用户名: 密码: 验证码:
考虑土—结构相互作用的钢筋混凝土框架结构地震倒塌破坏仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土框架结构的抗震研究大多采用刚性地基假定,没有充分考虑土层对地震波的过滤和放大效应,同时对上部结构的地震反应分析主要集中在弹塑性变形阶段,真正实现对结构发生破坏以后的研究较少,因此进行考虑土-结构相互作用的钢筋混凝土框架结构倒塌破坏分析和研究具有一定的重要性和实际意义。
     本文通过对大量相关文献的概括总结,评述了国内外对钢筋混凝土框架结构倒塌研究的现状与发展水平,对结构地震反应分析的数值方法进行归纳总结,基于结构抗震理论确定了动力相互作用体系的分析模型。在研究土体材料和钢筋混凝土材料本构模型的基础上,确定适合土-结构动力相互作用体系地震倒塌分析的材料本构模型,特别是在钢筋混凝土材料模型中引入损伤破坏限值,利用LS-DYNA软件中的Mat_Concrete_Damage材料模型及Erosion算法,以综合考虑混凝土材料的损伤软化、应变率效应、断裂失效等多种特性,模拟钢筋混凝土材料在地震作用下的破坏情况。通过阅读大量文献,确定出适合于倒塌破坏研究的各种材料模型参数。
     建立土-结构动力相互作用体系的有限元分析方案。通过合理的选取单元,输入地震动参数及考虑重力等因素的影响,建立了刚性地基及考虑土-结构动力相互作用的钢筋混凝土框架结构三维动力有限元分析模型。利用仿真程序模拟得到的裂缝分布及破坏过程与振动台试验的结果十分吻合,证明用LS-DYNA软件对钢筋混凝土框架结构进行倒塌破坏研究是可行的。通过对刚性地基条件与考虑土-结构相互作用两种情况下框架结构从变形、开裂直至最终倒塌的全过程进行对比分析,得出如下主要结论:
     (1)刚性地基条件下五层、十层、十五层框架结构的各个楼层加速度峰值在不同刚度条件下沿高度的变化趋势大致相同。顶层加速度峰值随结构刚度的增大而增大,结构的层数越多,顶层加速度峰值相对地面的放大系数越大;
     (2)刚性地基条件下结构首个破坏点出现的时间随刚度的增大有所延迟。在相同刚度条件下,层数越多结构破坏越快。五层框架结构的初始破坏点均出现在底层边框架的梁底柱边,十层和十五层框架结构的首个破坏点则出现在结构的上部楼层,这主要是由于结构高振型的影响;
     (3)土-结构动力相互作用体系的自振频率低于刚性地基时结构的自振频率,且硬土地基时体系的自振频率高于软土地基。相对于刚性地基条件,水平加速度峰值沿楼层的变化更加均匀,加速度峰值在大多数楼层有所折减,但在十层和十五层框架结构中个别楼层也出现了折减系数大于1的情况,因而刚性地基假定下结构的抗震设计并不一定安全;
     (4)土-结构相互作用体系相比刚性地基出现破坏点的时间有所延迟,同时硬土地基条件下的多数结构破坏点出现的时间早于软土地基,说明软土地基时相互作用的效果比较明显。上部结构的初始破坏位置均出现在框架底层的梁底柱边,与刚性地基的情况不完全一致。裂缝情况与刚性地基时相比发展的要少一些,同时体系在输入地震波后,发生了整体沉降的现象,在软土地基条件下沉降更为严重;
     (5)在地震作用下所有模型结构的各层梁柱交替发生破坏,属于混合倒塌机制。下部楼层破坏较为严重,这主要是由于下部结构承受了相对较大的重力荷载。同时随着刚度的增大,结构底部的破坏范围向上层逐渐扩大。这是因为强震作用下刚度较小的结构下部楼层发生破坏的时刻较早,而结构下部的破坏消耗了一部分地震能,减缓了地震对上部结构的作用。
Rigid foundation assumption is adopted usually in current structural collapse damage study,which ignores the impact of filter and amplification effect by soil to the seismic responsecharacteristics and collapse process of superstructure. And seismic response analysis of framestructures direct at elastic-plastic deformation stage, the research of structure collapse damage isless. So the study of reinforced concrete frame structure collapse considering soil-structureinteraction is importance and practical significance.
