用户名: 密码: 验证码:
ORC直接接触式蒸汽发生器的传热性能及其优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回收和利用工业生产过程中各种低温余热,既有助于解决我国的能源问题,又能有效减少环境污染,具有十分重要的现实意义。有机朗肯循环(Organic Rankine Cycle, ORC)能利用300℃以内的低温余热、低聚焦比太阳能或生物质燃烧热能进行高效发电,已成为国际上研究的热点。低温差下蒸汽发生器的传热性能极大地影响ORC系统的效率。当直接接触蒸汽发生器的连续相选用高沸点流体,分散相选用低沸点有机工质时,符合ORC系统载热流体和循环工质选择的热力学条件。相比于传统间壁式蒸汽发生器,由于省去了内部换热壁面,直接接触式蒸汽发生器具有结构简单、传热系数高,适应于在低温差下运行等优点,因此在ORC系统中使用直接接触式蒸汽发生器,可望获得较好的效果。
     本文对直接接触蒸汽发生器中单泡滴和液滴群生成及传热机理进行了研究,同时基于数字图像处理技术以及计算同调群理论研究了液滴的群行为,得到了液滴群行为演化规律与换热性能之间的耦合关系,进一步构建了直接接触蒸汽发生器性能模拟及优化模型,对直接接触换热技术在ORC系统中的应用具有一定的指导意义。
     (1)改进了单泡滴传热的数理模型,该模型既考虑泡滴在实际传热过程中的几何形态,又充分考虑对流换热和导热换热共同作用。在此基础上,通过对单泡滴生长过程的分析,得到了单泡滴无因次半径随无因次时间变化的关系式,同时进一步推导出单泡滴努塞尔数表达式;运用单泡滴传热模型和漂移通量模型,导出液滴群容积换热系数表达式,该表达式将液滴群传热过程分为预聚集和聚集后两个阶段。
     (2)自行设计并搭建了ORC直接接触换热试验平台,对分散相有机工质R245fa(五氟丙烷)与连续相导热油THERMINNOL(?)66直接接触换热特性进行了研究。对导出的液滴群容积换热系数理论公式的预测精度进行了验证,其结果表明,理论计算值与试验值的平均偏差为16%,其计算精度可满足工程实际及本文后继对ORC直接接触蒸发器性能模拟及优化模型的要求。
     (3)综合热力学、传热学、流体力学及(?)分析方法,建立了ORC直接接触式蒸汽发生器性能模拟模型,确定了影响蒸汽发生器性能的热工及结构参数。考察了初始换热温差、分散相及连续相流率等独立变量对蒸汽发生器容积换热系数,工质蒸发量,效能,(?)效率等主要性能指标的影响规律。结果表明,独立变量各参数与蒸汽发生器性能间存在复杂的非线性函数关系,有必要进行系统的多参数并行优化。
     (4)建立了表征液滴群行为参数βl和表征直接接触传热性能平均容积换热系数hl协同关系模型,两者的相关系数为0.95。该模型基于所设计的正交试验,通过灰度变换、高帽变化、二值化及开运算等数字图像处理技术,对所获得的直接接触换热过程中液滴群行为图像进行转换,得到了可用于提取液滴群行为主要特征的图像;基于计算同调群理论,得到了量化液滴群行为贝蒂数随时间演化规律的曲线,从曲线中提取了两个特征参数,分别是对应着液滴群行为伪均匀状态开始时刻的“伪均匀时间t”和对应着伪均匀状态过程中1维贝蒂数平均值的“1维平均贝蒂数βl”。根据单一特征参数与平均容积换热系数的对应关系,定义一个指标参数βl,该指标参数与平均容积换热系数的变化趋势有很好的协同性。
     (5)基于数学规划理论及遗传算法,建立了ORC直接接触式蒸汽发生器性能优化数学模型,以蒸汽发生器容积换热系数最大化为目标,通过对初始运行条件的优化使蒸汽发生器的性能得到有效改善,从优化过程及结果可看出,经过优化后的蒸汽发生器的容积换热系数达到了初始值的6.7倍之多。将液滴群行为与换热协同关系模型作为约束条件引入优化模型后,最优容积换热系数的优化迭代次数比原模型减少了约55%,且其值比原模型提高了0.3%,所以引入该约束条件后,不仅提高了优化算法的收敛速度,还降低了最优解陷入局部最优解的概率,所得最优解更逼近全局最优值。
Utilization of low temperature waste heat in industrial production process can not only solve the energy problem but also reduce the environmental pollution. Recently, most researchs focus to the conversion the low-temperature waste heat, low focus ratio solar energy or biomass combustion heat into electric energy via Organic Rankine Cycle (ORC). One of the key equipment of ORC is the traditional heat exchanger, which has the disadvantages of high heat transfer temperature difference, low heat transfer ability, large flow resistance, huge volume and high cost. Direct-contact heat transfer involves the exchange of heat between two immiscible fluids by bringing them into contact at different temperatures. It has many advantages over traditional heat exchange methods because of a simpler design, lower temperature driving forces, and higher heat transfer rate. When the high boiling point heat transfer oil is used as the heat transfer fluid and low boiling point refrigerant is used as cyclic working medium in ORC, the similar condiation as direct contact heat exchanger with continous phase fluid and dispersed phase fluid can be obtained. Therefore, it is expected to achieve better performance when a direct contact heat exchanger equipped in ORC system.
