用户名: 密码: 验证码:
结构时域辨识方法及传感器优化布置问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对重要土木工程结构进行健康监测和状态评估,是当前世界范围内的热点课题;而包括参数识别与荷载识别两类逆问题在内的结构动力学系统辨识技术,是结构健康监测与状态评估理论的核心内容。近几十年来,国内外学者在这一领域开展了大量研究工作,提出了许多理论与算法,主要分为频域法、时域法以及在此基础上发展出来的其他方法。与频域法相比,时域法直接利用时域信号进行辨识,在工程实际应用中更为方便,所以近年来得到广泛关注,取得大量研究成果。然而,受结构复杂性及环境干扰等因素的影响和制约,这些成果在实际应用中还存在一些有待解决的问题,如输出数据的不完备性、测量噪声和模型误差等的不确定性以及逆问题的不适定性等,都会对辨识精度产生不利影响。此外,系统辨识之前需要对结构进行动力测试,但测试传感器只能布设在有限结构位置上,传感器布置的合理与否会对辨识结果产生重要影响。
     针对上述问题,本文开展了时域系统辨识问题的算法优化及传感器优化布置方法的研究。论文的主要工作和取得的成果如下:
     (1)基于时域动态荷载识别方程的不适定分析,从识别方程的性态出发,提出了一种新的传感器优化布置准则——最小不适定性准则,并基于该准则提出了两种传感器数目确定条件下的位置优化方法:一种是基于结构系统马尔科夫参数矩阵条件数的直接算法,其缺点是当可能的传感器组合数目较大时,计算较为耗时:另一种是基于马尔科夫参数矩阵相关性分析的快速算法,定义了可以描述马尔科夫参数矩阵性态的相关性矩阵及传感器布置的优化指标。数值模拟结果表明,由两种传感器优化布置方法确定的最优传感器布置均可获得稳定性好、计算精度高的荷载识别结果,可用于解决时域动态荷载识别的传感器优化布置问题;随着备选传感器组合数目的增加,直接算法的计算时长会显著增加,而快速算法几乎不变,计算效率明显占优。
     (2)基于转换矩阵的概念,将动态荷载识别的状态空间法拓展成了外界激励未知条件下的结构时域响应重构方法,仅利用部分测点的动态响应,通过转换矩阵重构出其他未测试位置处的响应,可用于解决时域辨识中输出数据不完备的问题。此外,还提出了一种传感器两步布设法:第一步,以重构方程具有稳定解为目标,基于单边Jacobi变换法和QR正交三角分解对全部备选测点对应的马尔科夫参数矩阵进行奇异值分解,将非零奇异值对应的传感器位置作为初始传感器布置;第二步,采用逐步积累法,以噪声效应放大指标最小为目标,在初始布置的基础上逐步增加传感器,直至达到收敛要求后获得最终传感器布置。数值模拟结果表明,该方法可根据工程实际需要,在保证重构方程具有稳定解的前提下,灵活确定最终传感器布置,获得所需的重构精度。
     (3)针对振动响应灵敏度损伤识别方法,提出了一种修正Tikhonov正则化方法,可用于解决同时考虑测量噪声和模型误差干扰的条件下,传统Tikhonov正则化解不易收敛的问题。首先,对边界约束实施阈值控制,以保证解的物理意义;其次,对确定正则化参数的L-曲线方法进行修正;再次,对测量响应进行切比雪夫多项式去噪处理,减小噪声对识别结果的不利影响。数值模拟结果表明,当同时考虑噪声干扰和模型误差时,修正Tikhonov正则化方法可以使待识别的结构刚度参数逐渐收敛到一个相对正确的路径上,其损伤识别精度明显优于传统正则化方法。
     (4)针对振动响应灵敏度损伤识别方法,提出了一种基于多重优化目标的传感器优化布置方法。首先,推导了结构刚度差异参数对三种典型不确定性因素——模型误差、测量噪声和荷载误差的灵敏度,进而得到不同因素所对应的识别误差协方差矩阵;然后,基于识别误差最小准则,定义了考虑多重不确定性因素的目标函数,并采用启发式搜索算法,获得了多重优化目标问题的Pareto最优解。数值模拟结果表明,考虑多重不确定性因素的条件下,由该方法确定的最优传感器布置,其损伤识别的准确性和可靠性均比较高。
Structural health monitoring and condition assessment on important civil engineering structures is an active area of research. Structural system identification including parameter identification and force identification plays an important role in structural health monitoring and condition assessment. Much attention has been devoted to this area over the last decades and various methods have been proposed, which are either in the frequency domain or time domain. Increasing interests have been focused on time domain methods in recent years, because comparing to frequency domain methods, time domain methods can directly use the measured signal and they are much easier for practical application. However, duo to the complexity of the structure and influences of environmental perturbations, there are still some problems needed to be solved, e.g. incomplete measurement data, multiple uncertainties such as noise and model errors and ill-conditioning of the identification equation etc., have adverse effects on identification accuracy. Moreover, dynamic tests should be carried out before structural system identification, and the degrees of freedom (DOFs) with sensors are limited comparing to the DOFs of the whole structure. Thus, the accuracy of system identification may vary significantly with different spatial location of the response measurements.
     The methods of algorithm optimization and optimal sensor placement for structural system identification including force identification and damage identification in time domain are presented in this dissertation. The main contents and achievements are as follows:
     (1) A new criterion for optimal sensor placement is presented based on the ill-conditioning analysis of the force identification equation in state space, and it is called criterion of the minimization of ill-conditioning. Two different sensor placement methods with determined number of sensor based on the proposed criterion are presented. The first one is based on direct computation of the condition number of the system Markov parameter matrix, and it would be time consuming when a large number of candidate combinations of sensor locations is considered. The second approach is based on the correlation analysis of the system Markov parameter matrix. A sensor correlation matrix is defined and the correlation criterion, which can indicate the ill-conditioning of the Markov parameter matrix, is introduced. Results from numerical simulations reveal that the performances of both methods are similar when the number of candidate combination of sensors is small. However, when there are a large number of candidate combinations, the method based on correlation analysis of the Markov parameter matrix performs better with consistently good sensor placement for force identification and much less computation effort.
