用户名: 密码: 验证码:
碎石土地基注浆加固力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注浆浆液以渗透和挤密等方式灌入岩石或土层,将原来松散的土料或裂隙胶结,形成具有一定加固或防渗性能的“结石体”。松散地基土层物性参数分布具有明显的随机性和不规则特征,强烈影响浆液渗流过程,并造成注浆结石体形状的随机性和力学参数空间分布的不确定性。天然地基在注浆加固后地基强度和承载力得到提高,但加固区整体仍然表现为非均质性和各向异性。作为地基处理与岩土体加固的可行方法,虽然注浆技术已得到广泛应用,但注浆理论方面的研究与注浆实践要求还有相当的差距,对地基承载力和变形计算理论的研究还很不够成熟。被注介质的不均匀性和不确定性、浆液材料的多变性、注浆工艺和被注介质对浆液性能的影响、浆液渗入理论及机制等方面的研究一直存在许多困难。
     本课题以三峡库区广泛存在的碎石土地基为工程研究背景,采用碎石土地基的土工试验数据和室内注浆试验成果,从注浆浆液材料特性、地基土物性参数、滋浆压力控制与注浆方式三大方面,综合考虑影响注浆过程的参数的互相关性、非均质土层物性参数空间分布的结构性和随机性、关键注浆参数的动态和时变特性,基于注浆过程中的渗流场与应力场的流固耦合作用,探讨了非均质松散岩土体浆液随机扩散过程,分析了结石体扩散形状和力学参数的空间分布的随机性,及荷载作用下注浆加固土体的应力与位移变化,研究了非均质松散岩土体注浆加固的力学行为。
     本文主要工作内容如下:
     (1)从注浆工艺和注浆材料入手,在总结前人研究成果的基础上,较系统地分析了浆液流变模型,从浆液粘度时变性、浆液浓度变化角度,考虑浆液特性因素对注浆浆液扩散效果的影响。
     试验分析了不同水灰比条件下水泥浆液粘度与时间的关系式。试验数据显示,一定的浆液浓度条件下,水泥类浆液的粘度随时间呈指数关系变化。水泥类浆液在前期其粘度和剪切强度相对稳定,但随着凝结时间到来,其粘度和剪切强度快速增长。根据此特征,水泥类浆液在合适的时间内完成渗透注浆,否则将要影响水泥浆液的可注性。
     试验结果还显示,浆液粘度变化与时间有关,也与浆液浓度改变关联。浆液浓度变化会明显改变浆液粘度,特别是在水灰比小于1时尤其明显。水泥浆液浓度和注浆持续时间对浆液粘度变化有着不同的影响。如果浆液因受非饱和土土体吸附或地下水混合等作用而使固体颗粒沉淀或析出,并改变流动浆液的浓度,会改变水灰比条件并明显影响粘度和改变扩散过程。施工工艺条件和土层地质条件对浆液浓度和注浆时间影响不可忽视。
     地下注浆浆液扩散过程中可能存在不同流型的转换过程,扩散特性还与注浆土体的力学参数、注浆工艺有着密切关系。真实注浆过程具有明显的非稳定特性,实际注浆过程下的注浆理论公式也相当复杂。
     (2)通过对取自三峡库区治理加固工程的碎石土试样进行土工试验和室内注浆试验,获取有效粒径、渗透系数、土体压缩模量、水泥浆液粘度、注浆压力等试验数据,基于人工智能的支持向量机方法,建立其与注浆试验所得结石体的抗压强度、弹性模量等力学参数的关系,进行相互关联的多因素共同作用下的注浆结石体的力学参数预测,分析影响结石体力学特性的主要因素及其变化规律。
     结石体强度、弹模等受多种因素关联作用,任何一个因素的改变都会对注浆结果产生很大影响。基于支持向量机方法,可以很好地分析和预测具有复杂关联性和非线性关系的多维变量状态参数与注浆结石体力学参数的关系,为进一步研究注浆结石体形状分布和强度分布的空间随机性,分析结石体随机分布对加固地基的承载力影响和变形抑制作用,以及评价地基加固处理前后的承载力提高及变形稳定性提供了参考。
     (3)建立了基于随机分形插值的地层参数空间随机分布预测模型。碎石土堆积体结构松散,物性参数空间分布不均匀,土体中粗粒集中部位因细粒充填不足还容易形成高孔隙率的架空结构。碎石土注浆加固机理和过程研究重点考虑松散碎石土的不均匀性带来的土体局部细微变化问题。研究基于随机分形理论中Diamond-square方法的运用,分析了土层空间的分形特征,根据已知的土层数据成果建立的模型实现了对未知数据地层的孔隙率、土体密度、渗透率、压缩模量等空间随机分布预测。
     在常规土层剖面中,层厚和土的物理力学参数常用定值来表示,忽略了参数的波动。在随机分布的注浆土层剖面研究过程中,考虑孔(裂)隙分布、表面特征的随机分形特性,将参数的剖面特征作为坐标的随机函数处理。研究利用改进的数盒子法获得孔隙率分布曲线的分维数,反映土体孔隙率等参数在空间分布上的不均匀性和复杂程度。
     研究以地质勘察点的坐标作为已知的控制点,将可通过地质勘察得到的该点的孔隙率值已知量,作为区域土层物性参数变量的数据源,利用分数布朗运动相关的分形插值方法,将地层孔隙率分布特性看作随机过程,进行注浆加固地层孔隙率参数的随机性描述。
     考虑岩土工程中的物理力学参数之间的互相关性,将可通过地质勘察得到的孔隙率已知量作为区域土层物性参数变量的基本量,探讨了基于多维变量相关性的渗透系数、压缩模量、土体密度、体积模量等其它基本物理参数在有限元单元结点中的赋值。
     基于上述思路,模拟了多孔介质地层的孔隙率、渗透系数、土体密度、压缩模量、体积模量的空间随机分布,生成适用于孔隙地层注浆数值模拟的物性参数随机分布的二维地质剖面和三维数字地层。