     In this thesis, the theory of single bubble and bubble swarm generatation and heat transfer has been studied. Based on digital image processing techniques and computational homology, the bubble swarm patterns was reseached to quantify the synergy of bubble swarm patterns and heat transfer performance. Simulation and optimization model of ORC direct contact evaporator was built, which would be significant in the application of direct contact heat exchanger equipments for ORC equipments with the recovery of low-temperature waste heat.
     (1) A novel physical geometry model of single bubble growth rate and heat transfer was proposed. The model was based on the energy equation included both convection and conduction heat transfer from the continuous liquid to the bubble with the geometry of bubble in the actual heat transfer process. The bubble radius ratio and heat transfer coefficient Nu had been found. And base on the drift flux model, the volumetric heat transfer coefficient of bubble swarm was built. This model was divided into a preagglomerative and a postagglomerative stage on the basis of an assumed maximum value for the dispersed phase volume fraction.
     (2) Experimental platform for testing the ORC direct contact evaporator was designed and established. A new environmental-friendly refrigerant of R245fa and THERMINOL(?)66heat transfer oil were used as dispersed phase and continuous phase in the heat transfer test by the ORC direct contact evaporator, respectively. Based on this platform, prediction precisions of the volumetric heat transfer coefficient of bubble swarm were checked. The results revealed that there was a favorable precision in the calculation with the average error of16%, which could meet the requirement of precision in engineering calculation.
     (3) Simulation model of ORC direct contact evaporator was built based on the synthesis of thermodynamics, heat transfer theory, hydrodynamics and exergy analysis. The thermal and structural parameters to affect the ORC direct contact heat exchanger performances were determined. This model was used to simulate the performance of ORC direct contact evaporator. The volumetric heat transfer coefficient, refrigerant steam generation, effectiveness and exergy efficiencies affcted of the independent variables on initial heat transfer temperature difference, refrigerant and heat transfer oil flow rate. The results showed that there existed a complicated nonlinear relationship between these independent variables and system performances. Thus, it is also necessary to optimize the system's multiple variables simultaneously.
     (4) This paper proposed a novel method to quantify the synergy of bubble swarm patterns and heat transfer performance in a ORC direct contact evaporator by using computational homology. These patterns of bubble searm were treated in the Matlab software environment including the original image, top-hat transform, binarization, and open operation. Betti numbers were used to estimate the number of bubbles aggregating in flow patterns and to obtain the pseudo-homogeneous time. A simple linear model of a bubble swarm and the heat transfer performance of a ORC direct contact evaporator was constructed on the basis of experimental analysis, in which a new index (βt) was defined by the Betti number average as well as the pseudo-homogeneous time. A good fitting curve between βt and the volumetric heat transfer coefficient average was obtained with a correlation coefficient of0.95.
     (5) Optimization design method of ORC direct contact evaporator was established via the application of mathematical programming theory and genetic algorithm (GA). The indexes volumetric heat transfer coefficient of ORC direct contact evaporator was used to evaluate the system performance. The performances of ORC direct contact evaporator was effectively improved by means of the proposed optimization design method. The performances of ORC direct contact evaporator was raised up compared with the original design after optimized by this method. Used synergy of bubble swarm patterns and heat transfer performance as the constraint, the number of iterations decreased to55%and the result increased to0.3%comparing with the original optimization model.
引文
[1]江泽民。对中国能源问题的思考[J]。中国能源,2008,30(4):5-19
    [2]《关于制定国民经济和社会发展第十二个五年规划的建议》
    [3]李波.论低温余热节能发电[J].应用能源技术,2007(11):21-22
    [4]汪玉林.低温余热能源发电装置综述[J].热电技术,2007(1):1-8
    [5]吴亦三.中低温余热发电系统[J].节能技术,1989(5):39-43
    [6]张国强.蔡睿贤.串联闭链式循环系统的改进[J].动力工程,2006,26(2):283-288
    [7]王华,王辉涛.低温余热发电有机朗肯循环技术[M].北京,科学出版社,2010
    [8]Yiping Dai, Jiangfeng Wang, Lin Gao. Parametric optimization and comparative study of organic Rankine cycle(ORC) for low grade waste heat recovery[J]. Energy Conversion and Management,2009,50:576-582.