     Through describing lots of related literatures, present situation of reinforcedconcrete frame structure collapse research and its developing level at home and abroadhave been elaborated. Summarizing numerical methods of structural seismic responseanalysis and basing on seismic theory, analytical mode of soil-structure interactionsystem is determined. The constitutive models of soils and structure material aredetermined and damage limit is introduced in reinforced concrete material model. TheMat_Concrete_Damage model and erosion technique which incorporate most of concretedynamic characteristics such as strain rate effect, damage accumulation, fracture failure,etc., are suitable to simulate the damage state of reinforced concrete under earthquake.And the precise parameters are obtained based on the test results of other researchersthrough reading related references.
     The finite element analysis solution is modified for the soil-structure dynamic interactionsystem. Three-dimensional dynamic finite element analysis model of frame structures on rigidfoundation and soil-structure interaction system are established by selecting the type of the finiteelement, the means of input of the earthquake wave and the gravity load of system. Thesimulation analysis of frame structural’s crack distribution and failure state is similar to the testresults of vibration table. It shows that the LS-DYNA software is viable to study the damage ofreinforced concrete frame structures. Based on comparative analysis of the process fromdeformation, crack until collapse on rigid foundation and considering soil-structure interaction,the main conclusions are obtained as follows:
     (1) The variation tendency of floor peak acceleration of five layer, ten layer and fifteenlayer frame structures on rigid foundation are similar. The top peak acceleration increases with the increase of structure stiffness. The more the number of layer, the greater the amplificationfactor of top peak acceleration to the ground acceleration.
     (2) The first breakdown point of frame on rigid foundation appears later with increase ofstructure stiffness. The more the number of layer, the earlier the first breakdown point of frameappears. The first breakdown point of five layer frame appears at beam bottom and post edge ofbottom edge framework, while that of ten and fifteen layer frames appear at the upper floor offrame. The reason is the influence of the structure of high vibration mode.
     (3) Natural frequency of vibration of soil-structure dynamic interaction system is lower thanthat of frame on rigid foundation, and which on hard soil is higher than on soft soil. The floorpeak acceleration is more even than that on rigid foundation. The floor peak acceleration is lesserthan which on rigid foundation at most frames, but reduction coefficients are greater than1atindividual floors of ten and fifteen layer frames. It indicates that structure seismic design basedon rigid foundation assumption is not always safe.
     (4) The first breakdown point of frame considering soil-structure dynamic interactionappears later than which on rigid foundation. The first breakdown point of frame on hard soilappears earlier than which on soft soil. It means that the effect of soil-structure dynamicinteraction on soft soil is more obvious. The first breakdown point of frame appears at beambottom and post edge of bottom framework considering soil-structure dynamic interaction. It isdifferent from frame on rigid foundation. And the cracks of superstructure are lesser than whichon rigid foundation. The whole settlement occurred in soil-structure dynamic interaction system,and the settlement in soft soil foundation is more serious than which in hard soil.
     (5) That beam and column on each layer of the model structures are destroyed alternately ismixed collapse mechanism. Damage of the lower floors is more serious, that is mainly due to thelower floors bear a relatively large gravity load. The damage range at the bottom of the structureexpands gradually when the rigidity of structure increases. The reason is that damage of thelower floors occurs earlier when rigidity of structure is low and seismic energy is consumed toreduce the affect of earthquake to the upper structure.
引文
[1] GB50011-2010.建筑抗震设计规范[S].
    [2] Housner G.W. Calculating the response of an oscillator to arbitrary ground motion [J]. Bulletin,Seismological Society of America,31(2):143-149.
    [3] Freeman,S.A.,Nicoletti,J.P.,and Tyrell,J.V.(1975). Evaluations of existing buildings for seismic risk[C]//Proceedings1st U.S. National Conference Earthquake Engng. Washington: Berkeley,1975:63-72.
    [4]郭子雄,吕西林.高轴压比框架柱抗震性能试验研究[J].华侨大学学报,1999,20(3):258-263.
    [5]黄行松.钢筋混凝土框架在低周反复荷载下的受力性能研究[J].福建建筑,2000(增):2-5.