     (4)建立了参数动态变化的多孔介质渗流场与应力场耦合的的注浆扩散模型。引入了多孔介质中流体渗流的运动方程、连续方程;基于广义的Biot方程,采用宏观层次和细观层次的综合分析方法,建立多孔介质饱和渗流状态下的变形与应力方程:研究将浆液粘时变性扩散作为特殊的渗流过程;基于渗流物理场和扩散物理场理论,考虑多孔介质的多场耦合作用,根据体积应变的概念,引出了考虑孔隙率、渗透率、孔隙压缩系数等物性参数的动态变化过程数学模型。注浆扩散模型的建立为非均质地层中流固祸合注浆数值模拟的实现提供了有效途径。
     (5)模拟了多场祸合的均质和非均质土体注浆过程模拟。
     基于渗流物理场和扩散物理场耦合理论,考虑浆液扩散的时变效应、土层参数的动态变化,模拟均质土体中点源注浆、柱孔注浆条件下浆液扩散范围,与Magg理论计算方法和室内试验试验结果进行了对比分析,以验证基于流固耦合作用下的浆液扩散过程的正确性,及土层参数动态变化的合理性。
     研究考虑非均质土体土层参数的互相关性及随机分布,结合试验结果编制程序,利用有限元软件进行注浆过程模拟,探讨了土体不均匀分布、注浆压力、浆液水灰比和粘时变性因素对注浆扩散范围、扩散路径、扩散模式的影响,以及注浆结石体随机分布规律。数值模拟计算结果表明,碎石土注浆孔附近流固耦合效应强烈,物性参数动态变化明显。
     (6)研究了荷载作用下的注浆土体应力场和位移场分布。
     围绕流固耦合作用下的浆液扩散细观模拟过程,利用Matlab软件提取注浆开始前计算场区内单元体的表观密度、渗透压力、孔隙率、压缩模量、压缩系数的分布状态和数值;提取非均质土体有限元模型注浆模拟计算结束后网格结点的弹性模量、泊松比以及密度等的物理力学参数;基于注浆扩散的室内试验结果及支持向量机方法,对有限元单元体已知物性参数进行提取,利用Matlab软件编程,对注浆结石体的弹性模量等力学参数进行预测,并进行分布空间上的有限元单元赋值。
     非均质土体注浆加固过程必然伴随着结石体骨架分布的随机性。注浆加固复合体的力学特性取决于结石体骨架与周围土体的共同作用。基于加固前后土层物理力学常量赋值和物理力学动态参数计算结果,建立了未注浆土体区域、加固浆液扩散区域的数值计算模型,通过计算模拟,比较分析了相同物性参数的非均质土体注浆加固前后的应力场和位移场,研究了碎石土加固注浆的力学行为特征。
     本文的主要创新点是:
     (1)结合室内模拟试验结果,并基于支持向量机理论,研究了结石体抗压强度、弹性模量与被注介质结构(渗透系数、孔隙度、有效粒径、压缩模量)、注浆压力、浆液水灰比等因素的关系规律,对指导注浆工程的设计和注浆效果预测等有现实意义。试验及研究均表明:水灰比、注浆压力、介质结构(孔隙率、渗透率等)作为影响注浆的关键因素,都影响注浆过程,并进而影响注浆后碎石土地层的承载力学性能。在研究注浆浆液在松散土层中的渗流过程时,将不同水灰比条件下的水泥浆液粘度时变特性引入非均质土体中浆液扩散过程模拟,推导并模拟了时变性浆液在非均质土体的渗透扩散规律。
     (2)研究基于随机分形理论中Diamond-square方法的运用,考虑多个随机变量的相互关联作用,建立了土层物性参数的空间随机分布预测模型。非均质土体的有限元单元赋值包括两个方面,一是将已知控制点作为代表性单元体,其孔隙率参数值作为区域变量的基本量赋值给有限元单元体单元结点,通过探讨和分析松散土层单元中物性参数变量的互相关性,获得了该单元体的其它参数与孔隙率的关系,实现了有限单元的表观密度、渗透系数、压缩模量、压缩系数等参数的关联性赋值。二是将已知控制点的孔隙率参数值作为区域变量的数据源,考虑土性参数分布的分形特性,将地层特征看作随机过程,对该地层的未知数据区域进行孔隙率、渗透率、压缩模量等参数的空间分布预测,生成适用于孔隙地层注浆数值模拟的数字地层剖面。
     (3)综合运用注浆浆液的时变性方程,物性参数的动态变化方程,进行非均质土体注浆浆液扩散与土体应力场耦合作用下的数值模拟。研究模拟了浆液在碎石土层渗透扩散过程中的压力梯度分布、渗透速度分布、浆液扩散距离和注浆时间的关系规律,揭示了浆液在地层内的运动过程,对松散非均质土体中浆液运动的量化计算有着重要的理论意义。基于注浆浆液扩散流场与土体应力场的耦合模拟成果,探讨了注浆结石体在非均质土体中的分布形态、空间分布模式。在注浆孔点布置约束条件下,结石体骨架特征明显,结石率受土层参数和施工工艺参数影响,结石体形状和体积的随机分布具有规律性。基于注浆结石体骨架和物性参数随机分布时空规律的研究,对注浆效果进行了量化计算分析。计算结果表明:结石体骨架和土体共同作用下土体的物理力学性质改善,地基加固作用明显,地基整体的承载能力明显提高。
     研究考虑土的物性参数互关联、土性参数分布的分形特性、土层地质剖面的随机性、浆液特性时变性等多因素共同影响,建立了非均质土层参数地质剖面随机分布模型,开展注浆扩散过程及注浆加固体力学行为的数值模拟,可对注浆方案计算分析、注浆效果定量评价、注浆问题质量溯源、加固工程安全评估提供理论基础,对结构注浆加固与纠偏机理研究与技术应用提供科学依据,并为复杂环境条件下松散岩土注浆加固作用分析研究提供有效途径。但目前该研究的一些理论和方法有待丰富和完善。本文仅作了初步的探索,以后在以下几个方面仍然需要进一步的研究:
     (1)本文研究注浆机理时,着眼于浆液渗透注浆扩散过程,并同时考虑了注浆过程对被注土体的挤密作用。注浆介质在不同注浆压力和工艺条件下时注浆机理和扩散机理不同,将数字地层剖面、分形随机理论、多孔介质物性参数动态变化方程引入劈裂注浆作用下的注浆模拟还需进一步研究。
     (2)浆液扩散过程试验和数值模拟没有考虑地下动水的影响。对动水作用、土体应力场分布、浆液扩散过程的耦合作用模拟和试验,应考虑对不同流形的流体在混合时的运动问题进一步研究。
     (3)地基加固体与其周围地基土的相互作用规律、考虑复杂地质条件、复杂荷载作用、复杂地层结构边界条件的注浆加固效应、注浆加固复合地基下卧层附加应力扩散问题,及其注浆优化设计方法等还有待进一步探索和研究。
     (4)本研究成果未考虑不同含水率对注浆过程的影响。水泥是一种典型的悬浊液,浆液在土体中的沉淀、滤水、凝絮和非饱和土土体毛细作用会改变注浆沿程路径上的水灰比,进而改变浆液粘度时变特性。这些因素对浆液扩散过程的影响,及如何将非饱和土吸附对浆液浓度的改变等因素更好地引入注浆模拟过程有待更深入研究。非饱和土体的基质吸力对流体入渗和土体内部渗流的影响是一个复杂的土力学问题,非饱和土中的渗透系数与饱和度的关系还有待大量的研究和探讨。
     (5)浆液在土体中的沉淀、滤水、凝絮和土体毛细作用也会改变土体的有效孔隙率。由于试验条件限制,本论文结合已有文献,主要从宏观角度讨论了水泥浆液中土体吸水带来的浆液颗粒的沉积过程和化学浆液的絮凝固化过程。通过试验手段在微观和宏观两个方面对颗粒迁移、沉积特性进行研究,对浆液的絮凝过程进行分析,从而为科学地定量描述浆液渗透终止的判别准则提供更可靠的依据,仍是今后所需要做的工作。
Grout expels the water and air by filling, permeability and compaction ways in soil or rock fissure to occupy its position, and size of the original loose soil material or fracture cemented to form "stone body." Loose foundation soil parameters distribution has the obvious characteristics of the random and irregular, strongly influences slurry infiltration process, which causing grouting concretion shape randomly and mechanical parameters of the spatial distribution uncertainty. This makes the foundation strength and bearing capacity of the natural foundation improved after grouting, but overall still showed heterogeneity and anisotropy. Even though grouting technique has been widely used as foundation treatment and soil reinforcement, there is still a considerable gap between the theory and practice, bearing capacity of foundation deformation calculation theory study is also not mature enough. The inhomogeneity and uncertainty of the injection medium, slurry material variability, the theory and mechanism of slurry infiltration and so on still has many difficulties
     Based on the gravelly soil foundation of the Three Gorges Reservoir Area, using soil test data of gravel soil foundation and indoor grouting test results, from the aspect of grout material properties, soil parameters, grouting pressure and grouting mode, considering the dynamic effect of grouting process parameter correlation, the spatial distribution of the structural and random, the key parameters of the time-varying characteristics, based on grouting process in seepage field and stress field coupling to analysis of the diffusion stone shapes and mechanical parameters of randomness, and the change of stress and displacement under soil grouting reinforcement loads, studied the mechanical behavior of heterogeneous loose rock and soil reinforcement
