用户名: 密码: 验证码:
燃气轮机高温部件对流/导热/辐射耦合的流动传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着透平前温的不断上升,冷却作为一种必要的手段在燃气轮机透平得到了广泛的应用。由于在高温情况下辐射换热变得不可忽略,在对高温下的冷却进行研究时需考虑辐射换热的因素。本文合作搭建了高温平板气膜冷却耦合换热实验台,通过高温下的气膜冷却耦合换热实验对此情况下平板表面对流、导热、辐射与气膜冷却的相互作用进行研究,分析高温下各个参数对气膜冷却的影响。
     高温下的气膜冷却耦合传热实验验证了高温下辐射的不可忽视性,本文由此引入离散坐标法求解辐射输送方程,完成了辐射情况下气膜冷却耦合换热的计算。给出了耦合与辐射情况对平板上表面气膜冷却效果的影响及导热与辐射两种传热方式与气膜冷却之间的相互作用。计算结果表明,气膜冷却的速度场几乎不受内部冷却及辐射换热的影响,而温度场则受到耦合及辐射的影响很大。当壁面绝热时,考虑辐射的情况下,壁面将向冷却气膜进行对流换热。
     为了排除内部冷却的影响,定义耦合下的气膜冷却有效度ηconj,并结合ηconj与热流密度比q/qo对耦合情况下的气膜冷却进行分析,给出了耦合及辐射情况下气膜冷却有效度的变化与两者之间的联系。将耦合换热的各个因素分离,分别进行了分析。
     在耦合辐射换热计算的基础上,本文针对实验台的多个参数变化进行了研究,分别给出了耦合辐射换热下四周的壁面温度、气膜冷却的吹风比及入口辐射换热强度对平板表面气膜冷却效果的影响。
     最后本文提出采用实验数据结合数值计算反推入口辐射强度的方法进行进出口辐射能的预估,计算表明该种预估方法是有效的。
With the continuing increase of the turbine inlet temperature, cooling technologyhas been put into wide range of applications as a necessary means. Since the radiativeheat transfer should not be ignored under the high temperature circumstances, it isessential to consider radiative effect when doing research about high temperaturecooling system. This thesis firstly describes the set up of conjugate heat transferexperimental test rig with high temperature flat plate cooling system and then studiesthe comprehensive effect of surface convection, radiation and conduction heat transferwith film cooling, finally analyses multiple parameters effect on film cooling system.
     With the experimental data of high temperature film cooling conjugate heattransfer showing that the radiative heat transfer effect should not be ignored, the DOmodel is introduced to solve the radiation transport equation, accomplishing severalconjugate heat transfer numerical simulations contrasting to the experimental test cases.Detailed effect of conjugate and adiabatic cases on the cooling effectiveness is studiedand the interaction of film cooling and heat transfer mode is analysed. Computationalresults show that the velocity field is not affected by the internal cooling convection andradiative heat transfer, but the conjugate and radiative effect play an important part inthe temperature field. When considering the wall as insulated and radiative, the wallwill deliver heat to the cooling film due to convection. To exclude the impact of theinternal cooling, a new film cooling effectiveness is defined, combining with the heatflux ratio is used to analyze the film cooling under conjugate conditions.
     Based on the conjugate heat transfer calculations considering radiative effect, thisthesis inspects multiple experimental parameters variations on the temperature flatplate distribution including the temperature of sidewall temperature, mass flow ratioand inlet radiation intensity.Finally the thesis proposed a method to reversely calculatethe inlet radiation intensity combining the experimental data and numerical simulationwhich show quite good predictive ability.
引文
[1]崔红薇,李冶.十二五我国电力设备需实现七大突破.机电商报,2011,2011-01-17.
    [2]闻犁.把握机遇,共创美好新五年[2011第六届中国电工装备创新与发展论坛——电工装备‘十二五’规划解读主题报告回顾].电气技术,2011-09.
    [3]陈欢欢.燃气轮机市场换技术使命终结.科学时报,2011,2011-9-19.
    [4]苏生.复杂内冷透平动叶中流动与换热研究[博士学位论文].中国科学院研究生院,工程热物理研究所,2008.