    [9]H.Yamaguchi, X.R.Zhang, K.Fujima, M.Enomoto, N.Sawada. Solar energy powered Rankine cycle using supercritical CO2[J]. Applied Thermal Engineering,2006,26: 2345-2354.
    [10].Madhawa Hettiarachchi HD, et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy,2007,32: 1698-1706.
    [11]Ulli Drescher, Dieter Bruggemann. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants[J]. Applied Thermal Engineering,2007,27: 223-228.
    [12]李伟,赵镇南,王迅,刘奕晴.海洋温差能发电技术的现状与前景[J].海洋工程,2004,22(2):105-108.
    [13]Xiaojun Shi, Defu Che. A combined power cycle utilizing low-temperature waste heat and LNG cold energy [J]. Energy Conversion and Management,2009, 50:567-575.
    [14]徐建.中低温余热发电有机朗肯循环系统性能分析及优化研究[D].上海:上海交通大学,2012
    [15]冯惠生,徐菲菲,刘叶凤,单纯.工业过程余热回收利用技术研究进展[J].化学工业与工程,2012,29(1):57-64
    [16]S. Sideman, D. Moalem-Maron. Direct Contact Condensation[J]. Advances in Heat Transfer,1982,30:227-281
    [17]A.A. Kulkarni, V.V. Ranade. Direct Contact Heat Transfer via Injecting Volatile Liquid in a Hot Liquid Pool:Generation and Motion of Bubbles[J]. Chemical Engineering Science,2013, (0):1-30
    [18]Jacobs, H. R. Direct Contact Heat Exchangers, Heat Exchanger Design Handbook[M]. New York:1995
    [19]Hausbrand, E. Condensing and Cooling Apparatus,5th ed., Van Nostrand, New York, 1933
    [20]Rao D. N., Mohtadi M. F., Hastaoglu M. A. Direct Contact Heat Transfer-A Better Way to High Efficiency and Compactness[J]. Can.J.Chem.Eng.1984,62(2):319-325
    [21]Kreith F. Boehm R. F. Direct Contact Heat Transfer[M]. Hemisphere Publishing Corporation,1988
    [22]Incorpera F. PP. and DeWitt D. PP. Introduction to Heat Transfer,3rd edition, John Wily & Sons, Inc.,1996
    [23]Marschewski W. and Stojanoff C. G., Liquid-Liquid Direct-Contact, Immiscible Fluids Heat Exchanger Analysis[C]. Proceedings of the 18th Intersociety Energy Conversion Engineering Conference,1983,4:1960-1965
    [24]Jacobs, H. R. Thermal and Hydraulic Design of Direct-Contact Spray Columns for Use in Extracting Heat from Geothermal Brines[M]. Direct Contact Heat Transfer, F. Kreith and R. Boehm,eds., Hemisphere Publishing, New York,1988, pp.343-369. [25] Jacobs, H.R. and Nadig, R.. Condensation on an Immiscible Falling Film in the Presence of a Noncondesible Gas, Heat Exchangers for Two Phase Applications[J]. American Society of Mechanical Engineers,1983,27:99-106.
    [26]Jacobs, H.R. and Eden, T.J.. Direct Contact Heat Transfer in a Sieve Tray Column[C], Proc.8th Int. Heat Transfer Conf,1986,6:3013-3018
    [27]Kunesh, J. G. Direct-Contact Heat Transfer from a LiquidSpray into a Condensing Vapor[J]. Ind. Eng. Chem.,1993,32:2387-2389.
    [28]Brickman, R. A., and Boehm, R. F. Optimization Considerations of Balanced, Liquid-Liquid Direct Contact Heat Exchangers[J], ASME-1994-WA/HT-29, ASME, New York.
    [29]Jacobs, H. R. (1988) Direct Contact Heat Transfer for Process Technologies[J]. ASME Journal of Heat Transfer. Vol.110,1259-1270.
