用户名: 密码: 验证码:
锂离子电池正极材料电极界面反应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高容量、高能量密度和快速充放电能力的锂离子电池是未来绿色二次能源发展的重要方向之一,与上述要求相一致的锂离子电池脱嵌锂容量、循环特性及倍率性能均与电极界面发生的电化学反应相关,因此研究锂离子电池电极界面反应机制对阐明其容量衰减机理、提高脱嵌锂容量及倍率性能等具有重要意义。
     为了使研究能够对商业化锂离子电池材料的改进提高提供理论依据,本文首先采用商业化常用的高温固相法合成了LiCoO_2材料,并运用电化学阻抗谱(EIS)对其电极界面反应机制进行研究。研究发现,LiCoO_2电极在脱嵌锂过程中,Nyquist图中始终存在一个代表材料电子电导率变化的半圆。在首次脱锂中期,Nyquist图按频率由高至低包含高频区半圆、中频区半圆、低频区半圆及一条斜线共四部分。通过合适的等效电路对阻抗谱进行拟合并对拟合值进行分析发现这四部分分别代表锂离子通过电极表面的SEI膜、材料电子电导率、电荷传递过程及锂离子在电极内部的扩散,并且通过EIS证实了LiCoO_2电极在脱嵌锂过程中其电导率确实存在一个“绝缘体-金属性”转变,此转变随着脱嵌锂次数的增加逐渐减弱。
     同样,运用EIS对固相法合成的LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2材料的电极界面反应机制进行研究。结果表明,LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2电极在脱嵌锂过程中其阻抗谱也由三个半圆及一条斜线四部分组成,通过等效电路拟合各部分数值并分析发现,中频区半圆应归属于电极材料电子电导率的变化,并计算出LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2电极在脱嵌锂过程中电导率变化范围为1.3×10~(-6)~7.3×10~(-4)S·cm~(-1),即LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2材料在脱嵌锂过程中电导率会发生1~2个数量级的变化,首次发现LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2在脱嵌锂过程中也存在“绝缘体-金属性”转变。
     通过固相法合成了近期商业化研究用于替代石墨的热点材料——Li_4Ti_5O_(12),并运用EIS对其电极界面反应机制进行研究。结果表明,Li_4Ti_5O_(12)电极在首次嵌锂过程中阻抗谱存在三个半圆及一条斜线四部分,经拟合分析得到以上四部分按频率由高至低分别归属于肖特基接触、电极材料的电子电导率、电荷传递过程及锂离子在电极内部的扩散。但在首次脱锂过程1.55V以上,Nyquist图在中低频区域又衍生出一个半圆,即此时阻抗谱由四个半圆及一条斜线共五部分组成。经分析可知,在脱锂阶段衍生出的中低频半圆应归因于Li_4Ti_5O_(12)电极相关的产气副反应,此副反应是由于脱锂过程中伴随锂离子脱出的电子一部分被溶剂组分中的羟基获得,产生了H2。通过对新鲜电极和产气过后的Li_4Ti_5O_(12)电极进行充放电、红外等测试发现,产气副反应在电极表面的残留物会强烈影响Li_4Ti_5O_(12)电极的电化学性能。
     富锂电极材料以其高容量、高能量密度等优点在近年来受到广泛关注,但富锂材料首周充放电过程中全新的充放电机制并不明晰。本文通过共沉淀法合成了微纳米级百褶结构的富锂材料Li[Ni1/3Li1/9Mn5/9]O_2及传统层状材料Li[Ni1/2Mn1/2]O_2,运用微分容量、EIS等方法对它们的电极界面反应机制进行了研究。微分容量结果表明,富锂电极材料在首次脱锂阶段存在三个反应峰,分别为4.5V之前Ni~(2+/4+)的氧化,4.5V之后的氧元素脱出过程及质子交换过程,后两个过程在随后的充放电循环中消失,三个过程对材料首次脱锂容量的贡献率分别为65.2%、25.6%、9.2%。EIS结果分析表明,富锂材料在高电压下电极表面的SEI膜会发生部分破裂、分解,但总体上富锂材料表面仍可形成较为稳定的SEI膜;富锂材料的电子电导率会随Ni~(2+/4+)的氧化及材料相变发生相应变化;电荷传递电阻随着循环过程不断增大,这也可能是富锂材料倍率性能差的主要原因。
     为了深入认识材料的电极界面反应机制,我们对几种嵌合物电极材料脱嵌锂过程中的动力学参数进行了研究。首先,运用EIS研究了尖晶石LiMn_2O_4正极在1mol/L LiPF_6-EC: DEC: DMC、1mol/L LiPF_6-EC: DEC: EMC和1mol/LLiPF_6-EC: DMC电解液中阻抗谱特征由-20℃随温度升高至20℃发生的变化,通过合适的等效电路拟合分析了LiMn_2O_4电极脱嵌锂过程及相应的锂离子迁移通过SEI膜阻抗、活性材料的电子电阻以及电荷传递电阻随温度的变化情况,并测定了相关的离子跳跃能垒W、热激活化能Ea以及嵌入反应活化能ΔG三个动力学参数。研究发现,电解液组分对锂离子在电极中脱嵌过程影响较大。在上述三种电解液中,LiMn_2O_4电极在1mol/L LiPF_6-EC: DMC电解液中具有最高的离子跳跃能垒、热激活化能和嵌入反应活化能,说明在此电解液中锂离子脱嵌所需克服的能量最高,这也与LiMn_2O_4电极在1mol/L LiPF_6-EC: DMC电解液中充放电性能最差相吻合。
     本文通过EIS从动力学角度研究了添加剂VC对LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2电极嵌脱过程的影响。研究结果表明,VC作为添加剂利于在电极表面形成非常稳定的SEI膜;可提高电解液的导离子率,易于锂离子在电解液中的传输;有利于锂离子在电极内部的扩散迁移。另外,本文还研究了LiCoO_2正极在1mol/L LiPF_6-EC:DMC电解液中0~30℃范围内EIS谱特征随温度的变化。测得LiCoO_2正极在上述电解液中的锂离子迁移通过固体电解质相界面膜的离子跳跃能垒为37.7kJ/mol;电子电导率的热激活化能为39.1kJ/mol;嵌入反映活化能平均值为69.0kJ/mol。
     该论文有图77幅,表9个,参考文献210篇。
The lithium-ion battery, with the high capacity, high energy density and rapidcharge/discharge, is one of the important directions for green secondary energy in thefuture. The charge/discharge capacity, cycle ability and rate capability are associatedwith the electrochemical reactions at the electrode/electrolyte interfaces, so it isnecessary to understand the electrode/electrolyte interfaces reaction mechanisms forclarifying the capacity fading mechanisms, improving the charge/discharge capacityand the rate capability of the electrode material.