     (2) Dynamic force identification in state space is transformed to structural dynamic response reconstruction. The unmeasured structural responses can be reconstructed from limited measured responses. A new two-step sensor placement method is proposed for better prediction of the dynamic response reconstruction. In the first step, the system Markov parameter matrix corresponding to candidate sensor locations are singular value decomposed with One-sided Jacobi-transformation and QR decomposition methods. Sensor locations with non-zero singular values are combined as the initial sensor combination. In the second step, a measurement noise effect index is defined and the number and locations for the final sensor placement can be obtained from a heuristic forward sequential sensor placement algorithm based on the minimization of the noise effect index. Results of numerical simulations reveal that the sensors selected from the proposed method would lead to acceptable error of response reconstruction even with measurement noise.
     (3) Damage identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains measurement noise and model errors, the identification results from Tikhonov Regularization method often diverge after several iterations. A Modified Tikhonov Regularization method is presented to solve the above problem. New side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. The L-curve method for determining the regularized parameter is revised. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. Results from numerical simulations reveal that the proposed method can lead the identified physical parameter converge to a relative correct direction and it has superior performance than the traditional Tikhonov Regularization method.
     (4) A new sensor placement method with multiple objectives is proposed for damage identification based on sensitivity approach from dynamic response. The covariance matrices of the identification error caused by the model errors, measurement noise and errors in the exciting forces are calculated separately. The sensor placement problem is then formulated as a multi-objective optimization problem of finding the Pareto optimal sensor combinations that compromise the criteria which are defined separately based on the covariance matrices corresponding to the three different kinds of uncertainties. A heuristic algorithm for Pareto optimal sensor placement is applied to solve the multi-objective problem. Results from numerical simulations reveal that the sensors selected from the proposed method would lead to acceptable errors of damage identification even with multi-uncertainties.
引文
[1]Adams R D, Cawley P and Pye C J, et al. A vibration technique for non-destructively assessing the integration of structures [J]. Journal of Mechanical engineering science,1978,20:93-100.
    [2]Amaravadi V K, Rao V, Kovai L R. Structural health monitoring using wavelet transforms [A]. Proceedings of SPIE 4327 [C], Bellingham, WA,2001:258-269.
    [3]Amaravadi V K, Mitchell K, Rao V S, et al. Structural integrity monitoring of composite patch repairs using wavelet analysis and neural network [A]. NED for Health Monitoring and Diagnostics[C], San Diego,2002:4701-4718.
    [4]Alvin K F. Finite element model updating via Bayesian estimation and minimization of dynamic residuals [J]. AIAA Journal,1997,35(5):879-886.
    [5]Bakushinskii A B. Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion [J]. Computational Mathematics and Mathematical Physics,1984,24(2):181-182.
    [6]Banan M R, Hjelmstad K D. Parameter estimation of structures from static response, Ⅰ: computational aspects [J]. Journal of Structural Engineering,1994a,120(11):3243-3258.
    [7]Banan M R, Hjelmstad K D. Parameter estimation of structures from static response, Ⅱ: numerical simulation studies [J]. Journal of Structural Engineering,1994b,120(11):3259-3283.
    [8]Beck J L. Statistical system identification of structure [A]. Proceeding of 5th International Conference on Structure Safety and Reliabilit, ASCE [C], New York,1989:1395-1402.
    [9]Beck J L. System identification methods applied to measured seismic response [A]. Proceeding of 11th World Conference on Earthquake Engineering, Elsevier [C], Acapulco, Mexico,1996.
    [10]Beck J L, Katafygiotis L S. Updating models and their uncertainties I:Bayesian statistical Framework [J]. Journal of Engineering Mechanics.1998,124(4):455-461.
    [11]Berman A. Improvement of analytical dynamics models using modal test data [A]. Proceeding of the 21st SDM conference, AIAA [C],1980:809-814.
    [12]Burdekin F M. Nondestructive testing of welded structural steelwork [A]. Proceedings of the institute of Civil Engineering Structures and Buildings[C],1993,99(1):89-95.
    [13]Caravani P, Waston M L, Thomson W T. Recursive least-squares time domain identification of structural parameters [J]. Journal of Applied Mechanics,1977,44(2):135-140.
    [14]Chance J E, Worden K, Tomlinson G R. Processing signals for damage detection in structures using neural networks [A]. Smart Structures and Materials 1994:Smart Sensing, Processing, and Instrumentation, SPIE [C],1994,2191:176-186.
    [15]Chen J C, Garba J A. On orbit damage assessment for large space structures [J]. AIAA Journal, 1987,26(9):1119-1126.
    [16]Cheung S H, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters [J]. Journal of Engineering Mechanics,2009,135(4):243-255.
    [17]Chiu P L. A simulated annealing algorithm to support the sensor placement for target location [A]. Proceedings of Canadian Conference on Electrical and Computer Engineering [C], Niagara Falls, 2004,2:867-870.
    [18]Chow H M, Lam H F, Yin T, et al. Optimal sensor configuration of a typical transmission tower for the purpose of structural model updating [J]. Structural Control and Health Monitoring,2011, 18:305-320.
    [19]Chung Y T, Moore D, On-orbit sensor placement and system identification of space station with limited instrumentations [A]. Proceedings of the 11th IWAC conference [C],1993,41-46.
    [20]Cobb R G, Liebst B S. Sensor location prioritization and structural damage localization using minimal sensor information [J]. AIAA Journal,1996,35(2):369-374.
    [21]Cobb R G, Liebst B S. Structural damage identification using assigned partial eigenstructure [J]. AIAA Journal,1997,35(1):152-158.
    [22]Cole H J. On line failure detection and damping measurement of aerospace structures by random decrement signatures [A]. NASA CR2205, National Aeronautics and Space Administration[C], Washington D. C.,1973.
    [23]Demmel J, Veselic K. Jacobi's method is more accurate than QR [J]. SIAM Journal on Matrix Analysis and Applications,1992,13(4):1204-1245.
    [24]Denoyer K K, Peterson L D. Model updating using modal contribution to static flexibility error [J]. AIAA Journal,1997,35(11):1739-1745.
    [25]Desanghere G, Snoeys R. Indirect identification of excitation forces by modal coordinate transformation [A]. Proceedings of the 3rd International Modal Analysis Conferece [C], USA, 1985:685-690.