    [6]王震宇,吴波,林少书,等.香港地区钢筋混凝土框架柱的抗震性能试验研究[J].哈尔滨建筑大学学报,2001,34(2):6-11.
    [7]彭伟.钢筋混凝土框架短柱抗震性能的试验研究[J].成都科技大学学报,1996(1):54-58.
    [8]杜宏彪.双向压弯钢筋混凝土柱的抗震性能[J].哈尔滨建筑大学学报,1999,32(4):47-52.
    [9]李军旗.钢筋混凝土构件双向循环往复加载试验及分析[J].兰州铁道学院学报,2002,19(1):13-16.
    [10]柳炳康,黄慎江,周安等.钢筋混凝土框架梁柱偏心节点抗震性能的试验研究[J].建筑结构学报,1999,20(5):50-58.
    [11]卞国炎,周昌农.钢筋混凝土框架梁柱偏心外节点抗震性能的试验研究[J].安徽建筑,1998(5):53-54.
    [12]傅剑平,白绍良,王峥,等.考虑轴压比影响的钢筋混凝土框架内节点抗震性能试验研究[J].重庆建筑大学学报,2000,22(增):60-66.
    [13]杜宏彪,沈聚敏.空间钢筋混凝土框架结构模型的振动台试验研究[J].建筑结构学报,1995,16(1):60-69.
    [14]何庆锋.钢筋混凝土框架结构抗倒塌性能试验应用研究[D].长沙:湖南大学,2010.
    [15]沈德健,吕西林.模型试验的微粒混凝土力学性能试验研究[J].土木工程学报,2010,43(10):22-29.
    [16]吕西林,张杰,陆文胜.钢-混凝土竖向混合框架结构抗震性能试验研究[J].建筑结构学报,2011,32(10):20-26.
    [17]黄思凝,郭迅等.钢筋混凝土小比例尺模型设计方法及相似性研究[J].土木工程学报,2012,45(6):1-8.
    [18]黄思凝,郭迅,刘红彪.高层钢筋混凝土斜交网格结构振动台试验[J].振动与冲击,2012,31(11):128-133.
    [19] Y.J. Park, A.M. Reinhorn and S.K. Kunnath. Inelastic damage analysis of reinforced concrete frame shallwall structures [C]//MCEER. USA:SUNY,1987:243-251.
    [20]李康宁, Kubo T, Ventura C E.建筑物三维分析模型及其应用于结构地震反应分析的可靠性[J].建筑结构,2000,30(6):14-19.
    [21]倪强.钢筋混凝土框架结构地震倒塌机理的集成计算机仿真系统研究[D].武汉:华中理工大学,1999.
    [22]顾祥林,孙飞飞.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002.
    [23]秦东,范立础.钢筋混凝土结构倒塌全过程数值模拟[J].同济大学学报,2001,29(1):80-83.
    [24]焦双健,冯启民,付长文.钢筋混凝土框架结构地震破坏的计算机模拟方法[J].地震工程与工程振动,2002,22(2):54-59.
    [25]程纬,孙利民,范立础. ANSYS二次开发功能及其在双层高架桥墩地震倒塌仿真分析中的应用[J].计算机工程与应用,2002,38.
    [26]张富文,吕西林.框架结构不同倒塌模式的数值模拟与分析[J].建筑结构学报,2009,30(5):119-125.
    [27]管庆松.框架填充墙结构抗震性能的试验研究及数值模拟[D].哈尔滨:中国地震局工程力学研究所,2010.
    [28]黄思凝等.由玉树地震结构震害看村镇房屋抗震问题[J].世界地震工程,2011,27(2):191-196.
    [29]李碧雄,谢和平,邓建辉,等.汶川地震中房屋建筑震害特征及抗震设计思考[J].防灾减灾工程学报,2009,29(2):224-236.
    [30]郭迅.汶川地震震害与抗倒塌新认识[C]//第八届全国地震工程学术会议论文集.重庆:重庆大学期刊社,2010:291-297.
    [31]马玉虎.汶川地震典型框架震害分析与倒塌对策研究[D].北京:清华大学,2010.