     In order to provide the theoretical evidence for improvement of commercialapplications, the LiCoO_2material with commercialization level was synthesized byhigh temperature solid-state reaction. The electrode/electrolyte interfaceelectrochemical reactions in the LiCoO_2cathode were investigated by electrochemicalimpedance spectroscopy (EIS). The Nyquist plots involved a semicircle attributed tothe electronic properties of the material. At intermediate degrees of delithiation, thespectra exhibited three semicircles and a slightly inclined line that appearedsuccessively as the frequency decreases. Based on detail analysis of the change ofkinetic parameters obtained from simulating the experimental EIS data as functions ofpotentials, the high-frequency, the middle-frequency, and the low-frequencysemicircles can be attributed to the migration of the lithium ions through the SEI film,the electronic properties of the material and the charge transfer step, respectively. Theslightly inclined line arises from the solid state diffusion process. At early delithiationthere was a dramatic change in the electrical conductivity of the layered LiCoO_2thatwas caused by an insulator-to-metal transition, which would be weak after the firstdelithiation/lithiation process.
     The LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2material with commercialization level was alsosynthesized by high temperature solid-state reaction. The EIS of thedelithiation/lithiation process in LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2cathode were obtained atdifferent potentials during the first cycle. The EIS spectra exhibited three semicirclesand a slightly inclined line that appeared successively along with decrease infrequency. The middle-frequency semicircle should be attributed to the electronicproperties of the material. Along with raising potential from3.5to4.4V, the electricalconductivities of LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2increased by two orders of magnitude, from1.3×10~(-6)to7.3×10~(-4)S·cm~(-1). It was firstly proved that at early delithiation a dramaticchange in the electrical conductivity of the LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2electrode was caused by an insulator-to-metal transition.
     The spinel Li_4Ti_5O_(12), suggested as one of the most promising alternatives forgraphite anode, was synthesized by high temperature solid-state reaction. Atintermediate degrees of lithiation process, the EIS spectra exhibited three semicirclesand a slightly inclined reflecting solid state diffusion process. It had been revealedthese three semicircles appearing successively along with decrease in frequencyshould be attributed respectively to the Schottky contact, the electronic properties ofthe material and the charge transfer step. At intermediate degrees of delithiationprocess, above1.55V, an interesting and significant phenomenon was that themiddle-frequency semicircle turn into two joint semicircles, and this phenomenon wasattributed to the gas generation in LTO cells, due to the chemical reduction reaction ofsolvent by Li7Ti5O12with the help of LiPF_6and release H2. The fresh and after gasgeneration electrodes were investigated by galvanostatic cycling and FTIRS, and theresults illustrated that the electrochemical properties were strongly influenced by theresidue after gas generation.
     The new generation of Li-rich solid solution materials are received extensiveattention due to their high capacity and high energy density. But their newelectrochemical charge/discharge mechanism is not clear. The cathode materialsLi[Ni1/3Li1/9Mn5/9]O_2and Li[Ni1/2Mn1/2]O_2were synthesized by co-precipitationreaction. The differential capacitance curves showed three major reactions in the firstcharge process of the Li-rich material: the oxidation of Ni~(2+/4+)below4.5V, theextraction of oxygen and the exchange of proton above4.5V, and the capacitycontribution of them were65.2%,25.6%and9.2%, respectively. The oxidation ofNi~(2+/4+)is the only reaction in the following charge processes. The processes of thefirst delithiation/lithiation of Li[Ni_xLi_((1/3-2x/3))Mn_((2/3-x/3))]O_2(x=1/3) cathode wereinvestigated by electrochemical impedance spectroscopy (EIS). The EIS results showthat Li-rich material can form a stable SEI film in the charge/discharge process eventhough the breakdown or dissolution of the resistive SEI film occurs in the highvoltage; the electronic properties change with oxidation reactions and phase transition;the continuing increase of the charge transfer resistance may be the major reason thatthe Li-rich materials have a poor performance in the high current rate.
     To further elucidate the delithiation/lithiation mechanisms of the intercalationcompound, EIS was used to measure variations of spectra of LiMn_2O_4electrode withthe temperature in the range-20~20℃in1mol/L LiPF_6-EC: DEC: DMC,1mol/L LiPF_6-EC: DEC: EMC and1mol/L LiPF_6-EC: DMC electrolyte solutions. Theresistance of the SEI film, the electronic resistance as well as the charge transferreaction resistance with variations of temperature were studied and the related kineticparameters the energy barriers for the ion jump relating to migration of Li-ion throughthe SEI film, the thermal active energy of the electronic conductivities and thedelithiation/lithiation reaction active energies were determined. In above threeelectrolyte solutions, LiMn_2O_4electrode had the largest kinetic parameters in1mol/LLiPF_6-EC: DMC electrolyte solution, which was consistent with the worstelectrochemical properties in this electrolyte solution.
     Influences of VC in the delithiation/lithiation process of LiNi_(1/)3Co_(1/3)Mn_(1/3)O_2electrode with different experiment condition were investigated by EIS from the pointof kinetic view. It was found that VC was favor of producing an stable SEI film on theelectrode, increasing the ion conductivity and the diffusion process inside of theelectrode. In addition, the activation energy of the ion jump, the thermal activationenergy of the electrical conductivity as well as the activation energy of thedelithiation/lithiation reaction of LiCoO_2electrode were determined to be37.7,39.1and69.0kJ/mol respectively with the temperature in the range0~30℃in1mol/LLiPF_6-EC: DMC electrolyte solution.
引文
[1]吴宇平,戴晓兵,马军旗,等.锂离子电池应用与实践[M].北京:化学工业出版社,2004.
    [2]吴宇平,张汉平,吴峰,等.聚合物锂离子电池[M].北京:化学工业出版社,2007.
    [3]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002.
    [4]李平.浅谈锂离子电池的结构和特性[J].电子制作,2003,3:7-8.
    [5] Tarason J.M., Armand M.. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
    [6]姜涛.聚阴离子型正极材料Li3V2(PO4)3和Na2FePO4F的制备与性质研究[D].长春:吉林大学,2010.
    [7] Nishi Y.. The development of lithium ion secondary batteries[J]. The Chemical Record,2001,1:406-413.
    [8]张勇,胡信国,张翠芬.新型化学电源的电极反应原理[J].电池工业,2004,9:33-36.
    [9] Thackeray M.M.. Structural considerations of layered and spinel lithiated oxides for lithiumion batteries[J]. Journal of The Electrochemical Society,1995,142:2558-2563.
    [10] Parent M.J., Passerini S.P., Owens B.B., et al.. Composites of V2O5aerogel and nickel fiberas high rate intercalation electrodes[J]. Journal of The Electrochemical Society,1999,146:1346-1350.
    [11] Levi M.D., Aurbach, D.. The mechanism of lithium intercalation in graphite film electrodes inaprotic media. Part1. High resolution slow scan rate cyclic voltammetric studies andmodeling[J]. Journal of Electroanalytical Chemistry,1997,421:79-88.
    [12] Levi M.D., Salitra G., Markovsky B., et al.. Solid-state electrochemical kinetics of Li-ionintercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV,PITT and EIS[J]. Journal of The Electrochemical Society,1999,146:1279-1289.
    [13] Bruce P.G., Saidi M.Y.. The mechanism of electrointercalation[J]. Journal of ElectroanalyticalChemistry,1992,322:93-105.
    [14] Bruce P.G., Saidi M.Y.. A two-step model of intercalation[J]. Solid State Ionics,1992,51:187-190.