    [30]S. Sideman, D. Moalem-Maron, Direct Contact Condensation, in:P.H. James[J]. F.I. Thomas (Eds.) Advances in Heat Transfer, Elsevier,1982,227-281
    [31]卢家才,李瑞阳,郁鸿凌。直接接触式冰蓄冷系统制冷循环的火用分析[J]。上海理工大学学报,2001,23(4):34-39
    [32]章学来,樊建斌,钟栋梁,孙文哲。直接接触式二元冰制备过程中的传热特性[J]。机械]:程学报,2008,44(9):188-192
    [33]A.E. Fouda, G.J.G. Despault, J.B. Taylor, C.E. Capes. Solar storage systems using salt hydrate latent heat and direct contact heat exchange-Ⅱ Characteristics of pilot system operating with sodium sulphate solution[J]. Solar Energy,1984,32(1):57-65
    [34]N.E. Wijeysundera, M.N.A. Hawlader, C.W.B. Andy, M.K. Hossain. Ice-slurry production using direct contact heat transfer[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2004,27(5):511-519
    [35]M.N.A. Hawlader, M.A. Wahed. Analyses of ice slurry formation using direct contact heat transfer[J]. Applied Energy.2009,86(7):1170-1178
    [36]S. Thongwik, N. Vorayos, T. Kiatsiriroat, A. Nuntaphan. Thermal analysis of slurry ice production system using direct contact heat transfer of carbon dioxide and water mixture[J]. International Communications in Heat and Mass Transfer,2008,35(6): 756-761
    [37]余胜麟。采用直接接触式换热器的蒸气压缩式热泵系统的初步研究[D]。天津:天津大学,2008
    [38]Y.J. Hyun, J.H. Hyun, W.G. Chun, Y.H. Kang. An experimental investigation into the operation of a direct contact heat exchanger for solar exploitation[J]. International Communications in Heat and Mass Transfer,2005,32(3-4):425-434
    [39]胡保亭。空气_水直接接触高效传热过程及设备研究[D]。山东:中国海洋大学,2004
    [40]孙长贵,徐维勤,沈自求。气泡在热液相介质中上升时的传热与传质[J]。高校化学工程学报,1992,6(2):139-146
    [41]S. Sideman, Y. Taitel, Direct-contact heat transfer with change of phase:Evaporation of drops in an immiscible liquid medium [J]. International Journal of Heat and Mass Transfer,1964,7(11):1273-1289
    [42]S. Sideman, J. Isenberg. Direct contact heat transfer with change of phase:bubble growth in three-phase systems[J]. Desalination,1967.2(2):207-214
    [43]J. Isenberg, S. Sideman. Direct contact heat transfer with change of phase:Bubble condensation in immiscible liquids[J]. International Journal of Heat and Mass Transfer,1970,13(6):997-1011
    [44]D. Moalem, S. Sideman, A. Orell, G. Hetsroni. Direct contact heat transfer with change of phase:Condensation of a bubble train[J]. International Journal of Heat and Mass Transfer,1973,16(12):2305-2319
    [45]M.R. Mokhtarzadeh, A.A. El-Shirbini. A theoretical analysis of evaporating droplets in an immiscible liquid[J]. International Journal of Heat and Mass Transfer,1979, 22(1):27-38
    [46]P. Battya, V.R. Raghavan, K.N. Seetharamu. Parametric analysis of direct contact sensible heat transfer in spray columns[J]. Letters in Heat and Mass Transfer,1982, 9(4):265-276
    [47]L. Tadrist, I.S. Diso, R. Santini, J. Pantaloni. Vaporization of a liquid by direct contact in another immiscible liquid Part Ⅰ:vaporization of a single droplet Part Ⅱ: vaporization of rising multidroplets[J]. International Journal of Heat and Mass Transfer,1987,30(9):1773-1785
    [48]Y. Shimizu, Y. H. Mori. Evaporation of single liquid drops in an immiscible liquid at elevated pressures:experimental study with n-pentane and R 113 drops in water[J]. International Journal of Heat and Mass Transfer,1988,31(9):1843-1851
    [49]Abbas Kendoush. Theory of convective drop evaporation in direct contact with an immiscible liquid[J]. Desalination,2004,169(1):33-41
    [50]H.B. Mahood. Direct-contact heat transfer of a single volatile liquid drop evaporation in an immiscible liquid, Desalination,2008,222(1-3):656-665
    [51]C.B. Prakash, K.L. Pinder. Direct contact heat transfer between two immiscible liquids during vaporization:Part II:Total evaporation time[J]. The Canadian Journal of Chemical Engineering,1967,45(4):215-220.
    [52]A.E.S. Adams, K.L. Pinder. Average heat transfer coefficient during the direct evaporation of a liquid drop[J]. The Canadian Journal of Chemical Engineering,1972, 50(6):707-713.
    [53]S. Sideman, Y. Taitel, Direct-contact heat transfer with change of phase:Evaporation of drops in an immiscible liquid medium[J]. International Journal of Heat and Mass Transfer,1964,7(11):1273-1289
    [54]H.C. Simpson, G.C. Beggs, M. Nazir. Evaporation of butane drops in brine[J]. Desalination,1974,15(1):11-23.