     The main work are as follows:
     (1)Starting from the grouting technology and grouting material, based on previous research, systemically analysis of the slurry flow model, from the perspective of the slurry viscosity variability and slurry considering the influence of diffusion effect factors on slurry properties of grouting slurry.
     The test analyzed the relationship between the viscosity of the cement slurry and time under different water conditions. The experimental data shows cement slurry viscosity changes exponentially with time under a certain slurry concentration. The viscosity and shear strength of cement slurry is relatively stable in the early stage, but with the setting time of arrival, the viscosity and shear strength of rapid growth. According to this characteristic, cement slurry at the right time to complete the permeation grouting, otherwise it will affect the cement grouting property.
     The test results also shows, viscosity changes with time, and the same to slurry concentration. The slurry concentration will significantly change the viscosity, and especially in the water cement ratio is less than1. Grouting cement slurry concentration and duration have different influences to the viscosity changes. If the slurry by unsaturated soil adsorbed or groundwater mixing effect and make the particle precipitation, and change the flow of the slurry concentration, it will change the water cement ratio and significantly affect viscosity and diffusion process. Construction process and geological conditions on soil grouting slurry concentration and time also can't be neglected.
     Underground grout diffusion process may have different flow patterns of the conversion process, diffusion characteristics has a close relationship with mechanical parameters and grouting technology. Real grouting process has obvious non-stability characteristics and grouting theory formula in the practical grouting process is also quite complex.