    [15] Kobayashi S., Uchimoto Y.. Lithium ion phase-transfer reaction at the interface between thelithium manganese oxide electrode and the nonaqueous electrolyte[J]. Journal of PhysicalChemistry B,2005,109:13322-13326.
    [16] Nakayama M., Ikuta H., Uchimoto Y., et al.. Study on the AC impedance spectroscopy for theLi insertion reaction of LixLa1/3NbO3at the electrode-electrolyte interface[J]. Journal ofPhysical Chemistry B,2003,107:10603-10607.
    [17]倪江锋,周恒辉,陈继涛,等.锂离子电池中固体电解质界面膜(SEI)研究进展[J].化学进展,2004,16:335-342.
    [18] Thomas M.G.S.R., Bruce P.G., Goodenough J.B.. AC impedance analysis of polycrystallineinsertion electrodes: application to Li1-xCoO2[J]. Journal of The Electrochemical Society,1985,132:1521-1528.
    [19] Aurbach D., Zaban A., Zinigrad E.. Impedance spectroscopy of Li electrodes[J]. Journal ofPhysical Chemistry,1996,100:3089-3101.
    [20] Ely Y.E., Aurbach D.. Identification of surface films formed on active metals and nonactivemetal electrodes at low potentials in methyl formate solutions[J]. Langmuir,1992,8:1845-1850.
    [21] Aurbach D., Ein-Eli Y., Markovsky B., et al.. The study of electrolyte solutions based onethylene and diethyl carbonates for rechargeable Li batteries: graphite electrodes[J]. Journalof The Electrochemical Society,1995,142:2882-2890.
    [22] Aurbach D., Zaban A., Schechter A., et al.. The study of electrolyte solutions based onethylene and diethyl carbonates for rechargeable Li batteries: Li metal anodes[J]. Journal ofThe Electrochemical Society,1995,142:2873-2882.
    [23] Aurbach D., Levi M.D., Levi E., et al.. Common electroanalytical behavior of Li intercalationprocesses into graphite and transition metal oxides[J]. Journal of The Electrochemical Society,1998,145:3024-3034.
    [24] Aurbach D., Gamolsky K., Markovsky B., et al.. The study of surface phenomena related toelectrochemical lithium intercalation into LixMOyhost materials (M=Ni, Mn) articles[J].Journal of The Electrochemical Society,2000,147:1322-1331.
    [25] Levi M.D., Aurbach D.. Simultaneous measurements and modeling of the electrochemicalimpedance and the cyclic voltammetric characteristics of graphite electrodes doped withlithium. Journal of Physical Chemistry,1997,101:4630-4640.
    [26] Levi M.D., Gamolsky K., Aurbach D., et al.. On electrochemical impedance measurements ofLixCo0.2Ni0.8O2and LixNiO2intercalation electrodes[J]. Electrochimica Acta,2000,45:1781-1789.
    [27] Jung Y.S., Cavanagh A.S., Dillon A.C., et al.. Enhanced stability of LiCoO2cathodes inlithium-ion batteries using surface modification by atomic layer deposition[J]. Journal of TheElectrochemical Society,2010,157: A75-A81.
    [28] Atebamba J.M., Moskon J., Pejovnik S., et al.. On the interpretation of measured impedancespectra of insertion cathodes for lithium-ion batteries[J]. Journal of The ElectrochemicalSociety,2010,157: A1218-A1228.
    [29] Aurbach D., Markovsky B., Levi M.D., et al.. New insights into the interactions betweenelectrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal ofPower Sources,1999,81:95-111.
    [30] Levi M.D., Salitra G., Markovsky B., et al.. Solid-state electrochemical kinetics of Li-ionintercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV,PITT, and EIS. Journal of The Electrochemical Society,1999,146:1279-1289.
    [31] Sheem K.Y., Sung M., Lee Y.H.. Electrostatic heterocoagulation of carbon nanotubes andLiCoO2particles for a high-performance Li-ion cell[J]. Electrochimica Acta,2010,55:5808-5812.
    [32] Mun J., Kim S., Yim T., et al.. Comparative study on surface films from ionic liquidscontaining saturated and unsaturated substituent for LiCoO2[J]. Journal of TheElectrochemical Society,2010,157: A136-A141.
    [33] Cho Y., Eom J., Cho J.. High performance LiCoO2cathode materials at60degrees C forlithium secondary batteries prepared by the facile nanoscale dry-coating method[J]. Journalof The Electrochemical Society,2010,157: A617-A624.
    [34] Reddy M.V., Rao G.V.S., Chowdari B.V.R.. Preparation and characterization of LiNi0.5Co0.5O2and LiNi0.5Co0.4Al0.1O2by molten salt synthesis for Li-ion batteries[J]. Journal of PhysicalChemistry C,2007,111:11712-11720.
    [35] Barsoukov E., Kim D.H., Lee H.S., et al.. Comparison of kinetic properties of LiCoO2andLiTi0.05Mg0.05Ni0.7Co0.2O2by impedance spectroscopy[J]. Solid State Ionics,2003,161:19-29.
    [36] Barsoukov E., Kim J.H., Kim J.H., et al.. Kinetics of lithium intercalation into carbon anodes:in situ impedance investigation of thickness and potential dependence[J]. Solid State Ionics,1999,116:249-261.
    [37] Barsoukov E., Macdonald J.R.. Impedance spectroscopy theory, experiment, andapplications[M]. Second Edition. New Jersey: John Wiley&Sons, Inc., Hoboken,2005.
    [38] Whittingham M.S.. Lithium batteries and cathode materials[J]. Chemical Reviews,2004,104:4271-4302.
    [39] Nobili F., Dsoke S., Corce F., et al.. An ac impedance spectroscopic study of Mg-dopedLiCoO2at different temperatures: electronic and ionic transport properties[J]. ElectrochimicaActa,2005,50:2307-2313.
    [40] Nobili F., Dsoke S., Minicucci M., et al.. Correlation of Ac-impedance and in situ X-rayspectra of LiCoO2[J]. Journal of Physical Chemistry B,2006,110:11310-11313.
    [41] Molenda J.. Influence of host electronic structure on lithium intercalation process[J]. SolidState Ionics,2004,175:203-213.
    [42] Molenda J.. Electronic limitations of lithium diffusibility: from layered and spinel towardnovel olivine type cathode materials[J]. Solid State Ionics,2005,176:1687-1694.
    [43] Nishizawa M., Ise T., Koshika H., et al.. Electrochemical in-situ conductivity measurementsfor thin film of Li1-xMn2O4spinel[J]. Chemistry of Materials,2000,12:1367-1371.
    [44] Nishizawa M., Koshika H., Uchida I.. Microelectrode techniques for in-situ measurements onelectrical conductance of a carbon particle and its composite film during electrochemicallithium insertion/extraction[J]. Journal of Physical Chemistry B,1999,103:192-196.
    [45] Sauvage F., Tarascon J.M., Baudrin E.. In situ measurements of Li-ion battery electrodematerial conductivity: application to LixCoO2and conversion reactions[J]. Journal ofPhysical Chemistry C,2007,111:9624-9630.