    [32]王智慧.基于填充墙作用的框架结构非线性地震反应分析[D].长春:吉林大学,2010.
    [33]张敏政.从汶川地震看抗震设防和抗震设计[J].土木工程学报,2009,42(5):21-25.
    [34]马玉虎,陆新征,叶列平,等.漩口中学典型框架结构震害模拟与分析[J].工程力学,2011,28(5):71-77.
    [35]徐龙军,于海英等.汶川地震远场地震动场地相关性与分析方法评价[J].地震学报,2010,32(2):175-183.
    [36]倪强.钢筋混凝土框架结构地震倒塌机理的集成计算机仿真系统研究[D].武汉:华中理工大学,1999.
    [37]刘春明.钢筋混凝土框架结构倒塌分析[M].北京:清华大学,1991.
    [38]魏琏,王迪民,韦承基,等.钢筋混凝土框架结构地震破坏机理探讨[J].工程抗震,1998(1):3-5.
    [39]徐培福,肖从真.高层建筑混凝土结构的稳定设计[J].建筑结构,2001,31(8):69-72.
    [40] Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforce concrete buildings [J]. StructureEngineering, ASCE,1985,111(4):740-756.
    [41] Bannon H, Biggs JM. Seismic damage in reinforced concrete frames [J]. Structure Engineering, ASCE,1981,107(9):1713-1729.
    [42]顾祥林,孙飞飞.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002.
    [43] Cundall P A. A computer model for simulating progressive large scale movements in blocky rocksystems [C]//Proceedings of the Symposium of the International Society of Rock Mechanics, France:Nancy,1971:11-18.
    [44]石根华.数值流形方法与非连续变形数值分析新方法[M].裴觉民.北京:清华大学出版社,1997.
    [45] Clough R W. The finite element method in plane stress analysis[C]//Proceedings of2nd ASCE Conf. onElectronic Computation, Pittsburg, PA.,1960:78-89.
    [46]袁景,刘海卿,刘东.强震作用下钢筋混凝土框架结构倒塌破坏的三维仿真分析[J].防灾减灾工程学报,2010,30(增):115-119.
    [47]刘乾.钢筋混凝土框架结构连续性倒塌数值模拟[D].燕山大学.2011.
    [48]张富文,吕西林.钢筋混凝土平面框架连续性倒塌的仿真分析[J].结构工程师,2010,26(1):13-17.
    [49]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程,1999,15(4):62-68.
    [50] Lamb H. On the propagation of tremor over the surface of an elastic solid [J]. Philosn. Trans. Roy. Soc.Ser. A,1904,203:1-42.
    [51] Reissner E. Stationare axialsymm etrische durch eine Schuttelnde Massee rtregte Schw ingungeneineshom ogenen elstischen Halbraumes [J]. Ingenieur-Arch in,1936,7(6):381-396.
    [52] Sung TY. Vibrations in semi-infinite solids due to periodic surface loadings [A]. Symp. On Dyn. Testingof Soils [C]. ASTM-STPASTM,1987(156):35-64.
    [53] Richart F E. Foundation vibrations [J]. Soil Mech. and Found. Div., ASCE,1960,86(4):1-34.
    [54] Arnold R N, etc. Forced vibration of a body on infinite elastic solid [J]. Appl. Mech.[C],1955(248):391-400.
    [55] Bycroft G N. Forced vibration of rigid circular plate on a semi-infinite elastic space and on elasticstratum [J]. Philosophical Trans Royal Soc., London, U. K.,(248):327-368.
    [56] Lysmer J, Richart F E. Dynamic response of footings to vertical loading [J]. Soil Mech. Found. Div.,ASCE,1966,92(1):65-91.
    [57] Paramelee R A. Building-foundation interaction effects [J]. J. Engineering Mechanics Div, ASCE,1967,93(2):131-152.
    [58] Chopra A K, Perumalswami P R. Dam foundation interaction during earthquake [C]//Pro.4th WCEE[C],Santiago, Chile,1969:1088-1099.
    [59] Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media [J]. Journal of EngineeringMechanics, ASCE,1969,95(1):759-877.
    [60] Luco J E, West man R A. Dynamic response of circular footings [J]. J. Eng. Mech. Div, ASCE,1971,97(5):1381-1395.