    [5]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德(著),程代京,谢永惠(译).燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005.
    [6]陈文炎. GE9FA燃气轮机若干关键技术特点.热力发电,2007,36(11).
    [7] W C Yang.1.3.1.3Hydrogen-Fueled Power Systems. The Gas Turbine Handbook. TheNational Energy Technology Laboratory, U.S. Department of Energy.
    [8]林公舒,杨道刚.现代大功率发电用燃气轮机.北京:机械工业出版社,2007.
    [9]陶文铨.数值传热学(第二版).西安交通大学出版社,2001:485~488
    [10] Hylton L D, Milhec M S, Turner E R. Analytical and experimental evaluation of the heattransfer distribution over the surface of turbine vanes. NASA-CR-168015,1983.
    [11] York D W, Leylek J H. Three-Dimensional Conjugate Heat Transfer Simulation of anInternally-Cooled Gas Turbine Vane. ASME Paper,2003, No. GT2003-38551.
    [12] Facchini B, Magi A, Greco A S. Conjugate Heat Transfer of a Radially Cooled Gas TurbineVane. ASME Paper,2004, No. GT2004-54213.
    [13] Luo J, Razinsky E H. Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using theV2F Turbulence Model. ASME Paper,2006, No. GT2006-91109.
    [14] Bamba T, Yamane T, Fukuyama Y. Turbulence Model Dependencies on ConjugateSimulation of Flow And Heat Conduction. ASME Paper,2007, No. GT2007-27824.
    [15] Heidmann J D, Kassab A J, Divo E A, Rodriguez F, Steinthorsson E. Conjugate HeatTransfer Effects on Realistic Film-Cooled Turbine Vane. ASME Paper,2003, No.GT2003-38553.
    [16] Takahashi T, Watanabe K, Takahashi T. Thermal Conjugate Analysis of a First Stage Bladein a Gas Turbine. ASME Paper,2000, No.2000-GT-251.
    [17] Takahashi T, Watanabe K, Sakai T. Conjugate Heat Transfer Analysis of a Rotor Blade withRib-roughened Internal Cooling Passages. ASME Paper,2005, No. GT2005-68227.
    [18] Montomoli F, Adami P, Della Gatta S, Martelli F. Conjugate Heat Transfer Modeling inFilm Cooled Blades. ASME Paper,2004, No. GT2004-53177.
    [19] Yamane T, Yoshida T, Enomoto S, Takaki R, Yamamoto K. Conjugate Simulation of Flowand Heat Conduction with a New Method for Faster Calculation. ASME Paper,2004, No.GT2004-53680.
    [20] Mansour M L, Hosseini K M, Liu J S. Assessment of the Impact of Laminar-TurbulentTransition on the Accuracy of Heat Transfer Coefficient Prediction in High PressureTurbines. ASME Paper,2006, GT2006-90273.
    [21] Bohn D E, Becker V J and Rungen A U. Experimental and Numerical Conjugate Flow andHeat Transfer Investigation of a Shower-Head Cooled Turbine Guide Vane. ASME TurboExpo.1997;97-GT-15.
    [22] Bohn D E, Becker V J and Kusterer K et al.3-D Internal Conjugate Calculations of aConvectively Cooled Turbine Blade with Serpentine-Shaped Ribbed Channels. ASMETurbo Expo.1999;99-GT-220.
    [23] Bohn D E, Moritz N. Comparison of Cooling Film Development Calculations forTranspiration Cooled Flat Plates with Different Turbulence Models. ASME Turbo Expo.2001;2001-GT-0132.
    [24] Bohn D E, Ren J and Kusterer K. Conjugate Heat Transfer Analysis for Film CoolingConfigurations with Different Hole Geometries. ASME Turbo Expo.2003; GT-2003-38369.
    [25] Laschet G, Rex S and Bohn D et al. Homogenization of Material Properties of TranspirationCooled Multi-Layer Plates. ASME Turbo Expo2003; GT2003-38439.