    [46] Mai L.Q., Dong J., Xu L., et al.. Single nanowire electrochemical devices[J]. Nano Letters,2010,10:4273-4278.
    [47] Mai L.Q., Lao C., Hu B., et al.. Synthesis and electrical transport of singe-crystal NH4V3O8nanobelts. Journal of Physical Chemistry B,2006,110:18138-18141.
    [48] Reimers J.N., Dahn J.R.. Electrochemical and in situ X-ray diffraction studies of lithiumintercalation in LixCoO2[J]. Journal of The Electrochemical Society,1992,139:2091-2097.
    [49] Koyama Y., Tanaka I., Adachi H.. Crystal and electronic structures of superstructuralLi1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. Journal of Power Sources,2003,119:644-648.
    [50] Jones C.D.W., Rossen E., Dahn J.R.. Structure and electrochemistry of LixCryCo1-yO2[J].Solid State Ionics,1994,68:65-69.
    [51] Tan K.S., Reddy M.V., Subba Rao G.V., et al.. High-performance LiCoO2by molten salt(LiNO3: LiCl) synthesis for Li-ion batteries[J]. Journal of Power Sources,2005,147:241-248.
    [52] Ohzuku T., Ueda A.. Solid-state redox reactions of LiCoO2(R3m) for4volt secondarylithium cells[J]. Journal of The Electrochemical Society,1994,141:2972-2977.
    [53] Haik O., Leifer N., Samuk-Fromovich Z., et al.. On the surface chemistry of LiMO2cathodematerials (M=[MnNi] and [MnNiCo]): electrochemical, spectroscopic, and calorimetricstudies[J]. Journal of The Electrochemical Society,2010,157: A1099-A1107.
    [54] Nobili F., Tossici R, Croce F., et al.. An electrochemical ac impedance study ofLixNi0.75Co0.25O2intercalation electrode[J]. Journal of Power Sources,2001,94:238-241.
    [55] Nobili F., Tossici R., Marassi R., et al.. An AC impedance spectroscopic study of LixCoO2atdifferent temperatures[J]. Journal of Physical Chemistry B,2002,106:3909-3915.
    [56] Croce F., Nobili F., Deptula A., et al.. An electrochemical impedance spectroscopic study ofthe transport properties of LiNi0.75Co0.25O2[J]. Electrochemistry Communications,1999,1:605-608.
    [57] Marassi R., Nobili F., Croce F., et al.. Electronic and electrochemical properties ofLixNi1-yCoyO2cathodes studies by impedance spectroscopy[J]. Chemistry of Materials,2001,13:1642-1646.
    [58] Menetrier M., Saadoune I., Levasseur S., et al.. The insulator-metal transition upon lithiumdeintercalation from LiCoO2: electronic properties and7Li NMR study[J]. Journal ofMaterials Chemistry,1999,9:1135-1140.
    [59] Shibubuya M., Nishina T., Matsue T., et al.. In situ conductivity measurements of LiCoO2film during lithium insertion/extraction by using interdigitated microarray electrodes[J].Journal of The Electrochemical Society,1996,143:3157-3160.
    [60] Tukamoto H., West A.R.. Electronic conductivity of LiCoO2and its enhancement bymagnesium doping[J]. Journal of The Electrochemical Society,1997,144:3164-3168.
    [61] Levi M.D., Aurbach D. Frumkin intercalation isotherm–a tool for the description of lithiuminsertion into host materials: a review[J]. Electrochimica Acta,1999,45:167-185.
    [62] Antolini E.. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry,electrochemical behaviour and transport properties[J]. Solid State Ionics,2004,170:159-171.
    [63] Ceder G., Van der Ven, A.. Phase diagrams of lithium transition metal oxides: investigationsfrom first principles[J]. Electrochimica Acta,1999,45:131-150.
    [64] Van der Ven A., Aydinol M.K., Ceder G., et al.. First-principles investigation of phase stabilityin LixCoO2[J]. Physical Review B,1999,58:2975-2987.
    [65] Van Elp J., Wieland J.L., Eskes H., et al.. Electronic structure of CoO, Li-doped CoO, andLiCoO2[J]. Physical Review B,1991,44:6090-6103.
    [66] Takahashi Y., Kijima N., Akimoto J.. Growth of flexible and transparent thin-film-likeLiCoO2crystals in high-temperature molten chlorides[J]. Crystal Growth&Design,2007,7:2491-2494.
    [67] Levasseur S., Menetrier M., Shao-Horn Y., et al.. Oxygen vacancies and intermediate spintrivalent cobalt ions in lithium-overstoichiometric LiCoO2[J]. Chemistry of Materials,2003,15:348-354.
    [68] Zhuang Q.C., Wei T., Du L.L., et al.. An electrochemical impedance spectroscopic study ofthe electronic and ionic transport properties of spinet LiMn2O4[J]. Journal of PhysicalChemistry C,2010,114:8614-8621.
    [69] Fey G.T.K., Yo W.H., Chang Y.C.. Electrochemical characterization of LixNiyCo1-yO2electrodes in a1M LiPF6solution of the ethylene carbonate-diethyl carbonate[J]. Journal ofPower Sources,2002,105:82-86.
    [70] Shaju K.M., Subba G.V., Chowdari B.V.R.. EIS and GITT studies on oxide cathodes,Li(2/3)+xCo0.15Mn0.85O2(x=0and1/3)[J]. Electrochimica Acta,2003,48:2691-2703.
    [71] Baek B., Jung C.. Enhancement of the Li+ion transfer reaction at the LiCoO2interface by1,3,5–trifluorobenzene[J]. Electrochimica Acta,2010,55:3307-3311.
    [72] Sun X.G., Dai S.. Electrochemical and impedance investigation of the effect of lithiummalonate on the performance of natural graphite electrodes in lithium-ion batteries[J]. Journalof Power Sources,2010,195:4266-4271.
    [73] Moss P.L., Au G., Plichta E.J.. Investigation of solid electrolyte interfacial layer developmentduring continuous cycling using ac impedance spectra and micro-structural analysis[J].Journal of Power Sources,2009,189:66-71.
    [74] Levi M.D., Wang C., Aurbach D.. Self-discharge of graphite electrodes at elevatedtemperatures studies by CV and electrochemical impedance spectroscopy[J]. Journal of TheElectrochemical Society,2004,151: A781-A790.
    [75] Levi M.D., Markevich E., Wang C., et al.. The effect of dimethyl pyrocarbonate onelectroanalytical behavior and cycling of graphite electrodes[J]. Journal of TheElectrochemical Society,2004,151: A848-A856.
    [76] Sato H., Takahaschi D., Nishim T., et al.. Electrochemical characterization of thin-filmLiCoO2electrodes in propylene carbonate solutions[J]. Journal of Power Sources,1997,68:540-544.
    [77] Lee G.W., Ryu J.H., Han W., et al.. Effect of slurry preparation process on electrochemicalperformances of LiCoO2composite electrode[J]. Journal of Power Sources,2010,195:6049-6054.
    [78] Chen Y.H., Wang C.W., Zhang X., et al.. Porous cathode optimization for lithium cells: ionicand electronic conductivity, capacity, and selection of materials[J]. Journal of Power Sources,2010,195:2851-2862.