    [55]A. Selecki, L. Gradon. Equation of motion of an expanding vapour drop in an immiscible liquid medium[J]. International Journal of Heat and Mass Transfer,1976, 19(8):925-929
    [56]G.G. Brucker, E.M. Sparrow. Direct contact condensation of steam bubbles in water at high pressure[J]. International Journal of Heat and Mass Transfer,1977,20(4): 371-381
    [57]Y. Tochitani, Y.H. Mori, K. Komotori, Vaporization of single liquid drops in an immiscible liquid Part I:Forms and motions of vaporizing drops[J]. Warme-und Stoffubertragung,1977,10(1):51-59
    [58]Y. Tochitani, T. Nakagawa, Y.H. Mori, K. Komotori. Vaporization of single liquid drops in an immiscible liquid part II:Heat transfer characteristics[J]. Warme- und Stoffubertragung,1977,10(2):71-79
    [59]Y. Iida, T. Takashima. Direct-contact heat transfer characteristics:Evaporation of a drop dropped onto a hot liquid surface[J]. International Journal of Heat and Mass Transfer,1980,23(9):1263-1271
    [60]K..L. Pinder. Direct contact heat transfer between two immiscible liquids during vaporization. Part I:Measurement of heat transfer coefficient[J]. The Canadian Journal of Chemical Engineering,1983.61(1):132-132
    [61]K. Terasaka, W.Y. Sun, T. Prakoso, H. Tsuge. Measurement of heat transfer coefficient for direct-contact condensation during bubble growth in liquid[J]. J. Chem. Eng. Jpn.,1999,32(5):594-599
    [62]孙长贵,徐维勤,沈自求,王示.液滴在热液相介质中上升汽化时的传热与传质[J].高校化学工程学报,1992,6(3):210-218
    [63]齐涛,沈自求.垂直管内不互溶液滴群直接接触汽化传热[J].高校化学工程学报,1996,10(3):232-238
    [64]张鹏,王琨,李水英,王一平.汽-液-液三相流流体力学的模型与求解[J].高校化学工程学报,2000.14(1):25-30
    [65]P. Zhang, Y.P. Wang, C.L. Guo, K. Wang. Heat transfer in gas-liquid-liquid three-phase direct-contact exchanger[J]. Chemical Engineering Journal,2001,84(3): 381-388
    [66]R.C. Smith, W. M. Rohsenow and M. S. Kazimi. Volumetric Heat-Transfer Coefficients for Direct-Contact Evaporation[J]. Journal of Heat Transfer-Transactions of the Asme,1981,104(2):7-13
    [67]L. Tadrist, P. Seguin, R. Santini, J. Pantaloni, A. Bricard. Experimental and numerical study of direct contact heat exchangers [J]. International Journal of Heat and Mass Transfer,1985,28(6):1215-1227
    [68]K.L. Core, J.C. Mulligan. Heat transfer and population characteristics of dispersed evaporating droplets[J]. AIChE Journal,1990,36(8):1137-1144
    [69]Y.H. Mori. An analytic model of direct-contact heat transfer in spray-column evaporators[J]. AIChE Journal,1991,37(4):539-546
    [70]M. Fossa, C. Pisoni, L. Tagliafico. Experimental direct contact heat tranfser in upward air-water developing annular flow[J]. International Communications in Heat and Mass Transfer,1995,22(6):825-835
    [71]J. Siqueiros, O. Bonilla. An experimental study of a three-phase, direct-contact heat exchanger[J]. Applied Thermal Engineering,1999,19(5):477-493
    [72]H.R. Jacobs, R.F. Boehm, in:J. Kesting (Ed.). Direct-Contact Binary Cycles Sourcebook on the Production of Electricity from Geothermal Energy[J]. U.S. Department of Energy,1980,413-470
    [73]M. Song, A. Steiff, P.M. Weinspach. Direct-contact heat transfer with change of phase:a population balance model[J]. Chemical Engineering Science,1999,54(17): 3861-3871
    [74]Steiner, J. Zur direkien Wdrmeubertragung bei der Verdampfungeines Kaltemittels in einem mit diesem nicht mischbaren fluβigen Kontinuum. Ph.D. thesis, University of Dortmund, Germany.1993
    [75]T. Kiatsiriroat, J. Tiansuwan, T. Suparos, K. Na Thalang. Performance analysis of a direct-contact thermal energy storage-solidification[J]. Renewable Energy,2000, 20(2):195-206
    [76]Y. Iida, T. Takashima. Direct-contact heat transfer characteristics:Evaporation of a drop dropped onto a hot liquid surface[J]. International Journal of Heat and Mass Transfer,1980,23(9):1263-1271
    [77]Y.H. Kang, N.J. Kim, B.K. Hur, C.B. Kim. A numerical study on heat transfer characteristics in a spray column direct contact heat exchanger[J]. Ksme International Journal,2002,16(3):344-353
    [78]Gulawani SS, Dahikar SK, Mathpati CS, Joshi JB, Shah MS, RamaPrasad CS, and Shukla DS. Analysis of flow pattern and heat transfer in direct contact condensation[J]. Chemical Engineering Science,2009,64:1719-1738
    [79]O. Jaber, G.F. Naterer, I. Dincer. Heat recovery from molten CuCl in the Cu-Cl cycle of hydrogen production [J]. International Journal of Hydrogen Energy,2010,35(12): 6140-6151