    [26]Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification [J]. AIAA Journal.1996,34(12):2615-2621.
    [27]Doebling S W. Hemez F M. Peterson L D, et al. Improved damage location accuracy using strain energy-based mode selection criteria [J]. AIAA Journal,1997,35(4):693-699.
    [28]Elkordy M F, Chang K C, Lee G C. Neural networks trained by analytical simulated damage states [J]. Journal of computing in Civil Engineering,1993,7(2):130-145.
    [29]Fabunmi J A. Effects of structural modes on vibratory force determination by pseudo-inverse technique [J]. AIAA Journal,1986,24(3):504-509.
    [30]Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors [J]. AIAA Journal,1968, 6(12):2426-2429.
    [31]Franklin G, Powell J, and Workman M. Digital Control of Dynamic Systems [M]. Massachusetts: Addison-Wesley,1990.
    [32]Friswell M I, Penny J E T, Wilson D A L. Using vibration data and statistical measures to locate damage in structures [J]. The International Journal of Analytical and Experimental Modal Analysis,1994,9(4):239-254.
    [33]Gaul L, Hurlebaus S, Identification of the impact location on plate using wavelets [J]. Mechanical System and Signal Processing,1997,12(6):783-795.
    [34]Golub G H, Reinsch C. Singular value decomposition and least squares solutions [J]. Numerische Mathematik,1970,14(5):403-420.
    [35]Golub G H, Heath M, Wahba G, Generalized cross-validation as a method for choosing a good ridge parameter [J]. Technometrics,1979,21:215-223.
    [36]Golub G H, Van Loan C F. Matrix computations, third edition [M]. Johns Hopkins:Baltimore, 1996.
    [37]Gordis J H. An analysis of the improved reduced system (IRS) model reduction procedure [A]. Proceedings of the 10th International Modal Analysis Conference [C], San Diego, California,1992, 471-479.
    [38]Groetsch C. Inverse problems in the mathematical sciences [M]. Vieweg:Braunschweig,1993.
    [39]Guyan R J. Reduction of stiffness and mass matrices [J]. AIAA Journal,1974,44(2):380-394.
    [40]Hadamard J. Lectrures on the Cauchy problem:in Linear partial differential equations [M]. New Haven:Yale University Press,1923.
    [41]Hanis T, Hromcik M. Optimal sensors placement and spillover suppression [J]. Mechanical Systems and Signal Processing,2012,28:367-378.
    [42]Hansen P C. The discrete Picard condition for discrete ill-posed problems [J]. BIT Numerical Mathematics,1990,30(4):658-672.
    [43]Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. Society for Industrial and Applied Mathematics,1992.34(4):561-580.
    [44]Hansen P C. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SLAM Journal on Scientific Computing,1993,14(6):1487-1503.
    [45]Hansen P C. Rank-Deficient and Discrete Ill-posed Problems [M]. SIAM, Philadelphia,1998.
    [46]Hansen P C. Deconvolution and regularization with Toeplitz matrices [J]. Numerical Algorithms, 2002,29:323-378.
    [47]He J. Analytical stiffness matrix correction using measured vibration modes [J]. Nodal Analysis, 1986,1(3):4-9.
    [48]He J, Guan X, Liu Y. Structural response reconstruction based on empirical mode decomposition in time domain [J]. Mechanical Systems and Signal Processing,2012,28:348-366.
    [49]Hemez F M. Practical guide to high accuracy identification via a finite element model update methodology [J]. The international Journal of Analytical and Experimental Modal Analysis,1995, 10(3):152-166.
    [50]Heo M L, Satpathi D. Optimal transducer placement for health monitoring of long span bridge [J]. Soil Dynamics and Earthquake Engineering,1997.16:495-502.
    [51]Hoshiya M, Satio E. Structural identification by extended Kalman filter [J]. Journal of Engineering Mechanics,1984,110(12):1757-1770.
    [52]Hou Z, Noori M, Amand R S. Wavelet-based approach for structural damage detection [J]. Journal of Engineering Mechanics, ASCE,2000,126(7):677-683.
    [53]Housner G W, Bergman L A, Caughey T K, et al., Structural Control:Past, Present and Future [J]. Journal of Engineering Mechanics,1997,123(9):897-971.
    [54]Ibrahim S R. Random decrement technique for modal identification of structures [J]. Journal of Spacecraft and Rocket,1977,14(11):696-700.
    [55]Imamovic N, Moore D. Model validation of large finite element model using test data [D]. London:Imperial College,1998.
    [56]Imregun M, Visser W J, Ewins D J. Finite element model updating using frequency response function data I:Theory and initial investigation [J]. Mechanical Systems and Signal Processing. 1995a,9(2):187-202.
    [57]Imregun M, Sanliturk K Y, Ewins D J. Finite element model updating using frequency response function data II:Case study on a medium-size finite element model [J]. Mechanical Systems and Signal Processing,1995b,9(2):203-213.
    [58]Inoue H, Kishimoto K, Shibuya T, et al., Estimation of impact load by inverse analysis:Optimal transfer function for inverse analysis [J]. JSME international Journal. Series 1. Solid mechanics, strength of materials,1992,35-1 (4):420-427.
    [59]Jacquelin E, Bennani A, Hamelin P. Force reconstruction:Analysis and regularization of a deconvolution problem [J]. Journal of Sound and Vibration,2003,265(1):81-107.
    [60]Jankowski L. Off-line identification of dynamic loads [J]. Structural and Multidisciplinary Optimization,2009,37(6):609-623.
    [61]Jenks W G. Squids for nondestructive evaluation [J]. Journal of Physics and Applied Physics, 1997,30(3):293-323.
    [62]Juang J N, Phan M, Horta L G, et al. Identification of observer/Kalman filter Markov parameters: Theory and experiment [J]. Journal of Guidance, Control and Dynamics,1993,16(2):320-329.
    [63]Kam T Y, Lee T Y. Detection of cracks in strucutres using modal test data [J]. Engineering Fracture Mechanics,1992,42(2):381-387.
    [64]Kammer D C. Optimal Approximation for Residual Stiffness in Linear System Identification [J]. AIAA Journal,1988,26(1):104-112.