    [61] Veletsos A S, Wei Y T. Lateral and rocking vibration of footings [J]. Journal of Soil Mechanics andFoundation, ASCE,1971,97(5):1227-1248.
    [62] Lysmer J, Wass G. Shear waves in plane infinite structures [J]. Eng. Mech. Div., ASCE,1972,98(1):85-105.
    [63] Kausel E. Forced vibrations of circular foundation on layered media [R]. Tech. Rep Res. Rep, R74-11,Dept. of Civil Eng MIT, Cambridge, Mass,1974.
    [64] Luco J E. Vibrations of a rigid disc on a layered viscoelastic media [J]. Nuclear Eng. Des,1976,36(3):325-340.
    [65] Dasgupta S. P, Kameswara, Rao N S V. Dynamics of rectangular footings by finite elements [J]. J.Geotech. Eng. Div., ASCE,1978,104(5):621-637.
    [66] Dominguez J. Dynamic stiffness of rectangular foundations [R]. Tech. Rep R78-20, Dept. of Civil Eng.MIT, Cambridge, Mass,1978.
    [67]王贻荪.半无限体表面在竖向集中谐和力作用下表面竖向位移的精确解[J].力学学报,1980,(4):386-391.
    [68] Karabalis D L, Beskos D E. Dynamic response of3-D rigid surface foundation by time domain BEM[J].Earthquake Engineering and Structural Dynamics,1984,13(2):73-93.
    [69] Karabalis D L, Beskos D E. Dynamic response of3-D rigid embedded foundation by the BEM [J]. Comp.Methods in App. Mech. and Eng.,1986,56(1):91-119.
    [70] Abascal R, Dominguez J.Vibration of footings on viscoelatic soil [J]. J. Eng. Mech., ASCE,1985,111(2):123-141.
    [71] Abascal R, Dominguez J. Vibration of footings on zoned viscoelatic soil [J]. J. Eng. Mech., ASCE,1986,112(5):433-447.
    [72] Ahmad S, Benerjel P K. Multi domain boundary element method for the dimensional problems in elasticdynamics [J]. Int. J. Numer. Methods in Eng.1988,26(4):891-991.
    [73] Ahmad S, Benerjel P K. Time domain transient elastodynamic analysis of3-D solids by BEM [J]. Int. J.Numer. Methods in Eng.1988,26(8):1709-1728.
    [74] Karabalis D L, Beskos D E, Dynamic analysis of3-D flexible foundation by the time domain FEM-BEM[J]. Soil Dynamics and Earthquake Engineering,1985,4(2):91-101.
    [75] Gamtanaros A P, Karabalis D L. Dynamic response of3-D flexible foundation by frequency domainFEM-BEM [J]. Earthquake Engineering and Structural Dynamics,1988,16(5):653-674.
    [76] Wolf J P, Chongmin Song, Dynamic-stiffness matrix in time domain of unbound medium byinfinitesimal finite element cell method [J]. Earthquake Engineering and Structural Dynamics,1994,23(10):1235-1249.
    [77] Han Y C. Dynamic vertical response of piles in nonlinear soil [J]. Journal of Geotechnical and Geoenviron mental Engineering, ASCE,1997,123(8):710-716.
    [78] Bernal D, Youseff A. A hybrid time2frequency domain formulation for nonlinear soil-structureinteraction [J]. Earthquake Engineering and Structural Dynamics,1998,27(6):670-685.
    [79] J. P. Wolf.土-结构动力相互作用[M].吴世明.北京:地震出版社.1989.
    [80] M.Nuray Aydmoglu. Consistent formulation of direct and substructure methods in nonlinearsoil-structure interaction [J]. Soil Dynamics and Earthquake Engineering.1993(12):403-410.
    [81]荣峰,刘建伟,王奎,等.基于土-结构相互作用的高层建筑三维地震反应分析[J].工程抗震与加固改造,2011,33(3):1-6.
    [82]刘洁平.高层建筑土-结构相互作用地震反应分析研究[D].哈尔滨:中国地震局工程力学研究所,2009.
    [83]冯晶.考虑桩-土-结构相互作用的上部结构Pushover分析[D].大连:大连理工大学,2012.