    [26] Kusterer K, Bohn D, Sugimoto T, et al. Conjugate Calcu8lations for a Film-Cooled BladeUnder Different Operating Conditions. ASME Turbo EXPO2004; GT2004-53719
    [27] Kusterer K, Hagedorn T, Bohn D et al. Improvement of a Film-cooled Blade by Applicationof the Conjugate Calculation Technique. Journal of Turbomachinery,2006,128(3):572~578
    [28] Han Z X., Dennis B H, Dulikravich G S. Simultaneous Prediction of External Flow-Fieldand Temperature in Internally Cooled3-D Turbine Blade Material. ASME Turbo EXPO2000;2000-GT-253.
    [29]陈凯,黄洪雁.气冷涡轮气热耦合数值模拟.哈尔滨工业大学(工学硕士论文).2006年6月
    [30]董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析.航空动力学报.2008年2月,第23卷第2期:201-207.
    [31] SFB561: Thermally highly loaded, porous and cooled multi-layer systems for combinedcycle power plants, http://www.sfb561.rwth-aachen.de/Aktuell/DEUTSCH/haupt.html
    [32] Bohn D E, Krewinkel R. Influence of a Broken-Away TBC on the Flow Structure and WallTemperature of an Effusion Cooled Multi-Layer Plate Using the Conjugate CalculationMethod. ASME Turbo Expo.2008; GT2008-50378
    [33] Bohn D E, Krewinkel R. Conjugate Simulation of the Effects of Oxide Formation inEffusion Cooling Holes on Cooling Effectiveness. ASME Turbo Expo.2009;GT2009-59081
    [34] Bohn D E, Krewinkel R. Conjugate Calculation of Effusion Cooling with Realistic CoolingHole Geometries. ASME Turbo Expo.2009; GT2009-59082
    [35] Na S, Williams B, Dennis RA et al. Internal and Film Cooling of a Flat Plate with ConjugateHeat Transfer. ASME Turbo Expo.2007; GT-2007-27599.
    [36] Na S, Dennis R A, Alsup C. Effects of Hot-Gas Composition on Temperature Distribution ina Flat Plate Cooled by Internal and Film Cooling. ASME Turbo Expo.2009;GT-2009-59727
    [37] Mazzotta D W, Chyu M K, Karaivanov V G., Slaughter W S, Alvin M A. Gas-Side HeatTransfer in Syngas, Hydrogen-Fired and Oxy-Fuel Turbines, Turbo Expo, GT2008-51474
    [38] Siw S C, Chyu M K, Slaughter W S, Karaivanov V G, Alvin M A. Influence of InternalCooling Configuration on Metal Temperature Distributions of Future Coal-Fuel BasedTurbine Airfoils. ASME Turbo Expo.2009; GT2009-59829
    [39]贺志宏,谈和平,刘林华,冯国泰,阮立明.发动机叶片流道内辐射换热的数值计算.推进技术,2001,(01):65-68,88
    [40] Kumar N A, Kale S R. Numerical simulation of steady state heat transfer in a ceramic-coatedgas turbine blade. International Journal of Heat and Mass Transfer2002;45:4831-4845.
    [41]王平阳,谈和平,刘林华,罗剑峰.涡轮发动机高温隔热涂层内的传热研究.航空动力学报,2000,(03):268-273
    [42] Spuckler C. Effect of an Opaque Reflecting Layer On The Thermal Behavior of a ThermalBarrier Coating, Ceramic Engineering&Science Proceedings,2007vol.28(no.3)
    [43] Huang X, Wang D, and Patnaik P et al. Design and computational analysis of highlyreflective multiple layered thermal barrier coating structure, Materials Science andEngineering A460-461(2007)101-110
    [44]张丽芬,刘振侠,廉筱纯.气冷涡轮叶片三维换热问题计算.航空动力学报,2007,(08):1268-1272
    [45] Mazzotta D W, Chyu M K, and Alvin M A. Airfoil Heat Transfer Characteristics In SyngasAnd Hydrogen Turbines. ASME Turbo Expo.2007; GT2007-28296.
    [46] Alvin M A, et al. Materials and Component Development for Advanced Turbine Systems.. Pittsburgh, PA: National Energy Technology Laboratory, USDepartment of Energy,2010.
    [47]陶文铨.数值传热学.第2版.西安交通大学出版社,2001.