    [65]Kammer D C. Sensor placement for on-orbit modal identification and correlation of space structures [J]. Journal of Guidence:Control and Dynamics,1991,14(2):251-259
    [66]Kammer D C. Effects of model error on sensor placement for on-orbit modal identification of large space structures [J]. Journal of Guidance Control and Dynamics,1992a,15(2):334-341.
    [67]Kammer D C. Effects of noise on sensor placement for on-orbit modal identification of large space structures [J]. Journal of Dynamic Systems, Measurement, and Control,1992b,114(3): 436-443.
    [68]Kammer D C. Input force reconstruction using a time domain technique [J]. ASME Journal of Vibration and Acoustics.1998,120(4):868-874.
    [69]Kannan A, Mao G, Vucetiv B. Simulated annealing based wireless sensor network localization [J]. Journal of Computers,2006,1(2):15-22.
    [70]Kaouk M, Zimmerman D C. Structural damage assessment using a generalized minimum rank perturbation theory [J]. AIAA Journal,1994,32(4):836-842.
    [71]Kim H M, Bartkowicz T J. A two-step structural damage detection approach with limited instrumentation [J]. Journal of Vibration and Acoustics,1997,119(2):258-264.
    [72]Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing[J]. Science,1983,220: 671-680.
    [73]Ko J M, Wong C W, Lam H F. Damage detection in steel framed structures by vibration measurement approach [A]. Proceedings of the 12th International Modal Analysis Conference [C], 1994:280-286.
    [74]Kozin F. Estimation of parameters for system driven by white noise excitation [A]. Proceedings of IUTAM Symposium on Random Vibrations and Reliability [C], Frankfurt Oder, Germany,1982: 163-173.
    [75]Kozin F, Natke H G. System identification techniques [J]. Structure Safety,1986,3(3/4):216-316.
    [76]Kreiginger T J, Wang M L, Schreyer H L. Non-parametric force identification from structural response[J]. Soil Dynamics and Earthquake Engineering,1992,11(5):269-277.
    [77]Kung D N, Yang J C S, Bedewi N E, et al. Time domain system identification of structural parameters[J]. Journal of Applied Mechanics,1977,44(2):135-140.
    [78]Lam H F, KOM J, Wong C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis[J]. Journal of Sound and Vibration,1998,210(1): 791-808.
    [79]Lanczos C, Linear differential operators [M], Van Nostrand:New York,1961.
    [80]Larson C B, Zimmerman D C, Marek E L. A comparison if modal test planning techniques: excitation and sensor placement using NASN 8-bay truss [A]. Proceedings of 12th IMAC coference[C],1993,41-46.
    [81]Law S S, Chan T H T, Zeng Q H. Moving force identification:a time domain method [J]. Journal of Sound and Vibration,1997,201(1):1-22.
    [82]Law S S, Shi Z Y, Zhang L M. Structural damage detection from incomplete and noisy modal test data [J]. Journal of Engineering Mechanics,1998,124(11):1280-1288.
    [83]Law S S, Bu J Q, Zhu X Q, et al. Moving load identification on a simple supported orthotropic plate[J]. International Journal of Mechanical Sciences,2007,49(11):1262-1275.
    [84]Law S S, Wu S Q, Shi Z Y. Moving load and prestress identification using wavelet-based method [J]. Journal of Applied Mechanics, Transcations ASME,2008,75(2):0210141-0210147.
    [85]Law S S, Li J, Ding Y. Structural response reconstruction with transmissibility concept in frequency domain [J]. Mechanical Systems and Signal Processing,2010,25(3):952-968.
    [86]Law S S, Ding Y. Substructure methods for structural condition assessment [J]. Journal of Sound and Vibration,2011,330(15):3606-3619.
    [87]Lee J J, Yun C B. Two-step approaches for effective bridge health monitoring [J]. Structural Engineering and Mechanics,2006,23(1):75-95.
    [88]Lee U, Shin J. A frequency response function-based structural damage identification method [J]. Computers and Structures,2002,80(2):117-132.
    [89]Lew J S. Using transfer function parameter changes for damage detection of structures [J]. AIAA Journal.1995,33(11):2189-2193.
    [90]Li C, Smith S W. A hybrid approach for damage detection in flexible structures [J]. Journal of Guidance Control and Dynamics,1995,18(3):419-425.
    [91]Li D S, Li H N, Fritzen C P. The connection between effective independence and modal kinetic energy methods for sensor placement [J]. Journal of Sound and Vibration,2007,305(4-5): 945-955.
    [92]Li X Y, Law S S. Damage identification of structures including system uncertainties and measurement noise [J]. AIAA Journal,2008,46(1):263-276.
    [93]Liang Y C, Zhou C G, Wang Z S. Identification of restoring forces in Non-linear vibration systems based on natural networks [J]. Journal of Sound and Vibration,1997,206(1):103-108.
    [94]Lim T W, Kashangaki T A L. Structural damage detection of space truss structure using best achievable eigenvectors [J]. AIAA Journal,1994,32(5):1049-1057.
    [95]Lim T W. Structural damage detection using constrained eigenstructure assignment [J]. Journal of Guidance, Control and Dynamics,1995,18(3):411-418.
    [96]Lin F Y S, Chiu P L. A near-optimal sensor placement algorithm to achieve complete coverage-discrimination in sensor networks [J]. Communications Letters, IEEE,2005,9(1): 43-45.
    [97]Lin R M, Ewins D J. Model updating using FRF data [A]. Proceedings of the 15th International Seminar on Modal Analysis[C], Belgium,1990:141-162.
    [98]Liu Y, Jin S, Lin Z, et al. Optimal sensor placement for fixture fault diagnosis using Bayesian network [J], Assembly Automation,2011,31 (2):176-181.
    [99]Liu Y, Shepard Jr W S. An improved method for the reconstruction of a distributed force acting on a vibrating structure [J]. Journal of Sound and Vibration,2006,291:369-387.
    [100]Lu Z R, Law S S. Features of dynamic response sensitivity and its application in damage detection [J]. Journal of Sound and Vibration,2007,303(1-2):305-329.
    [101]Maia N M M, Silva J M M, Almas A M, et al. Damage detection in structures:from mode shape to frequency response function method[J]. Mechanical Systems and Signal Processing,2003,17(3): 489-498.