    [80]T. Lemenand, C. Durandal, D. Della Valle, H. Peerhossaini. Turbulent direct-contact heat transfer between two immiscible fluids [J]. International Journal of Thermal Sciences,2010,49(10):1886-1898
    [81]T. Nomura, M. Tsubota, T. Oya, N. Okinaka, T. Akiyama, Heat storage in direct-contact heat exchanger with phase change material, Applied Thermal Engineering,2013,50(1):26-34
    [82]D. H. Klipstein, Heat Transfer to a Vaporising Drop, D. Sc. Thesis, M. I. T. Cambridge, Mass,1963
    [83]S. Sideman, G. Hirsch. Direct Contact Heat Transfer with Change of Phase, Ⅲ. Analysis of the Transfer Mechanism of Drops Evaporating in Immisible Liquid Media[J]. Isreal J. Technol,1964,2:234-241
    [84]S. Sideman, Direct Contact Heat Transfer Between Immiscible Liquids, in:J.W.H. Thomas B. Drew, V. Theodore (Eds.) Advances in Chemical Engineering, Academic Press,1966:207-286
    [85]G. Raina, P. Grover. Direct Contact Heat Transfer with Change of Phase:Theoretical Model[J]. AICHE J.,1982,28:515-517
    [86]P. Battya, V.R. Raghavan, K.N. Seetharamu. A theoretical correlation for the Nusselt number in direct contact evaporation of a moving drop in an immiscible liquid[J]. Warme-und Stoffubertragung,1985,19(1):61-66
    [87]K. Hijikata, Y. Mori, S. Kawaguchi. Direct contact condensation of vapor to falling cooled droplets[J]. International Journal of Heat and Mass Transfer,1984,27(9): 1631-1640
    [88]G.K. Raina, R.K. Wanchoo. Direct contact heat transfer with phase change: Theoretical expression for instantaneous velocity of a two-phase bubble[J]. International Communications in Heat and Mass Transfer,1984,11(3):227-237
    [89]Y. Shimaoka, Y. H. Mori. Evaporation of single drops in an Immisicible Liquid: Experiments with n-Pentane Drops in Water and Preparation of New Heat Transfer Correlation[J]. Experimental Heat Transfer,1990.3:159-172
    [90]章学来HCFC123水共混双相变传热特性及直接接触式冰蓄冷系统:[博士学位论文].上海:上海理工大学,2000
    [91]S. Sideman, G. Hirsch. Direct contact heat transfer with change of phase: Condensation of single vapor bubbles in an immiscible liquid medium. Preliminary studies[J]. AIChE Journal,1965,11(6):1019-1025
    [92]S. Sideman, Direct Contact Heat Transfer Between Immiscible Liquids, in:J.W.H. Thomas B. Drew, V. Theodore (Eds.) Advances in Chemical Engineering, Academic Press,1966, pp.207-286
    [93]H.C. Simpson, G.C. Beggs, M. Nazir. Evaporation of butane drops in brine[J]. Desalination,1974,15(1):11-23.
    [94]K. D. Falke. Dissertation, TU Braunschweig,1974
    [95]Y. Tochitani, T. Y. H. Mori, K. Komotori. Vaporization of a Liquid Injected into an drops Immiscible liquid Through a Single Nozzle[J]. Warme-und Stoffubertragung, 1977,8:249-259
    [96]Y. Tochitani, Y.H. Mori, K. Komotori, Vaporization of single liquid drops in an immiscible liquid Part I:Forms and motions of vaporizing drops[J]. Warme-und Stoffubertragung,1977,10(1):51-59
    [97]Y.H. Mori. Configurations of gas-liquid two-phase bubbles in immiscible liquid media[J] International Journal of Multiphase Flow,1978,4(4):383-396
    [98]Y. Iida, T. Takashima. Direct-contact heat transfer characteristics:Evaporation of a drop dropped onto a hot liquid surface [J]. International Journal of Heat and Mass Transfer,1980,23(9):1263-1271
    [99]M.R.Mokhtarzadeh and A.A.El-shirbini. Dynamics of and Heat Transfer to a Butane Droplet Evaporating in Water[J]. Warme-und Stoffubertragung 1986,20:69-75
    [100]L. Tadrist, P. Seguin, R. Santini, J. Pantaloni, A. Bricard. Experimental and numerical study of direct contact heat exchangers[J]. International Journal of Heat and Mass Transfer,1985,28(6):1215-1227
    [101]Y. Fujita, K. Hirahaya. S. Matsuo and K. Nishikawa. Heat Transfer Processes in a Direct Contact Evaporator[J]. TRANS. JSME, Ser, B,1988:452-475,1379-1386
    [102]Y. Shimizu, Y. H. Mori. Evaporation of single liquid drops in an immiscible liquid at elevated pressures:experimental and preliminary results[J]. Exprements in Fluids, 1988,6:73-79
    [103]K.L. Core, J.C. Mulligan. Heat transfer and population characteristics of dispersed evaporating droplets[J]. AIChE Journal,1990,36(8):1137-1144
    [104]Y. Shimizu, H. Shimaoka and Y. H. Mori. Heat Transfer to Single Drops of a Nonazeotropic Fluorocarbon Mixture Evaporating in Water[J]. JSME Int. J. Ser. Ⅱ, 1989,32:630-638