    [79] Marks T., Trussler S., Smith A.J., et al.. A guide to Li-ion coin-cell electrode making foracademic researchers[J]. Journal of The Electrochemical Society,2011,158: A51-A57.
    [80] Daheron L., Dedryvere R., Martinez H., et al.. Electron transfer mechanisms upon lithiumdeintercalation from LiCoO2to CoO2investigated by XPS[J]. Chemistry of Materials,2008,20:583-590.
    [81] Ma J.X., Wang C.S., Wroblewski S.. Kinetic characteristics of mixed conductive electrode forlithium ion batteries[J]. Journal of Power Sources,2007,164:849-856.
    [82] Ostrovskii D., Ronci F., Scrosati B., et al.. Reactivity of lithium battery electrode materialstoward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interfaceinvestigated by FTIR[J]. Journal of Power Sources,2001,1:10-17.
    [83] Ostrovskii D., Ronci F., Scrosati B., et al.. A FTIR and Raman study of spontaneous reactionsoccurring at the LiNiyCo(1-y)O2electrode/non-aqueous electrolyte interface[J]. Journal ofPower Sources,2001,94:183-188.
    [84] Zhang S.S., Xu K., Jow T.R.. Understanding formation of solid electrolyte interface film onLiMn2O4electrode[J]. Journal of The Electrochemical Society,2002,149: A1521-A1526.
    [85] Xu K.. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemicalReviews,2004,104:4303-4417.
    [86] Peled E.. The electrochemical behavior of alkali and alkaline earth metals in nonaqueousbattery systems–the solid electrolyte interphase model[J]. Journal of ElectrochemicalSociety,1979,126:2047-2051.
    [87] Zhang Q., White R.E.. Moving boundary model for the discharge of a LiCoO2electrode[J].Journal of The Electrochemical Society,2007,154: A587-A596.
    [88] Julien C.M.. Lithium intercalated compounds–charge transfer and related properties[J].Materials Science and Engineering Reports,2003,40:47-102.
    [89] Marianetti C.A., Kotliar G., Ceder G.. A first-order mott transition in LixCoO2[J]. NatureMaterials,2004,3:627-631.
    [90] Van der Ven A., Thomas J.C., Xu Q.C.. Linking the electronic structure of solids to theirthermodynamic and kinetic properties[J]. Mathematics and Computers in Simulation,2010,80:1393-1410.
    [91] Levasseur S., Menetrier M., Suard E., et al.. Evidence for structural defects innon-stoichiometric HT-LiCoO2: electrochemical, electronic properties and Li-7NMRstudies[J]. Solid State Ionics,2000,128:11-24.
    [92] Park M., Zhang X.C., Chung M., et al.. A review of conduction phenomena in Li-ionbatteries[J]. Journal of Power Sources,2010,195:7904-7929.
    [93] Dokko K., Mohamedi M., Fujita Y., et al.. Kineic characterization of single particles ofLiCoO2by AC impedance and potential step methods[J]. Journal of The ElectrochemicalSociety,2001,148: A422-A426.
    [94] Barker J., Pynenburg R., Koksbang R., et al.. An electrochemical investigation into thelithium insertion properties of LixCoO2[J]. Electrochimica Acta,1996,41:2481-2488.
    [95] Levasseur S., Menetrier M., Delmas C.. On the dual effect of Mg doping in LiCoO2andLi1+ΔCoO2: structural, electronic properties, and Li-7MAS NMR studies[J]. Chemistry ofMaterials,2002,14:3584-3590.
    [96] Okubo M., Kim J., Tetsuichi K., et al.. Anisotropic surface effect on electronic structures andelectrochemical properties of LiCoO2[J]. Journal of Physical Chemistry,2009,113:15337-15342.
    [97] Perkins J.D., Bahn C.S., Mcgraw J.M., et al.. Pulsed laser deposition and characterization ofcrystalline lithium cobalt dioxide,(LiCoO2) thin films[J]. Journal of The ElectrochemicalSociety,2001,148: A1302-A1312.
    [98] Maia L.F., Rodrigures A.C.M.. Electrical conductivity and relaxation frequency of lithiumborosilicate glasses[J]. Solid State Ionics,2004,168:87-92.
    [99] Macdonald J.R.. Impedance Spectroscopy[M], Wiely, New York,1987,205-207.
    [100]庄全超,许金梅,樊小勇,等. LiCoO2电极/电解液界面特性的电化学阻抗谱研究[J].中国科学,2007,37:18-24.
    [101] Kim Y.J., Lee E.K., Kim H., et al.. Changes in the lattice constants of thin-film LiCoO2cathodes at the4.2V charged state[J]. Journal of The Electrochemical Society,2004,151:A1063-A1067.
    [102] Carlier D., Croguennec L., Ceder G., et al.. Structural study of the T(#)2-LixCoO2(0.52    [103] Ohzuku T., Makimura Y.. Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2forlithium ion batteries[J]. Chemistry Letters,2001,7:624-643.
    [104] Fergus J.W.. Recent developments in cathode materials for lithium ion batteries[J]. Journalof Power Sources,2010,195:939-954.
    [105] Shaju K.M., Rao S., Chowdari B.V.R.. Performance of layered LiNi1/3Co1/3Mn1/3O2ascathode for Li-ion batteries[J]. Electrochimica Acta,2002,48:145-151.
    [106] Yabuuchi N.. Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2for advancedlithium-ion batteries[J]. Journal of Power Sources,2003,119:171-174.
    [107] Ohzuku T., Brodd R.J.. An overview of positive-electrode materials for advancedlithium-ion batteries[J]. Journal of Power Sources,2007,174:449-456.
    [108] Yoshizawa H., Ohzuku T.. An application of lithium cobalt nickel manganese oxide tohigh-power and high-energy density lithium-ion batteries[J]. Journal of Power Sources,2007,174:813-817.
    [109] Yabuuchi N., Yoshii K., Myung S.T., et al.. Detailed studier of a high-capacity electrodematerial for rechargeable batteries, Li2MnO3-LiNi1/3Co1/3Mn1/3O2[J]. Journal of TheAmerican Chemical Society,2011,133:4404-4419.
    [110] Johnson C.S., Kim J.S., Lefief C., et al.. The significance of the Li2MnO3component in‘composite’ xLi2MnO3center dot (1-x)LiMn0.5Ni0.5O2electrodes[J]. ElectrochemistryCommunications,2004,6:1085-1091.
    [111] Thackeray M.M., Johnson C.S., Vaughey J.T., et al.. Advances in manganese-oxide‘composite’ electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry,2005,15:2257-2267.
    [112] Thackeray M.M., Kang S.H., Johnson C.S., et al.. Comments on the structural complexity oflithium-rich Li1+xM1-xO2electrodes (M=Mn, Ni, Co) for lithium batteries[J].Electrochemistry Communications,2006,8:1531-1538.
    [113] Johnson C.S., Li N.C., Lefief C., et al.. Synthesis, characterization and electrochemistry oflithium battery electrodes: xLi2MnO3center dot (1-x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7)[J]. Chemistry of Materials,2008,20:6095-6106.