    [84]陈建城.强震作用下桩-土-结构相互作用体系平面非线性分析研究[D].长沙:湖南大学,2010.
    [85]杜建国,林皋,张洪海.结构地基相互作用研究的回顾与展望[J].工业建筑,2009,39(增):791-796.
    [86]郭远方.框架结构-筏板基础-地基共同作用分析[D].重庆:重庆大学.2011.
    [87]曾志强,郭志宇.地震作用下土-结构相互作用的接触效应研究[J].公路工程.2010,35(2):138-139.
    [88]陈少林,唐敢,刘启方,等.三维土-结构动力相互作用的一种时域直接分析方法[J].地震工程与工程振动,2010(02):24-31.
    [89]杨笑梅,关慧敏,张学胜,等.分析三维土-结构动力相互作用体系等效输入的时域显式有限元法[J].土木工程学报,2010(增l):535-540.
    [90] J. P. Wolf,Georges R. Darbre. Dunamic stiffness of unbounded medium based on damping-solventextraction [J]. EESD.1984,1293:385-401.
    [91]杜修力,熊建国.波动问题的级数解边界元法[J].地震工程与工程振动,1988,8(l):76-82.
    [92]陈清军,徐植信.层状土介质中群桩及其上部结构体系对任意入射地震波的响应[J].地程与工程振动.1994,14(1):36-44.
    [93]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报.1986,17(3):88-93.
    [94]陈健云,林皋.三维结线动力地穷元及其特性研究[J].岩土力学.1998,19(3):14-19.
    [95]赵崇斌,张楚汉,张光斗.用映射动力无穷元求解地基中的三维波动问题[J].中国科学(A辑),1955,31(10):1109-1120.
    [96]刘兴业.土-结构相互作用问题的边界元、有限元耦合法[J].振动工程学报.1994(3):45-58.
    [97] Capuani D,Klein R and Antes H,etal. Dynamic soil-structure interaction of coupled shear walls byboundary element method [J]. Earthq. Eng. Struct. Dyn.,1995,24(7):861-879.
    [98] Z. X. Lei,Y. K. Cheung,L. G Tham. Vertical response of single piles: transient analysis by time-domainBEM [J]. Soil Dynamics and Earthquake Engineering.1993(12):37-49.
    [99]陈新锋,金峰,张楚汉,等.一种分析层状介质-结构相互作用的多元耦合模型[J].清华大学学报,1997,37(11):82-86.
    [100]Housner G. W. Interaction of building and ground during an earthquake [J]. Bull. Seismol. Soc.Am.,47(3):179-186.
    [101]Abel, Sugimoto M and Ohki N. Dynamic behavior of pile foundation during earthquakes [C]//Proc.8thWCEE, San Francisco: Calif.1984:585-592.
    [102]武藤清.结构物动力设计[M].滕家禄.北京:中国建筑工业出版社,1984.
    [103]Sivanovic S. Seismic response of an instrumented reinforced concrete building founded on Piles [C]//Pro.12th WCEE, New Zealand: Schultz, A.2000:23-25.
    [104]Cardenas M. Soil-structure interaction in Mexico city [C]//Pro.12th WCEE, New Zealand: Schultz, A.2000:43-49.
    [105]Ganev T, Yamazaki F and Katayama T. Observation and numerical analysis of soil-structure interactionof a reinforced concrete tower [J]. Earthq. Eng. Struct. Dyn.,1995,24(4):491-503.
    [106]Kashima. Characteristics of strong earth quake motions observed at Hachinohe city hall [C]//Pro.12thWCEE, New Zealand: Schultz, A.2000:87-90.
    [107]尚守平,朱志辉,涂文戈,等.土-箱形基础-结构动力相互作用的模态试验分析[J].湖南大学学报,2004,31(5):7-76.
    [108]林皋.岩土地震工程及土动力学的新进展[J].世界地震工程,1992,8(2):22-29.
    [109]Kubo K. Vibration test of a structure supported by pile foundation [C]//Pro.4th WCEE. Santiago: Chile.1969(A6):1-12.
    [110]吕西林,陈跃庆,等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [111]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程.2002,18(4):48-54.