    [102]Marks M, Niewiadomska-Szynkiewicz E. Genetic algorithm and simulated annealing approach to sensor network localization [A], Proceedings of the KAEiOG'07 Conferece[C], Bedlewo, Poland, 2007:193-202.
    [103]Mares C, Surace C. An application of genetic algorithms to identify damage in elastic structures [J]. Journal of Sound and Vibration,1996,195(2):195-215.
    [104]Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method [J]. Journal of Sound and Vibration,1998,216(5):791-808.
    [105]Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculation by fast computing machines[J]. Journal of Chemical Physics,1953,21(6):1092-1108.
    [106]Moore C, Application of singular value decomposition to the design analysis and control of industrial processes[A]. Proceedings of American Control Conference [C], Seattle, Washington, 1986:643-650.
    [107]Moore E H. On the reciprocal of the general algebraic matrix [J]. Bulletin of the American Mathematical Society,1920,51:406-413.
    [108]Morozov V A. Methods for solving incorrectly posed problems [M]. New York:Springer, 1984.
    [109]Mushini R, Simon D. On optimization of sensor selection for aircraft gas turbine engines [A]. Proceedings of the 18th International Conference on System Engineering, IEEE [C],2005,9-14.
    [110]Narasimhan S, Mosterman P, Biswas G. A systematic analysis of measurement selection algorithm for fault isolation in dynamic systems [A]. Proceedings of the 9th International Workshop on Principle of Diagnosis [C],1998:94-101.
    [111]Ory H, Glaser H, Holzdeppe D. The reconstruction of force function based on aeroelasticity and structural dynamics [A]. Proceedings of 2nd International Symposium on Aeroelasticity and structural dynamics [C], Aschen, FRG,1985.
    [112]Ory H, Glaser H, Holzdeppe D. Quality of modal analysis and reconstruction of forcing function based on measured output data [A]. Proceedings of 4th IMAC [C], Los Angeles, CA,1986: 350-357.
    [113]Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes [J]. Journal of Sound and Vibration,1991,145(2):321-332.
    [114]Pandey A K, Biswas M. Damage detection in structures using changes in flexibility [J]. Journal of Sound and Vibration,1994,169:3-17
    [115]Papadimitriou C, Beck J L, Au S. Entropy-based optimal sensor location for structural model updating [J]. Journal of Vibration and Control,2000,6:781-800.
    [116]Papadimitriou C. Optimal sensor placement methodology for parametric identification of structural systems [J]. Journal of Sound and Vibration,2004,278:923-947.
    [117]Papadimitriou C. Pareto optimal sensor locations for structural identification [J]. Computer Methods in Mpplied Mechanics and Engineering,2005,194:1655-1673.
    [118]Papadimitriou C, Lombaert G. The effect of prediction error correlation on optimal sensor placement in structural dynamics [J]. Mechanical Systems and Signal Processing,2012,28: 105-127.
    [119]Park N G, Park Y S. Damage detection using spatially incomplete frequency response functions [J]. Mechanical Systems and Signal Processing,2003,17(3):519-532.
    [120]Penny J E T, Wilson D A L, Friswell M I. Damage location in structures using vibration data [A], Proceedings of the 11th IMAC [C],1993:861-867.
    [121]Penny J E T, Friswell M I, Garvey S D. Automatic choice of measurement location for dynamic testing [J]. AIAA Journal,1994,32(2):407-414.
    [122]Penrose R. Ageneralized inverse for matrices [A]. Proceeding of the Cambridge Philosophical Society [C],1955,51:406-413.
    [123]Perera R, Torres R. Structural damage detection via modal data with generic algorithms [J]. Journal of Structural Engineering,2006,132(9):1491-1501.
    [124]Pezerat C, Guyader J L. Identification of vibration sources [J]. Applied Acoustics,2000,61(3): 309-324.
    [125]Phan M, Juang J N, Longman R W. On Markov parameters in system identification [M]. NASA Technical Memorandum 104156,1991.
    [126]Phan M, Horta L G, Juang J N, et al. Linear system identification via an asymptotically stable observer [J]. Journal of Optimization Theory and Applications,1993,79 (1):59-86.
    [127]Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods [A]. Advances in Large Margin Classifiers [C]. Cambridge, MA,2000.
    [128]Popovices J S. A survey of developments in ultrasonic NDE of concrete [J]. IEEE Transactions on Ultrasonic Ferroelectrics and Frequency control,1994,41(1):140-143.
    [129]Rafajlowicz E. Optimal experimental design for identification of linear distributed-parameter systems:Frequency domain approach [J]. Transaction on Automatic Control,1983,28(7): 806-808.
    [130]Reich G W, Park K C. Experimental application of a structural health monitoring methodology [A]. Proceedings of SPIE 3988, Smart Structures and Materials 2000:Smart Systems for Bridge, Structure, and Highways[C],2000:143-153.
    [131]Reynier M, Hisham A K. Sensor location for updating problems [J]. Mechanical Systems and Signal Processing,1999,13(2):297-314.
    [132]Ribeiro A M R, Silva J M M, Maia N M M. On the generalisation of the transmissibility concept [J]. Mechanical Systems and Signal Processing,2000,14(1):29-36.
    [133]Robert C P, Casella G. Monte Carlo Statistical Methods[M]. Springer:New York,1999.
    [134]Rudisill C S, Chu Y Y. Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors [J]. AIAA Journal,1975,13(6):834-837
    [135]Safak E. Adaptive modeling identification and control of dynamic structural system. Ⅰ:Theory [J]. Journal of Engineering Mechanics,1989a,115(11):2386-2405.
    [136]Safak E. Adaptive modeling identification and control of dynamic structural system:Ⅱ: Applications [J]. Journal of Engineering Mechanics,1989b,115(11):2406-2429.
    [137]Salama M, Rose T, Garba J. Optimal placement of exciters and sensor for verification of large dynamical systems [A]. Proceedings of SDM conference, AIAA-87-0782[C],1987:1024-1031.
    [138]Salawu O S, Williams C. Damage location using vibration mode shapes [A]. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series [C]. USA:SPIE International Society for Optical,1994,2251:933.
    [139]Salawu O S. Detection of structural damage through changes in frequency:a review [J]. Engineering Structures,1997,19(9):718-723.
