Studies of the Electrical Breakdown of Soils[J].IEEE Trans. on Nuclear Science,1983, NS30(6):4564-4567.
    [147].工保山,万启发,杨迎建,等.长接地棒/极的冲击电流分布特性[J].高电压技术,1995,21(1):70-73.
    [148].杨财伟.接地装置冲击特性的模拟试验及有限元分析方法研究[D].重庆:重庆大学硕士学位论文,2010.
    [149].陈斌,刘西军.无限单元法在坝体混凝土温度场分析中的应用[J].人民长江,2006:21(2):1003-1006.
    [150].杨世铭.传热学[M].北京:高等教育出版社,2010.
    [151].武汉大学,葛沪直流送端共用青苔接地极接地参数仿真研究[R].武汉:2011.
    [152].武汉大学,垂直型接地极设计研究技术[R].武汉:2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700