    [105]K. N. Seetharamu and P.Battya. Direct Contact Evaporation between Two Immiscible Liquids in a Spray Column[J]. J. of Heat Transfer,1989,111:780-785
    [106]Y. Shimaoka and Y. H. Mori. Evaporation of single drops of n-pentane/n-hexane mixtures in water[J]. J. of Heat Transfer,1992,114:965-971
    [107]K. Terasaka, W.Y. Sun, T. Prakoso, H. Tsuge. Measurement of heat transfer coefficient for direct-contact condensation during bubble growth in liquid[J]. J. Chem. Eng. Jpn.,1999,32(5):594-599
    [108]S. Sideman, Y. Gat. Direct contact heat transfer with change of phase:Spray-column studies of a three-phase heat exchanger[J]. AIChE Journal,12(2) (1966) 296-303
    [109]S. Sideman, J. Isenberg. Direct contact heat transfer with change of phase:bubble growth in three-phase systems[J]. Desalination,1967,2(2):207-214
    [110]G.P. Celata, M. Cumo, F. D'Annibale, G.E. Farello. Direct contact condensation of steam on droplets[J]. International Journal of Multiphase Flow,1991,17(2):191-211
    [111]C.-H. Song, Y.-S. Kim. Direct Contact Condensation of Steam Jet in a Pool, in:I.C. Young, A.G. George (Eds.) Advances in Heat Transfer, Elsevier,2011, pp.227-288
    [112]张鹏,王一平,郭翠梨,王琨,张金利.汽-液-液三相垂直管内充分发展流传热性能 [J].化工学报,2001,52(2):125-129
    [113]Wallis, G. B.. One-Dimensional Two-Phase Flow, McGraw-Hill, New York,1969.
    [114]刘军云,王辉涛;王华,黄峻伟,陈蓉,文旭林,高宏宇.直接接触换热器中分散相单个气泡的传热机理研究[J].昆明理工大学学报,2012,37(2):49-53
    [115]J.M. Lujan, J.R. Serrano, V. Dolz, J. Sanchez. Model of the expansion process for R245fa in an Organic Rankine Cycle (ORC) Original Research Article [J]. Applied Thermal Engineering,2012, (40):248-257
    [116]李彦博.直接接触式环流换热器气-液-液三相流体力学及传热的研究[D].天津:天津大学,1998
    [117]T.Coban, R. Boehm. Performance of a three-phase spray column, direct-contact heat exchanger[J]. Transactions of the ASME,1989, (111):165-172
    [118]张鹏.汽-液-液三相直接接触换热器传热及流动特性的研究[D].天津:天津大学,1999
    [119]Artur Steiff, Mechael Nitsche & Paul-Michael Weinspach. Heat Removal by Evaporation of Volatile Component.9th Int. Heat Transfer Conf.Jerusalem Israel. 1990,3:51-56
    [120](美)Joseph Kestin主编.地热和地热技术发电指南.西藏地热工程处译.水利电力出版社.1988:275-276
    [121]G.K. Raina, R.K. Wanchoo, P.D. Grover. Direct contact heat transfer with phase change:Motion of evaporating droplets[J]. AIChE Journal 1984,30(5):835-837
    [122]Mark A. Young, Ruben G. Carbonell, David F. Ollis. Airlift Bioreactors:Analysis of local two-phase hydrodynamics[J]. AIChE Journal,1991,37(3):403-428
    [123]Pal, S.S., A.K. Mitra, and A.N. Roy. Pressure drop and holdup in vertical two-phase courrent flow with improved gas-liquid mixing. Ind. Eng. Chem. Process Des. Dev., 1980,19(67):112-123
    [124]Zafer Utlu, Arif Hepbasli. A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method[J]. Renewable and Sustainable Energy Reviews,2007,11(7):1438-1459
    [125]Jung-Yang San, Gean-Sheng Lin, Kai-Li Pai. Performance of a serpentine heat exchanger:Part Ⅰ Effectiveness and heat transfer characteristics[J]. Applied Thermal Engineering,2009,29(14-15):3081-3087
    [126]S.M. Peyghambarzadeh, M.M. Sarafraz, N. Vaeli, E. Ameri, A. Vatani, M. Jamialahmadi. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger [J]. Annals of Nuclear Energy, 2013,53(0):401-410
    [127]M.C. Ruzicka, J. Zahradnik, J. Drahos, N.H. Thomas. Homogeneous-heterogeneous regime transition in bubble columns[J]. Chemical Engineering Science,2001,56(15): 4609-4626
    [128]C.P. Ribeiro Jr, P.L.C. Lage. Direct-contact evaporation in the homogeneous and heterogeneous bubbling regimes. Part I:experimental analysis[J]. International Journal of Heat and Mass Transfer,2004,47(17-18):3825-3840
    [129]T. Lemenand, C. Durandal, D. Della Valle, H. Peerhossaini. Turbulent direct-contact heat transfer between two immiscible fluids[J]. International Journal of Thermal Sciences,2010,49(10):1886-1898
    [130]S.S. Gulawani, S.K. Dahikar, C.S. Mathpati, J.B. Joshi, M.S. Shah, C.S. RamaPrasad, D.S. Shukla. Analysis of flow pattern and heat transfer in direct contact condensation[J]. Chemical Engineering Science,2009,64(8):1719-1738
    [131]V.N.P. Le, E. Robins, M.P. Flament. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations[J]. Eur. J. Pharm.Biopharm, 2012,80(3):596-603
    [132]A.-L. Le CoAent, A. Rivoire, S. Brianon, J. Lieto. An original image-processing technique for obtaining the mixing time:The box-counting with erosions method[J]. Powder Technology,2005,152(1-3):62-71.