    [114] Koyama Y., Yabuuchi N., Tanaka I., et al.. Solid-state chemistry, and electrochemistry ofLiCo1/3Ni1/3Mn1/3O2for advanced lithium-ion batteries–first-principles calculation on thecrystal and electronic structures[J]. Journal of The Electrochemical Society,2004,151:A1545-A1551.
    [115] Wang Z.X., Sun Y.C., Chen L.Q., et al.. Electrochemical characterization of positiveelectrode material LiNi1/3Co1/3Mn1/3O2and compatibility with electrolyte for lithium-ionbatteries[J]. Journal of The Electrochemical Society,2004,151: A914-A921.
    [116] Deb A., Bergmann U., Cramer S.P., et al.. In situ x-ray absorption spectroscopic study of theLiNi1/3Co1/3Mn1/3O2cathode material[J]. Journal of Applied Physics,2005,97:113523-113533.
    [117] Kim H.S., Kong M., Kim K., et al.. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2cathodematerial for lithium secondary batteries[J]. Journal of Power Sources,2007,171:917-921.
    [118] Sun Y.K., Cho S.W., Lee S.W., et al.. AlF3-coating to improve high voltage cyclingperformance of LiNi1/3Co1/3Mn1/3O2cathode materials for lithium secondary batteries[J].Journal of The Electrochemical Society,2007,154: A168-A172.
    [119] Zhou F., Zhao X.M., Goodbrake C., et al.. Solid-state synthesis as a method for thesubstitution of Al for Co in LiNi1/3Co1/3-zMn1/3AlzO2[J]. Journal of The ElectrochemicalSociety,2009,156: A796-A801.
    [120] Rao C.V., Reddy A.L.M., Ishikawa Y., et al.. Performing your original search[J]. AppliedMaterials&Interfaces,2011,3:2966-2972.
    [121] Luo W.B., Zhou F., Zhao X.M., et al.. Synthesis, characterization, and thermal stability ofLiNi1/3Mn1/3Co1/3-zMgzO2, LiNi1/3-zMn1/3Co1/3MgzO2and LiNi1/3Mn1/3-zCo1/3MgzO2[J].Chemistry of Materials,2010,22:1164-1172.
    [122] Zhou F., Zhao X.M., Lu Z.H., et al.. The effect of Al substitution on the reactivity ofdelithiated LiNi1/3Mn1/3Co1/3-zAlzO2with non-aqueous electrolyte[J]. ElectrochemistryCommunications,2008,10:1168-1171.
    [123] Qiu X.Y., Zhuang Q.C., Zhang Q.Q., et al.. Electrochemical and electronic properties ofLiCoO2cathode investigated by galvanostatic cycling and EIS[J]. Physical ChemistryChemical Physics,2012,14:2617-2630.
    [124] Hwang B.J., Tsai Y.W., Carlier D., et al.. A combined computational/experimental study onLiNi1/3Co1/3Mn1/3O2[J]. Chemistry of Materials,2003,15:3676-3682.
    [125] Zhang X.Y., Mauger Q., Li H., et al.. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2by wet-chemical method[J]. Electrochimica Acta,2010,55:6440-6449.
    [126] Lee Y.S., Lee K.S., Sun Y.K., et al.. Effect of an organic additive on the cycling performanceand thermal stability of lithium ion cells assembled with carbon anode andLiNi1/3Co1/3Mn1/3O2cathode[J]. Journal of Power Sources,2011,196:6997-7001.
    [127] Ding C.X., Bai Y.C., Feng X.Y., et al.. Improvement of electrochemical properties of layeredLiNi1/3Co1/3Mn1/3O2positive electrode material by zirconium doping[J]. Solid State Ionics,2011,189:69-73.
    [128] Pistoia G., Antonini A., Rosati R., et al.. Storage characteristics of cathodes for Li-ionbatteries[J]. Electrochimica Acta,1996,41:2683-2689.
    [129] Colbow K.M., Dahn J.R., Haering R.R.. Structure and electrochemistry of the spinel oxidesLiTi2O4and Li4/3Ti5/3O4[J]. Journal of Power Sources,1989,26:397-402.
    [130] Rossen E., Reimers J.N., Dahn J.R.. Synthesis and electrochemistry of spinel LT-LiCoO2[J].Solid State Ionics,1993,62:53-60.
    [131] Ferg E., Gummow R.J., De Kock A., et al.. Spinel anodes for lithium-ion batteries[J].Journal of The Electrochemical Society,1994,141: L147-L150.
    [132] Ohzuku T., Ueda A., Yamamoto N.. Zero-strain insertion material of Li[Li1/3Ti5/3]O4forrechargeable lithium cells[J]. Journal of The Electrochemical Society,1995,142:1431-1435.
    [133] Kavan L., Prochazka J., Spitler T.M., et al.. Li insertion into Li4Ti5O12(spinal): chargecapability vs. particle size in thin-film electrodes[J]. Journal of The Electrochemical Society,2003,150: A1000-A1007.
    [134] Majima M., Ujiie S., Yagasaki E., et al.. Development of long life lithium ion battery forpower storage[J]. Journal of Power Sources,2001,101:53-59.
    [135] Nakahara K., Nakajima R., Matsushima T., et al.. Preparation of particulate Li4Ti5O12having excellent characteristics as an electrode active material for power storage cells[J].Journal of Power Sources,2003,117:131-136.
    [136] Belharouak I., Sun Y.K., Lu W., et al.. On the safety of the Li4Ti5O12/LiMn2O4lithium-ionbattery system[J]. Journal of The Electrochemical Society,2007,154: A1083-A1087.
    [137] Takami N., Inagaki H., Kishi T., et al.. Electrochemical kinetics and safety of2-volt classLi-ion battery system using lithium titanium oxide anode[J]. Journal of The ElectrochemicalSociety,2009,156: A128-A132.
    [138] Scharner S., Weppner W., Schmid-Beurmann P.. Evidence of two-phase formation uponlithium insertion into the Li1.33Ti1.67O4spinel[J]. Journal of The Electrochemical Society,1999,146:857-861.
    [139] Chen C.H., Vaughey J.T., Jansen A.N., et al.. Studies of Mg-substituted Li4-xMgxTi5O12spinel electrodes (0≤x≤1) for lithium batteries[J]. Journal of The Electrochemical Society,2001,148: A102-A104.
    [140] Robertson A.D., Trevino L., Tukamoto H., et al.. New inorganic spinel oxides for use asnegative electrode materials in future lithium-ion batteries[J]. Jouranl of Power Sources,1999,81-82:352-357.
    [141] Zhao H., Li Y., Zhu Z., et al.. Structural and electrochemical characteristics of Li4-xAlxTi5O12as anode material for lithium-ion batteries[J]. Electrochimica Acta,2008,53:7079-7083.
    [142] Martln P., Lopez M.L., Pico C., et al.. Li(4-x)/3Ti(5-2x)/3CrxO4(0≤x≤0.9) spinels: Newnegatives for lithium batteries[J]. Solid State Sciences,2007,9:521-526.