    [112]康帅,楼梦麟,殷琳.不同地震波输入机制下的结构振动台模型试验[J].同济大学学报.2011,39(9):1273-1279.
    [113]Robert M. Pyke. Nonlinear soil models for irregular cyclic loadings [J]. Journal of the GeotechnicalEngineering Division,1979,105(6):715-726.
    [114]Martin GR. Effects of system compliance on liquefaction tests [J].Journal of Geotechnical EngineeringDivision,1978,104(4):463.
    [115]沈珠江.一个计算砂土液化变形的等价粘弹性模型[C]//第四届全国土力学及基础工程学术会议论文集.北京:中国土木工程学会力学与基础工程学会主编.1986:199-207.
    [116]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980,2(3):10-20.
    [117]Iwan W D. On a class of models for the yield oehavior of continuous and composite system [J]. Appl.Mech.1967(34):612-617.
    [118]Roscoe K H, Schofield A N, Wroth C P. On the yielding of soils [J]. Geotechnique,1958,8(1):22-53.
    [119]Lade P V and Duncan J M. Elastoplastic stress-strain theory for cohesionless soil [J]. J GED, ASCE,1975,101(GT10):1037-1053.
    [120]Drucker D C and Prager W. Soil mechanics and plastic analysis or limit design [J]. Quart Appl Math,1952(10):157.
    [121]Kenzo Toki. Generalized method for non-linear seismic response analysis of a three dimensionalsoil-structure interaction system [J]. Earthquake engineering&structure dynamics,1987(15)945-961.
    [122]王礼立,杨黎明.固体高分子材料非线性粘弹性本构关系[C]//冲击动力学进展.合肥:王礼立,余同希,李永池.1992,88-116.
    [123]王仁,黄克智,朱兆祥.塑性力学进展[M].北京:中国铁道出版社,1998.
    [124]杨桂通.塑性动力学[M].北京:高等教育出版社,2000.
    [125]陈书宇.一种混凝土损伤模型和数值方法闭[J].爆炸与冲击,1998,18(4):349-357.
    [126]Tang,T. Behavior of concrete under dynamic compressive loading [D]. USA: he University of Florid,1990.
    [127]Winnicki, A.;C. J. Viscoplastic hoffman consistency model for concrete [J]. Computers and Structures,2001(79):7-19.
    [128]肖诗云,林皋,王哲. Drucker-Prager材料一致率型本构模型[J].工程力学,2003,20(4):147-151.
    [129]Carosio, A.;Willam, K.;Etse, G. On the consistency of viscoplastic formulations [J]. InternationalJournal of Solids and Structures,2000(37):7349-7369.
    [130]胡时胜,王道荣.冲击荷载下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [131]陈江瑛,王礼立.水泥砂浆的率型本构方程[J].宁波大学学报(理工版),2000,13(2):l-5.
    [132]王礼立,蒋昭辘,陈江瑛.材料微损伤在高速变形中的演化及其对率型本构关系的影响[J].宁波大学学报(理工版),1996,9(3):47-55.
    [133]Rubin, M. B.;Elatra, D.;Attia, A. V. Modeling additional compressibility of porosity and thethermo-mechanical response of wet porous rock with application to Mt. Helen tuff [J]. InternationalJournal of Solids and Structures,1996(33):761-793.
    [134]Johnson, G.R.;Cook, W. H. A Constitutive model and data for metals subjected to large strains, highstrain rates and high temperature [C]//Proceeding of Seventh International Symposium on Ballistics.1983:541-541.
    [135]Holmquist, T.J.;Johnson, G.R.;Cook, W.H. A computational constitutive for concrete subjected to largeStrains, high strain rates and high pressure [C]//Proceeding of the Fourteenth International Symposiumon Ballistics.1995:591-600.
    [136]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究明[J].爆炸与冲击,2003,23(2):188-192.
    [137]张凤国,李恩征.大应变、高应变率及高压强条件下混凝土的计算模型[J].爆炸与冲击,2002,22(3):198-202.
    [138]石少卿. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M].北京:中国建筑工业出版社,2011.
    [139]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [140]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [141]黄庆华.地震作用下钢筋混凝土框架结构空间倒塌反应分析[D].上海:同济大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700