    [140]Sampaio R R C, Maia N M M, Silva J M M. Damage detection using the frequency response function curvature method [J]. Journal of Sound and Vibration,1999,226(5):1030-1042.
    [141]Shih Y T, Lee A C, Chen J H. Sensor and actuator placement for modal identification [J]. Mechanical Systems and Signal Processing,1998,12(5):641-659.
    [142]Sohn H, Law K H. Application of load-dependent Ritz vectors to Bayesian probabilistic damage detection [J]. Probabilistic Engineering Mechanics,2000,15(2):139-153.
    [143]Starkey J M, Merrill G L. On the ill-conditioned nature of indirect force measurement techniques [J]. International Journal of Analytic and Experimental Modal Analysis,1989,4(3):103-108.
    [144]Staszewski W J, Worden K. An overview of optimal sensor location methods for damage detection [A]. Proceedings of SPIE 4326 [C], San Diego, USA,2001:179-187.
    [145]Strang G. Linear algebra and its applications,3rd edition [M], Harcourt Brace Jovanovich Inc.: San Diego,1998.
    [146]Sutter T R, Camarda C J, Walsh J L, et al. Comparison of several methods for calculating vibration mode shape derivatives[J]. AIAA Journal,1998,26(12):1506-1511
    [147]Tan R C E, Andrew A L. Computing derivatives of eigenvalues and eigenvectors [J]. Journal of Numerical Analysis,1989,9(1):111-122
    [148]Tikhonov A N. Solution of Incorrectly formulated problems and the regularization method [J], Soviet Mathematics Doklady,1963,4:1035-1038.
    [149]Tikhonov A N, Goncharsky A, Stepanov V V, et al. Numerical Methods for the Solution of Ill-Posed Problems [M]. Boston:Kluwer Academic Publishers,1995.
    [150]Titurus B, Friswell M I, Starek L. Damage detection using generic elemens:Part Ⅰ.Model updateing [J]. Computers and Structures,2003a, (81):2273-2286.
    [151]Titurus B, Friswell M I, Starek L. Damage detection using generic elemens:Part Ⅱ.Damage detection [J]. Computers and Structures,2003b, (81):2287-2299.
    [152]Torkamani M A M, Ahmadi A K. Stiffness identification of two and three dimensional frames [J]. Journal of Earthquake Engineering and Structural Dynamics,1988,16(8):1157-1176.
    [153]Trendafilova I, Heylen W, Van Brussel H. Measurement point selection in damage detection using the mutual information concept [J]. Smart Material and Structure,2001,10(3):528-533.
    [154]Van Loan C F. Computing integrals involving the matrix exponential [J]. Automatic Control,1978, 23(3):395-404.
    [155]Vanik M W, Beck J L, Au S K. Bayesian Probabilistic Approach to Structural Health Monitoring [J]. Journal of Structural Engineering, ASCE,2002,126(7):736-745.
    [156]Venkatasubramanian V, Chan K. A neural network methodology for process fault diagnosis [J]. Journal of AICHE,1989,35(12):1993-2002.
    [157]Visser W, Imregun M. A technique to update finite element models using frequency response data [A]. Proceedings of the 9th International Modal Analysis Conference[C], Florence,1991:462-468.
    [158]Wahba G. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV [A]. Advances in Kernel Methods-Support Vector Learning [C]. Cambridge, Ma,1999:69-88.
    [159]Wang C N, Chen J C, To W M. Perturbation method for structural damage detection of multistory buildings [A]. Proceedings of the 7th International Modal Analysis Conference[C], Las Vegas, Nevada,1989,1:87-94.
    [160]Wang X, Hu N, Fukunaga H, et al. Structural damage identification using static test data and changes in frequencies [J]. Engineering Structures,2001,23:610-621
    [161]Wang Z, Lin R M, Lim M K. Structural damage detection using measured FRF data[J]. Computer methods in applied mechanics and Engineering,1997,147:187-197.
    [162]West W M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specisen [A]. Proceedings of the 4th international modal analysis conference[C], 1986(1):1-6.
    [163]Wu T F, Lin C J, Weng R C. Probability estimates for multi-class classification by pairwise coupling [J]. The Journal of Machine Learning Research,2004,5:975-1005.
    [164]Xu H, Humar J. Damage detection in a girder bridge by artificial neural network technique [J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(6):450-464.
    [165]Xia Y, Hao H. Measurement selection for vibration-based structural damage identification [J]. Journal of Sound and Vibration,2000,236(1):89-104.
    [166]Yan G, Zhou L. Impact load identification of composite structure using genetic algorithms [J]. Journal of Sound and Vibration,2009,319(3-5):869-884.
    [167]Yang J, Huang H. Substructure damage identification using sequential nonlinear Lse Method [A]. 4th International Conference on Earthquake Engineering[C], Taipei, Taiwan,2006.
    [168]Yao L, Sethares W, Kammer D C. Sensor placement for on orbit modal identification via genetic algorithm [J].AIAA Journal,1993,31:1167-1169.
    [169]Yen J, Wang L. Application of Statistical Information Criteria for Optimal Fuzzy Model Construction [J]. IEEE, Transaction on Fuzzy System,1998,6(3):362-372.
    [170]Yuen K V, Beck J L, Katafygiotis L S. Unified probabilistic approach for model updating and damage detection [J]. Journal of Applied Mechanics, Transactions ASME,2006,73(4):555-564.
    [171]Yun C B, Bahng E Y, Substructural identification using neural networks [J]. Computers and Structures,2000,77:41-52.
    [172]Yun C, Lee H. Substructural identification for damage estimation of structures [J]. Structural Safety,1997,19(1):121-140.
    [173]Zhang D W, Li S. Succession-level approximate reduction (SAR) technique for structure dynamic modal[A]. Proceedings of the 13th IMAC conference [C],1995,435-441.
    [174]Zhang K, Li H, Duan Z D, Law S S. A probabilistic damage identification approach for structures with uncertainties under unknown input [J]. Mechanical Systems and Signal Processing,2011a, 25:1126-1145.
    [175]Zhang X H, Zhu S, Xu Y L, et al. Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response [J]. International Journal of Structural Stability and Dynamics,2011b,11(3):581-602.