    [143] Robertson A.D., Tukamoto H., Irvine J.T.S.. Li1+xFe1-3xTi1+2xO4(0≤x≤0.33) based spinels:possible negative electrode materials for future Li-ion batteries[J]. Journal of TheElectrochemical Society,1999,146:3958-3962.
    [144] Hao Y.J., Lai Q.Y., Lu J.Z., et al.. Effects of dopant on the electrochemical properties ofLi4Ti5O12anode materials[J]. Ionics,2007,13:369-373.
    [145] Huang S., Wen Z., Zhu X., et al.. Effects of dopant on the electrochemical performance ofLi4Ti5O12as electrode material for lithium ion batteries[J]. Journal of Power Sources,2007,165:408-412.
    [146] Li X., Qu M., Yu Z.. Structural and electrochemical performances of Li4Ti5-xZrxO12as anodematerial for lithium-ion batteries[J]. Journal of Alloys and Compounds,2009,487:L12-L17.
    [147] Zhong Z.. Synthesis of Mo4+substituted spinel Li4Ti5-xMoxO12[J]. Electrochemical andSolid-State Letters,2007,10: A267-A269.
    [148] Yi T.F., Shu J., Zhu Y.R., et al.. High-performance Li4Ti5-xVxO12(0≤x≤0.3) as an anodematerial for secondary lithium-ion battery[J]. Electrochimica Acta,2009,54:7464-7470.
    [149] Wolfenstine J., Allen J.L.. Electrical conductivity and charge compensation in Ta dopedLi4Ti5O12[J]. Journal of Power Sources,2008,180:582-585.
    [150] Allen J.L., Jow T.R., Wolfenstine J.. Low temperature performance of nanophaseLi4Ti5O12[J]. Journal of Power Sources,2006,159:1340-1345.
    [151] Qi Y., Huang Y., Jia D., et al.. Preparation and characterization of novel spinel Li4Ti5O12-xBrxanode materials[J]. Electrochimica Acta,2009,54:4772-4776.
    [152] Huang S., Wen Z., Gu Z., et al.. Preparation and cycling performance of Al3+and F-co-substituted compounds Li4AlxTi5-xFyO12-y[J]. Elctrochimica Acta,2005,50:4057-4062.
    [153] Shen C.M., Zhang X.G., Zhou Y.K., et al.. Preparation and characterization ofnanocrystalline Li4Ti5O12by sol-gel method[J]. Materials Chemistry and Physics,2002,78:437-441.
    [154] Hao Y.J., Lai Q.Y., Lu J.Z., et al.. Synthesis and characterization of spinel Li4Ti5O12anodematerial by oxalic acid-assisted sol-gel method[J]. Journal of Power Sources,2006,158:1358-1364.
    [155] Hao Y.J., Lai Q.Y., Liu D.Q., et al.. Synthesis by citric acid sol-gel method andelectrochemical properties of Li4Ti5O12anode material for lithium-ion battery[J]. MaterialsChemistry and Physics,2005,94:382-387.
    [156] Hao Y.J., Lai Q.Y., Lu J.Z., et al.. Synthesis of nanocrystalline hydroxyapatite by usingprecipitation method[J]. Journal of Alloys and Compounds,2007,439:330-333.
    [157] Fattakhova D., Petrykin V., Brus J., et al.. Solvothermal synthesis and electrochemicalbehavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder[J]. Solid StateIonics,2005,176:1877-1885.
    [158] Li J., Jin Y.L., Zhang X.G., et al.. Microwave solid-state synthesis of spinel Li4Ti5O12nanocrystallites as anode material for lithium-ion batteries[J]. Solid State Ionics,2007,178:1590-1594.
    [159] Yin S.Y., Song L., Wang X.Y., et al.. Synthesis of spinel Li4Ti5O12anode material by amodified rheological phase reaction[J]. Electrochimica Acta,2009,54:5629-5633.
    [160] Yuan T., Wang K., Cai R., et al.. Cellulose-assisted combustion synthesis of Li4Ti5O12adopting anatase TiO2solid as raw material with high electrochemical performance[J].Journal of Alloys and Compounds,2009,477:665-672.
    [161] Afanasiev P., Geantet C.. Synthesis of solid materials in molten nitrates[J]. CoordinationChemistry Reviews,1998,178-180:1725-1752.
    [162] Bai Y., Wang F., Wu F., et al.. Influence of composite LiCl-KCl molten salt onmicrostructure and electrochemical performance of spinel Li4Ti5O12[J]. Electrochimica Acta,2008,54:322-327.
    [163] Yi T.F., Shu J., Zhu Y.R., et al.. Advanced electrochemical performance of Li4Ti4.95V0.05O12as a reversible anode material down to0V[J]. Journal of Power Sources,2010,195:285-288.
    [164] Belharouak I., Koenig G.M., Tan T., et al.. Performance degradation and gassing ofLi4Ti5O12/LiMn2O4lithium-ion cells[J]. Journal of The Electrochemical Society,2012,159:A1165-A1170.
    [165] Wu K., Yang J., Zhang Y., et al.. Investigation on Li4Ti5O12batteries developed for hybridelectric vehicle[J]. Journal of Applied Electrochemistry,2012,42:989-995.
    [166] Rho Y.H., Kanamura K.. Li+ion diffusion in Li4Ti5O12thin film electrode prepared by PVPsol-gel method[J]. Journal of Solid State Chemistry,2004,177:2094-2100.
    [167] Doi T., Iriyama Y., Abe T., et al.. Pulse voltammetric and ac impedance spectroscopic onlithium ion transfer at an electrolyte/Li4/3Ti5/3O4electrode interface[J]. AnalyticalBiochemistry,2005,77:1696-1700.
    [168] Bach S., Pereira-Ramos J.P., Baffier N.. Electrochemical properties of sol-gel Li4/3Ti5/3O4[J].Journal of Power Sources,1999,81-82:273-276.
    [169] Qiu X.Y., Zhuang Q.C., Zhang Q.Q., et al.. Investigation of layered LiNi1/3Co1/3Mn1/3O2cathode of lithium ion battery by electrochemical impedance spectroscopy[J]. Journal ofElectroanalytical Chemistry,2012,687:35-44.
    [170]庄全超,田雷雷,魏国祯,等.石墨电极首次阴极极化过程的两电极和三电极电化学阻抗谱研究[J].科学通报,2009,54:1233-1237.
    [171] Shi Y.L., Shen M.F., Xu S.D., et al.. Electrochemical impedance spectroscopy investigationof the FeF3/C cathode for lithium-ion batteries[J]. Solid State Ionics,2012,222-223:23-30.
    [172] Shi Y.L., Shen M.F., Xu S.D., et al. Electrochemical impedance spectroscopic study of theelectronic and ionic transport properties of NiF2/C composites[J]. International Journal ofElectrochemical Science,2011,6:3399-3415.
    [173] Kim C., Norberg N.S., Alexander C.T., et al.. Mechanism of phase propagation duringlithiation in carbon-free Li4Ti5O12battery electrodes[J]. Advanced Functional Materials,2013,23:1214-1222.
    [174] Takami N., Hoshina K., Inagaki H.. Lithium diffusion in Li4/3Ti5/3O4particles duringinsertion and extraction[J]. Journal of The Electrochemical Society,2011,158: A725-A730.