     (2)Soil testing and indoor grouting experiment were conducted on the gravel soil sample from governance and strengthening works of Three Gorges Reservoir Area to obtain the soil compression modulus, effective particle size, permeability coefficient, permeability coefficient, grouting pressure and other data. At the same time, this article based on the artificial intelligence method of support vector machine to establish the relationship between the measured test data and the compressive strength of the test grouting stone body, elastic modulus and other mechanical parameters, be associated with be associated multiple factors related joint action grouting stone body mechanics parameter prediction, which analyze the impact of stones body mechanical characteristics of the main factors and their variation.
     Because of the strength of stone body and elastic modulus affected by many factors, any of these factors change can have a profound effect on grouting results. However, based on the method of support vector machine, we can be very good to analyze and predict the complex relationship and nonlinear multidimensional variable parameters and physical parameters of grouting stone, which provide a reference for the research note pulp stones body shape distribution and strength distribution of space randomness, analysis stones body random distribution on reinforcement Foundation of hosted force effects and deformation inhibition, and evaluation foundation reinforcement before and after of strength and the deformation characteristics.
     (3)The random spatial distribution prediction model based on random fractal interpolation formation parameters was established. The loose structure of gravel soil, uneven space distribution of physical parameters, and concentration of particles in the soil are also likely to form a high porosity overhead structure. Therefore, gravel soil grouting reinforcement mechanism and grouting reinforcement process research focus on soil inhomogeneity loose bring the problem of gravel soil local subtle change. Researched based on the use of diamond-square method of in random fractal theory and analyzes the spatial distribution characteristics of soil. Simultaneously, the spatial random distribution forecast about the formation of unknown data density, permeability, porosity, soil compression modulus were build based on soil already known data model.
     As we all know, properties of soil in the conventional soil profiles, thickness and engineering were expressed by single values, which ignored the parameters fluctuation. But, in random distribution of grouting the soil profile during the study, we consider the distribution of porosity and surface characteristics of random fractal characteristics, and taking the impact parameter profile characteristics as the coordinates of the random function. Based on the fractal characteristics of distribution of geotechnical parameters, the improved count box method was used to obtain the fractal dimension of the porosity distribution curve, reflecting the porosity parameters unearthed in the space distribution heterogeneity and complexity.
     The coordinates of points were taken as control points were known and the porosity of corresponding points as physical parameters of variable data source, and taking advantage of fractal interpolation method associated with the fractional Brown motion, and finally the formation porosity distribution characteristics as stochastic processes to describe the random grouting formation porosity parameters
     Considering the mutual relativity between physical and mechanical parameters in geotechnical engineering, taking the porosity known quantity from geological survey as the basic amount of the variable parameters, and the multi-dimensional variable correlation coefficient of permeability, compressive modulus, soil bulk density, bulk modulus, and other basic physical parameters in the finite element nodes were discussed.
     Based on the above ideas, this paper simulates the formation of porous medium porosity, permeability coefficient, soil bulk density, compressive modulus, bulk modulus of the spatial random distribution, and generate suitable for grouting porous formation of two-dimensional numerical parameters randomly distributed geological sections and three-dimensional figures formations.
     (4)The grouting diffusion model of parameters changes in coupled seepage and stress fields in porous media were established. On the one hand, the porous media equations of motion, continuity equation and biot equation based on generalized were introduced. Meanwhile, the macro-level and micro-level comprehensive analysis methods were used to establish deformation and stress equation under saturated porous media flow to research the time-varying of the slurry viscosity as a special flow diffusion process. On the other hand, we considered the porous medium multi-field coupling effects based on the physical field and diffuse seepage physical field theory, and at the same time, the dynamic mathematical model was exported according to the concept of volumetric strain, which considered porosity, permeability, porosity and other physical parameters. The establishment of grouting diffusion model provides an effective way for the achievement of heterogeneous formations flowing solid coupling numerical simulation of grouting.
     (5)This paper conducted a multi-field coupling of homogeneous and heterogeneous soil grouting process simulation.
     Based on the physical flow field and diffuse-physics coupling theory and considered the effects of time-varying grout spread, the dynamic changes of soil parameters, simulation of homogeneous soil grouting point source in the column under the conditions of slurry grout hole diffusion range. At the same time, the magg theoretical calculation methods and laboratory test results were compared and analyzed to verify the effect of fluid-structure interaction based slurry diffusion process parameters correctness and soil dynamics is reasonable.