    [176]Zhou X Q, Xia Y. Hao H. Sensor placement for structural damage detection considering measurement uncertainties [J]. Advances in structural Engineering,2013,16(5):899-907
    [177]Zhu X Q, Law S S. Practical aspects in moving load identification [J]. Journal of Sound and Vibration,2002,258(1):123-146.
    [178]Zhu X Q, Law S S. Time domain identification of moving load on bridge deck [J]. Journal of Vibration and Acoustics, Transactions of ASME,2003,125(2):187-198.
    [179]Zimmerman D C, Kaouk M. Eigenstructure assignment approach for structural damage detection [J].AIAA Journal,1992,30(7):1848-1855.
    [180]Zimmerman D C, Kaouk M. Structural damage detection using a minimum rank update theory [J]. Journal of Vibration and Acoustics.1994,116:222-230.
    [181]Zimmerman D C, Simmermacher T, Kaouk M. Structural damage detection using frequency response function [A]. Proceedings of 13th IMAC[C],1995,179-184.
    [182]蔡元奇.时域内动态载荷识别理论及实施技术研究[D].武汉:武汉大学,2004.
    [183]陈上有.基于车桥耦合振动分析的桥梁结构参数识别与损伤诊断方法研究[D].北京:北京交通大学,2008.
    [184]陈准,禹丹江.基于曲率模态振型进行梁式桥损伤识别研究[J].公路交通科技,2004,21(10):55-57.
    [185]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别方法[J].同济大学学报,2000,28(1):5-8.
    [186]董晓马,张为公.损伤定位中频率法的改进及应用[J].航空材料学报,2006,26(6):17-20.
    [187]高荣誉,盛宏玉.状态空间理论在土木工程中的应用与研究综述[J].工业建筑,2007,37(4):60-64.
    [188]郭国会.钢筋混凝上结构破损评估的神经网络方法[D].长沙:湖南大学,1998.
    [189]郭健.基于小波分析的结构损伤识别方法研究[D].杭州:浙江大学,2004.
    [190]郭杏林.结构随机载荷识别的理论和实验研究[D].大连:大连理工大学,2003.
    [191]韩建刚,任伟新,孙增寿.结构损伤识别的小波包分析试验研究[J].振动与冲击,2006,25(1):47-50,57.
    [192]何浩祥,闫维明,周锡元.小波支持向最机在结构损伤识别中的应用研究[J].振动、测试与诊断,2007,27(1):53-57.
    [193]侯吉林,欧进萍.基于局部模态的约束子结构模型修正法[J].力学学报,2009a,41(5):748-756.
    [194]侯吉林,欧进萍.基于局部脉冲响应的约束子结构修正法[J].工程力学,2009b,26(11):23-50.
    [195]侯吉林,欧进萍.基于局部时间序列的约束子结修正法[J].振动工程学报,2009c,22(3):305-312.
    [196]侯秀慧,邓子辰,黄立新.基于精细积分方法的桥梁结构移动荷载识别[J].振动与冲击,2007,26(6):142-145.
    [197]胡寅寅.基于频域最小二乘的载荷识别方法与应用研究[D].哈尔滨:哈尔滨工程大学,2011.
    [198]黄天立,结构系统和损伤识别的若干方法研究[D].上海:同济大学,2007.
    [199]黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005,22(1),113-117.
    [200]姜绍飞,刘明,倪一清,等.大跨悬索桥损伤定位的自适应概率神经网络研究[J].土木工程学 报,2003,36(8):74-78.
    [201]姜增国,孙艳茹.三次样条函数在桥梁移动荷载识别中的应用[J].振动与冲击,2006,25(6):124-126.
    [202]金虎,楼文娟,陈勇.基于自适应BP神经网络的桥梁结构荷载识别[J].浙江大学学报,2005,39(10):1596-1602.
    [203]李爱群,丁幼亮,王浩,等.桥梁健康监测海量数据分析与评估——“结构健康监测”研究进展[J].中国科学:技术科学,2012,42(8):972-984.
    [204]李宾宾.基于信息论的结构健康监测传感器优化布置[D].大连:大连理工大学,2012.
    [205]李东升,郭杏林.逆虚拟激励法随机载荷识别试验研究[J].工程力学,2004,21(2):134-139.
    [206]李东升,张莹,任亮,等.结构健康监测中的传感器布置方法及评价准则[J].力学进展,2011,41(1):39-50.
    [207]李国强,陆烨.弯曲型结构层间物理参数识别的子结构法[J].世界地震工程,2000,16(1):1-9.
    [208]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述[J].地震工程与工程振动,2002,22(3):82-90.
    [209]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验研究[J].土木工程学报,2003,36(5):52-57.
    [210]李杰,陈隽.结构参数未知条件下的地震动反演研究[J].地震工程与工程振动,1997,17(3):27-35.
    [211]李世龙,王天辉,马立元,等.大型复杂结构损伤识别两步法研究[J].中国机械工程,2012,23(9):1051-1056.
    [212]李雪艳,刘济科.基于振动特性灵敏度分析的梁结构损伤识别[J].华南理工大学学报(自然科学版),2003,31(增刊):119-121.
    [213]李忠献,陈锋.基于时间元模型的复杂桥梁结构移动荷载识别[J].天津大学学报,2006,39(9):1043-1047.
    [214]林长好.不适定问题解的稳定性[J].数学的实践与认识,1996,26(3):236-247.
    [215]林家浩,智浩,郭杏林.平稳随机振动载荷识别逆虚拟激励法(一)[J].计算力学学报,1998,15(2):127-136.
    [216]刘春城,刘佼,李宏男.基于支持向量机的大型输电塔损伤识别方法研究[J].应用基础与工程科学学报,2010,18(4):616-625.
    [217]刘晖,瞿伟廉,袁润章.基于有限测点信息的结构损伤识别柔度法[J].计算力学学报,2005,22(3):379-384.
    [218]吕中荣,罗绍湘,刘济科.利用响应灵敏度修正Gascogine天桥的有限元模型[J].中山大学学报(自然科学版),2006,45(3):13-16.
    [219]毛玉明,郭杏林,赵岩,等.基于精细计算的动载荷反演问题正则化求解[J].动力学与控制学报,2009,7(4):308-312.