    [175] Yi T.F., Jiang L.J., Shu J., et al.. Recent development and application of Li4Ti5O12as anodematerial of lithium ion battery[J]. Journal of Physics and Chemistry of Solids,2010,71:1236-1242.
    [176] Park K.S., Benayad A., Kang D.J., et al.. Nitridation-driven conductive Li4Ti5O12for lithiumion batteries[J]. Journal of the American Chemical Society,2008,130:14930-14931.
    [177] Sze S.M.. Physics of Semiconductor Devices[M]. Second Edition, Wiley, New Jersey,1981.
    [178] Rhoderick E.H., Williams R.H.. Metal-Semiconductor Contacts[M]. Second Edition,Clarendon, Oxford,1988.
    [179] Card H.C., Rhoderick E.H.. Studies of tunnel MOS diodes I: interface effects in siliconSchottky diodes[J]. Journal of Physics D,1971,4:1589-1601.
    [180] Lu X., Zhao L., He X.Q., et al.. Lithium storage in Li4Ti5O12spinel: the full static picturefrom electron microscopy[J]. Advanced Materials,2012,24:3233-3238.
    [181] Mizusbima K., Jones P.C., Wiseman P.J., et al.. A new cathode material for batteries of highenerge density[J]. Materials Research Bulletin,1980,15:783-789.
    [182] Thomas M.G.S.R., David W.I.F., Goodenough J.B.. Synthesis and structuralcharacterization of the normal spinel LiNi2O4[J]. Materials Research Bulletin,20:1137-1146.
    [183] Gummow R.J., Thackeray M.M.. An investigation of spinel-related and orthorhombicLiMnO2cathodes for rechargeable lithium batteries[J]. Journal of The ElectrochemicalSociety,1994,141:1178-1182.
    [184] Tarascon J.M., Wang E., Shokoohi F.K.. The spinel phase of LiMn2O4as a cathode insecondary lithium cells[J]. Journal of The Electrochemical Society,1991,138:2859-2864.
    [185] Padhi A.K., Nanjundoswamy K.S., Goodenough J.B.. Journal of The ElectrochemicalSociety,1997,144:1188-1194.
    [186] Caurant D., Baffier N., Garcia B., et al.. Synthesis by a soft chemistry route andcharacterization of LiNixCo1-xO2(0≤x≤1) cathode materials[J]. Solid State Ionics,1996,91:45-54.
    [187] Ohzuku T., Makimura Y.. Layered lithium insertion material of LiCo1/3Mn1/3Ni1/3O2forlithium-ion batteries[J]. Chemistry Letters,2001,7:642-643.
    [188] Fong R., Sacken U.Y., Dahn J.R.. Studies of lithium intercalation into carbons usingnonaqueous electrochemical cells[J]. Journal of The Electrochemical Society,1990,137:2009-2013.
    [189]赵煜娟,赵春松,孙召琴,等.改性Pechini方法合成富锂正极材料Li[Li1/3-x/3CoxMn2/3-2x/3]O2及性能研究[J].化学学报,2011,69:171-121.
    [190] Tabuchi M., Nabeshima Y., Ado K., et al.. Material design concept for Fe-substitutedLi2MnO3-based positive electrodes[J]. Journal of Power Sources,2007,174:554-559.
    [191]杜柯,周伟瑛,胡国荣,等.锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的合成及电化学性能研究[J].化学学报,2010,68:1391-1398.
    [192] Hong Y.S., Park Y.J., Ryu K.S., et al.. Charge/discharge behavior of Li[Ni0.2Co0.2Mn0.6]O2and Li[Co0.2Li0.27Mn0.53]O2cathode materials in lithium secondary batteries[J]. Solid StateIonics,2005,176:1035-1042.
    [193] Lu Z.H., Chen Z.H., Dahn J.R.. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0    [194] Lu Z.H., Beaulieu L.Y., Donaberger R.A., et al.. Synthesis, structure, and electrochemicalbehavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of The Electrochemical Society,2002,149:A778-A791.
    [195] Jiang J., Eberman K.W., Krause L.J., et al.. Structure, electrochemical properties, andthermal stability studies of Li[Ni0.2Co0.6Mn0.2]O2[J]. Journal of The Electrochemical Society,2005,152: A1874-A1878.
    [196] Armstrong A.R., Holzapfel M., Novak P., et al.. Demonstrating oxygen loss and associatedstructural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal ofThe American Chemical Society,2006,128:8694-8698.
    [197] Koyama Y., Tanaka I., Nagao M., et al.. First-principles study on lithium removal fromLi2MnO3[J]. Journal of Power Sources,2009,189:798-801.
    [198] Robertson A.D., Bruce P.G.. The origin of electrochemical activity in Li2MnO3[J]. ChemicaoCommunications,2002,2790-2791.
    [199] Armstrong A.R., Robertson A.D., Bruce P.G.. Overcharging manganese oxides: extractinglithium beyond Mn4+[J]. Journal of Power Sources,2005,146:275-280.
    [200] Lu Z.H., Dahn J.R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of TheElectrochemical Society,2002,149: A815-A822.
    [201] Pan C.J., Lee Y.J., Ammundsen B., et al.. Li-6MAS NMR studies of the local structure andelectrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathodematerials for lithium-ion batteries[J]. Chemistry of Materials,2002,14:2289-2299.
    [202] Thackeray M.M., Kang S.H., Johnson C.S., et al.. Li2MnO3-stabilized LiMO2(M=Mn, Ni,Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry,2007,17:3112-3125.
    [203] Johnson C.S., Li N.C., Lefief C., et al.. Anomalous capacity and cycling stability ofxLi2MnO3center dot (1-x)LiMO2electrodes (M=Mn, Ni, Co) in lithium batteries at50degrees C[J]. Electrochemistry Communications,2007,9:787-795.
    [204] Diggle J.W., Vijh A.K.. Electrochemistry of Metals and Semiconductors: The Application ofSolid State Science to Electrochemical Phenomena[M]. New York: Marcel Dekker,1973.
    [205] Diggle J.W., Vijh A.K.. The Anodic Behavior of Metals and Semiconductors Series: Oxidesand Oxide Films[M]. New York, Marcel Dekker,1976.
    [206] Li Y.F., Wu H.Q.. Theoretical treatment of kinetics of intercalation electrode reaction[J].Electrochimica Acta,1989,34:157-159.
    [207] Barrel G., Diard J.P., Montella C.. Etude d’un modele de reaction electrochimiqued’insertion-I resolution pour une commande dynamique a petit signal[J]. ElectrochimicaActa,1984,29:239-246.
    [208]任永欢,吴伯荣,杨春巍,等.锂离子电池电解液新型锂盐的研究进展[J].电源技术,2011,35:1171-1174.
    [209]崔永丽,袁铮,田雷雷,等.添加剂Li2CO3对锂离子电池石墨负极界面特性影响[J].电源技术,2011,35:506-509.
    [210] Zhang S.S., Xu K., Jow T.R.. Electrochemical impedance study on the low temperature ofLi-ion batteries[J]. Electrochimica Acta,2004,49:1057-1061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700