    [133]Susan T.L.Harrison, RyanStevenson, JohannesJ.Cilliers. Assessing solids concentration homogeneity in Rushton-agitated slurry reactors using electrical resistance tomography (ERT)[J], Chem. Eng. Sci.2011, doi:10.1016/j.ces.2011.10.053
    [134]Jianxin Xu, Hua Wang, Hui Fang, Multiphase mixing quantification by computational homology and imaging analysis[J], Applied Mathematical Modelling, 2011,35(5):2160-2171
    [135]Ribeiro Jr CP., Borges CP., Lage PL.C, Sparger effects during the concentration of synthetic fruit juices by direct-contact evaporation[J], Journal of Food Engineering, 2007,79:979-988
    [136]W. Q. Tao, Y. L. He, Recent Advances in Multiscale Simulations of Heat Transfer and Fluid Flow Problems [J], Progress in Computational Fluid Dynamics,2009,9(3-5): 150-157
    [137]李志信,过增元,对流传热优化的场协同理论[M],科学出版社,2010
    [138]S.S. Gulawani, J.B. Joshi, M.S. Shah, C.S. RamaPrasad, D.S. Shukla. CFD analysis of flow pattern and heat transfer in direct contact steam condensation[J]. Chemical Engineering Science,2006,61(16):5204-5220
    [139]S.K. Dahikar, M.J. Sathe, J.B. Joshi. Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD[J]. Chemical Engineering Science,2010,65(16):4606-4620
    [140]A.B. Tayler, D.J. Holland, A.J. Sederman, and L.F. Gladden. Exploring the Origins of Turbulence in Multiphase Flow Using Compressed Sensing MRI[J]. Physical Review Letters,2012,108(26):1-5
    [141]T. Kaczynski, K. Mischaikow, M. Mrozek. Computational Homology[J]. Applied Mathematical Sciences, Springer-Verlag, New York,2004,157
    [142]CHomP. http://chomp.rutgers.edu/software.
    [143]A Raji, A Thaibaoui, E Petit, P Bunel, G Mimoun. A gray-level transformation-based method for image enhancement Pattern Recognition Letters[J].1998,19(13): 1207-1212
    [144]Xiangzhi Bai, Fugen Zhou. Analysis of new top-hat transformation and the application for infrared dim small target detection Original Research Article Pattern Recognition[J].2010,43(6):Pages 2145-2156
    [145]Bilal Bataineh, Siti Norul Huda Sheikh Abdullah, Khairuddin Omar. An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows Original Research Article[J] Pattern Recognition Letters,2011. 32(14):1805-1813
    [146]罗军辉,冯平,哈力旦A. Matlab在图像处理中的应用[M].北京:机械工业出版社.2005
    [147]A.-L. Le Coent, A. Rivoire, S. Briancon, J. Lieto. An original image-processing technique for obtaining the mixing time:The box-counting with erosions method[J]. Powder Technology,2005.152(1-3):62-71
    [148]唐焕文.实用数学规划导论[M].大连:大连工学院出版社,1986
    [149]Baker J E. Adaptive Selection Methods for Genetic Algorithms,Proc ICGA 1,1985,101-111
    [150]Branlette M F. Initialization,Mutation and Selection Methods in Genetic Algorithms for Function Optimization,Proc ICG A 4,1991.100-107
    [151]Back T, Hoffmeister F. Sxhwefel HP. Survey of Evolution Strategies,Proc ICGA 4,1991.2-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700