     The non-homogeneous soil layers mutual relativity parameters and random distribution were considered, combined with the results of the test program, Simultaneously, combined with the finite element software grouting process simulation and discussed the uneven distribution of soil, grouting pressure, slurry water cement ratio and viscosity time-varying on grouting diffusion, diffusion paths, diffusion pattern effects, and the random distribution of grouting stone body. Numerical simulation results show that the gravel soil grouting holes around the fluid-structure interaction effect is strong and the physical parameters dynamically changed obvious.
     (6)The distribution of the stress field and the displacement field of grouting the soil under the effect of the load were studied.
     Observed the effect of fluid-solid coupling interaction simulation of grouting spread and Matlab software were used to extract calculated field region before grouting unit apparent density, osmotic pressure, porosity, compressive modulus, compression coefficient distribution status and value, further extraction of non-homogeneous soil grouting simulation finite element model of the grid node after the elastic modulus, Poisson's ratio and the density of the physical and mechanical parameters; based on the laboratory test results of grouting diffusion and method of support vector machine to extract the known physical parameters of finite element unit body, the Matlab software were used to predict the mechanical parameters such as modulus of elasticity of grouting stone body, and assignment the finite element unit in distribution space.
     The grouting process of heterogeneous soil must be accompanied by the random distribution of grouting stone body skeleton. Grouting depends on the mechanical properties of composite stone body skeleton with the joint action of the surrounding soil. The no grouting and grouting after soil reinforcement complex numerical model was established based on the above assignment before and after strengthening of soil physical and the calculation results of the physical and mechanical dynamic parameter,. Through the computer simulation, comparative analysis of the stress field and the displacement field of non-homogeneous soil grouting, the mechanical behavior of grouting gravel soil characteristics were studied.
     The main innovation points are as follows:
     (1)Combined indoor simulation test results and based on the theory of support vector machine, studied the relevant law of stone body compressive strength, elastic modulus E and grouting medium structure (coefficient of permeability, porosity, effective particle size, compression modulus), grouting pressure, grout water cement ratio, which has a practical significance for guiding the design of grouting engineering and prediction of grouting effect. Experiment and studies show that water cement ratio, grouting pressure and medium structure (porosity, coefficient of permeability) are as the key factors of impacting grouting that all effect on grouting process, thus affect the bearing mechanical properties of gravelly soil foundation after the grouting. Studying the process of seepage of Grout in the loose soil, analyzing viscosity time-varying characteristics of cement slurry in different water cement ratio introduced slurry diffusion process, derived and simulated penetration and diffusion regularity of time-varying slurry in heterogeneous soil.
     (2)Based on the method of diamond-square in random fractal theory, considered the interdependence effect of multiple random variables, and established the space random distribution prediction model of the soil physical parameters. The finite element unit assignment of heterogeneous soil includes two aspects:the one is the known control points as representative unit body, which the parameter value of porosity as the basic amount of regional variables assigned to the unit nodes of finite element unit body, according to discuss and analyze mutual relativity of physical property parameters variable in loose soil unit, obtained the relationship of other parameters of the unit body and porosity, and achieved the association assignment of apparent density, permeability coefficient, modulus of compression and compression coefficient of finite element. The second is the porosity parameter values of the known control points as the data source of regional variables, considered the fractal characteristics of soil features parameter distribution, made formation characteristics as random process, and predicted the space distribution of the parameter of porosity, permeability and compression modulus to the unknown data area of the formation, generated the digital formation profile that is suitable for pore formation grouting numerical simulation.
     (3)Integrated using of time-varying equation of Grout and dynamic change process equation of physical parameters, doing the numerical simulation of heterogeneous soil in Grout diffusion and coupling effect of soil stress field. Researched and simulated the relationship and law of pressure head distribution, pressure gradient distribution, velocity distribution, and grouting amount, grout diffusion distance and grouting time of cement grout in the process of diffusion in the gravel soil, revealed slurry movement process within the formation, which has important theoretical significance to the quantitative calculation of slurry movement in loose heterogeneous soil. Based on the coupling simulation results of grout diffusion and the stress field of soil, discussed the distribution form, diffusion model and diffusion mechanism of grouting stone body in heterogeneous soil. Stone rate is affected by the parameters of soil and construction technology, the random distribution of stone body of shape and size is regular. Based on the study of grouting stone body skeleton and time-space law of random distribution of physical parameters, doing quantitative calculation and analysis of grouting effect. The calculation results show that the physical and mechanical properties of soil improved under the common action of the stone body skeleton and soil, and the effect of foundation reinforcement is obvious, bearing capacity of the foundation improved significantly.