    [220]毛玉明.动载荷反演问题时域分析理论方法和实验研究[D].大连:大连理工大学,2010.
    [221]倪海东,陈义.切比雪夫多项式拟合方法在车辆导航应用中的研究[J].全球定位系统,2009,6:3742.
    [222]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,1:8-12.
    [223]綦宝晖,邬瑞锋,蔡贤辉.一种桁架结构损伤识别的柔度阵法[J].计算力学学报,2001,18(1): 42-47
    [224]瞿伟廉,工锦文.振动结构动态荷载识别综述[J].华中科技大学学报(城市科学版),2004,21(4):1-4,8.
    [225]史荣昌.矩阵分析[M].北京:北京理工大学出版社,2004.
    [226]史治宇,张令弥,吕令毅.基于模态应变能诊断结构破损的修正方法[J].东南大学学报(自然科学版),2000,30(3):84-87.
    [227]史治宇.由有限个传感器测点诊断结构破损位置的试验研究[J].航空学报,2002a,23(1):66-68.
    [228]史治宇.基于有限多个测点信息的结构破损诊断验研究[J].振动工程学报,2002b,15(2):203-206.
    [229]孙小猛.基于模态观测的结构健康监测的传感器优化布置方法研究[D].大连:大连理工大学,2010a.
    [230]孙小猛,冯新,周晶.基于损伤可识别性的传感器优化布置方法[J].大连理工大学学报,2010b,50(2):264-270.
    [231]覃柏英,林贤坤,张令弥,等.基于整数编码遗传算法的传感器优化配置研究[J].振动与冲击,2011,30(2):252-257
    [232]唐秀近.时域识别动态载荷的精度问题[J].大连理工大学学报,1990,30(1):31-38.
    [233]滕军,朱焰煌.大跨空间钢结构模态参数测试传感器优化布置[J].工程力学,2011,28(3):150-156.
    [234]童晶.多目标优化的Pareto解的表达与求取[D].武汉:武汉科技大学,2009.
    [235]王茂龙,结构损伤识别与模型更新方法研究[D].南京:东南大学,2003.
    [236]王修勇,陈政清.基于柔度矩阵和神经网络的结构损伤识别法[J].机械强度,2002,24(2):164-167.
    [237]魏民祥,闫桂荣,郭万林.基于信息熵原理的结构振动传感器的布局[J].仪器仪表学报,2004,24(5):802-804.
    [238]文祥荣,智浩,孙守光.结构动态载荷识别的精细逐步积分法[J].工程力学,2001,18(4):117-122.
    [239]翁沙羚.基于静力位移数据的桥梁结构损伤识别方法[J].科技创新导报,2011,28:252-253.
    [240]向天宇.基于静力测试数据的桥梁结构损伤识别[J].学术动态(成都),2006,1:19-27.
    [241]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:北京科学出版社,2003:8-9.
    [242]谢献忠.结构动力学系统时域辨识理论与试验研究[D].长沙:湖南大学,2005a.
    [243]谢献忠,易伟建.结构物理参数时域识别的子结构方法研究[J].工程力学,2005b,22(5):94-98.
    [244]熊仲明,王超,林涛,等.基于神经网络的大跨钢结构缺陷损伤的定位研究[J].振动与冲击,2011,30(9):191-196.
    [245]徐典.结构损伤识别方法与传感器优化布置研究[D].重庆:重庆大学,2011.
    [246]徐伟华,刘济科,吕中荣.基于振动响应的弦结构损伤检测[J].振动与冲击,2009,28(6):29-31.
    [247]徐伟华,吕中荣,刘济科.基于振动响应的杆结构损伤检测[J].固体力学学报,2010,31(1):48-51.
    [248]徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12.
    [249]杨雅勋,郝宪武,孙磊.基于能量系数—有效独立法的桥梁结构传感器优化布置[J].振动与冲击,2010,29(11):119-123,134.
    [250]尹强,周丽.基于遗传优化最小二乘算法的结构损伤识别[J].振动与冲击,2010,29(8):155-159.
    [251]袁向荣.梁的破损对频率、振型及振型曲率的影响[J].振动、测试与诊断,1994,14(2):40-44.
    [252]袁向荣.梁振动响应曲线滑动拟合法及在移动荷载识别中的应用[J].噪声与振动控制,2006,3:42-43,69.
    [253]袁旭东,高潮,高少霞.量测模态数量对结构损伤识别影响数值模拟研究[J].工程力学,2007,24(增刊Ⅰ):75-78.
    [254]袁颖,林皋,闫东明,等.基于残余力向量法和改进遗传算法的结构损伤识别研究[J].计算力学学报,2007,24(2):224-230.
    [255]张斌,苏云磊,范康.基于模态应变能变化率结构损伤定位法的改进[J].水利与建筑工程学报,2012,10(5),147-150.
    [256]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999:1-3.
    [257]张东利,李霆,孙锡龙.利用原点导纳检测混凝土构件损伤[J].振动、测试与诊断,2004,24(1):33-36.
    [258]张方,朱德懋,张福祥.动荷载识别的时间有限元模型理论及其应用[J].振动与冲击,1998,17(2):1-4.
    [259]张坤.不完备测点结构损伤与荷载的同步识别算法研究[D].哈尔滨:哈尔滨工业大学,2010a.
    [260]张坤,罗绍湘,段忠东.有限测点下结构参数与基底激励的同步反演[J].振动工程学报,2010b,23(1):52-59.
    [261]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [262]赵俊.结构健康监测中的测点优化布置方法研究[D].广州:暨南大学,2011.
    [263]智浩,文祥荣,缪龙秀,等.动态载荷的频域识别方法[J].北方交通大学学报,2000,24(4):5-10.
    [264]衷路生.状态空间模型辨识方法研究[D].长沙:中南大学,2011.
    [265]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):45-50.
    [266]周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1-4.
    [267]朱宏平,千力.利用振动模态测量值和神经网络方法的结构损伤识别研究[J].计算力学学报,2005,22(2):193-196.
    [268]邹大力.基于计算智能的结构损伤识别研究[D].大连:大连理工大学,2005.
    [269]邹万杰,瞿伟廉.基于频响函数和遗传算法的结构损伤识别研究[J].振动与冲击,2008,27(12):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700