    [48]刘虎威.气相色谱方法及应用.第2版.化学工业出版社,2000.
    [49]石军.分析化学学习指导.南开大学出版社,2008.
    [50]武杰,庞增义.气相色谱仪器系统.化学工业出版社,2007:98-100.
    [51]朱明善,刘颖等.工程热力学.清华大学出版社,2002.
    [52]辛春锁,何小瓦,杨阳,邓建兵.基于稳态卡计法的半球向全发射率测量技术综述[J].宇航计测技术,2011年8月,第31卷第4期:38-43
    [53] Greene G A, Finfrock C C, Irvine Jr, T F. Total hemispherical emissivity of oxidized Inconel718in the temperature range300-1000°C. Experimental Thermal and Fluid Science, vol.22, n3-4, p145-153, Sep2000
    [54] Fu T, Tan P, Pang C A. steady-state measurement system for total hemispherical emissivity.Measurement Science and Technology, v23, n2, Feb2012
    [55] Barwick J. V. Sources of uncertainty in gas chromatography and high-performance liquidchromatography. Journal of Chromatography A,849(1999),1999:13-33
    [56]吕崇德,热工参数测量与处理.清华大学出版社,2001.
    [57]阎超,计算流体力学方法及应用.北京航空航天大学出版社,2006
    [58] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers. New York:Oxford University Press,2004.
    [59]陈懋章.粘性流体动力学基础.高等教育出版社,2002.
    [60] Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence. AcademicPress, London, England,1972.
    [61] Wolfstein M. The Velocity and Temperature Distribution of One-Dimensional Flow withTurbulence Augmentation and Pressure Gradient. Int. J. Heat Mass Transfer,12:301-318,1969.
    [62] Chen H C, and Patel V C. Near-Wall Turbulence Models for Complex Flows IncludingSeparation. AIAA Journal,26(6):641-648,1988.
    [63]余其铮.辐射换热原理.哈尔滨工业大学出版社,2000
    [64]谈和平,夏新林,刘林华,阮立明等.红外辐射特性与传输的数值计算——计算热辐射学.哈尔滨工业大学出版社,2006
    [65] Barth T J, and Jespersen D. The design and application of upwind schemes on unstructuredmeshes. Technical Report AIAA-89-0366, AIAA27th Aerospace Sciences Meeting, Reno,Nevada,1989.
    [66] Smith T F, Shen Z F, and Friedman J N. Evaluation of Coefficients for the Weighted Sum ofGray Gases Model. J. Heat Transfer,104:602-608,1982
    [67]王福军.计算流体动力学分析.清华大学出版社,2004
    [68]中国航空材料手册(第2版)第2卷变形高温合金铸造高温合金.《中国航空材料手册》编辑委员会,2002
    [69] Mick W J, and Mayle R E. Stagnation Film Cooling and Heat Transfer Including Its EffectWithin the Hole Pattern. ASME Journal of Turbomanchinery,1988,110:66-72
    [70] Ou S, Han J C. Influence of mainstream turbulence on leading edge film cooling heattransfer through two rows of inclined film slots. ASME Int Gas Turbine AeroengineCongress Expos.36(1991)
    [71] Lu Y, Dhungel A, Ekkad S V, Bunker R.S. Effect of trench width and depth on film coolingfrom cylindrical holes embedded in trenches. ASME J. Turbomachinery131(1)(2009)011003.
    [72]王文萍等.高温平板气膜冷却耦合换热实验与计算.清华大学学报:自然科学版,2010年第50卷第12期
    [73] Wang W, Ren J, Jiang H. Effects of Radiative Heat Transfer on a Highly Thermal LoadedFilm Cooled Plate. ISJPPE Paper,2010, No.2010-ISJPPE-2023
    [74] Wang W, Sun P, Ren J, Jiang H, Radiation Effectiveness on the Aero-and Thermodynamicsin a Highly Thermally Loaded Film Cooling System. ASME Paper,2011, GT2011-45592
    [75] Sun P, Wang W, Ren J, Jiang H, Effect of the Hot Gas Composition on a Highly ThermallyLoaded Film Cooling System. ASME Paper,2011, GT2011-45593

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700