     Considering the effect of soil physical association parameters, the fractal characteristics of soil parameter distribution, random geological profile, the influence of many factors such as slurry time-varying characteristic, heterogeneous soil parameters of random fractal model of geological profile are established and slurry diffusion process and grouting reinforcement mechanical behavior and the numerical simulation of grouting process are developed, which providing a theoretical basis for grouting calculation analysis, quantitative evaluation of the grouting effect, quality traceability of grouting engineering problems and engineering safety evaluation of grouting reinforcement. It provided scientific basis for structure grouting reinforcement and correcting mechanism research and technology applications, and provided the effective way of strengthening effect for grouting of loose rock and soil under complex environmental conditions. But at present the study of some theories and methods need to be enriched and perfected. This paper only does the preliminary exploration, the following several aspects still need to be further researched in the future.
     (l)Study on grouting mechanism, focusing on the slurry diffusion process of permeation grouting, and considering the compaction effect of soil by injection. The grouting mechanism and diffusion mechanism of grouting medium are different at different process conditions and grouting pressure. Introducing the digital stratigraphic profile, fractal random theory and variation equation dynamic of porous medium physical parameters into grouting simulation under the splitting grouting effect still need to be further studied.
     (2)The effect of underground water has not been considered in the test of slurry diffusion and numerical simulation. Further research on the motion of fluid with different manifolds in the mixed time should be considered in the simulation and test of water dynamic effect, soil stress field distribution and the coupling effect of slurry diffusion process.
     (3)The interaction of foundation with solid and the surrounding soil, how to consider the reinforcement effect under the complex geological condition and stratigraphic structure boundary conditions and load distribution, grouting composite foundation under additional stress and it's optimization design need to be further explored and studied.
     (4)The effect of different water content on the grouting process has not been considered in the research results. Cement is a typical suspension, slurry in soil sedimentation, water filtration, coagulation and unsaturated soil body capillarity will change the water cement ratio along the path of the grouting, then change the viscosity variation. The effects of these factors on the grouting process and how to introduce the effect of the unsaturated soil adsorption of slurry concentration changes into the grouting simulation process in a better way still need a more in-depth study. The influence of matric suction of unsaturated soil of fluid infiltration and soil seepage is a complex problem of soil mechanics, the relationship between unsaturated permeability coefficient and saturation in the soil still needs a lot of research and study.
     (5)Slurry in soil sedimentation, water filtration, coagulation and unsaturated soil body capillarity will also change the effective porosity of soil. Due to the conditions of the test, this paper mainly based on the existing literatures, only from the macroscopic angle to discuss the process of serous granule soil water cement slurry chemical slurry flocculation. Through experiments in the two respects of microcosmic and macroscopic on particle migration, deposition characteristics were studied, analyzed the flocculation process of slurry, to provide a more reliable basis for quantitative description of slurry penetration termination criteria, this is the work what needs to be done in the future.
引文
[1]李彰明.软土地基加固与质量监控[M].北京:中国建筑工业出版社,2011.12.
    [2]李显平.碎石土的颗粒特征及其优先流研究进展[J].中国科技信息,2012,(6):58-59.
    [3]周志东,胡卸文,张悼元,黄润秋.西南某水电站坝肩岩体质量分级方法选取探讨[J].成都理工学院学报,1999,(01):82-85.
    [4]常杰峰.朔黄铁路K44滑坡整治设计[J].铁道标准设计,2005,(4):23-25.
    [5]骆银辉,何建华,胡斌.松散滑坡治理中坡体结构与强度的重要性[J].岩石力学与工程学报,2004,23(7):1233-1236.
    [6]袁永旭.变形岩体软弱破裂带的处理技术[J].四川地质学报,2000,(4):265-269.
    [7]朱正榜,鲜文凯.旋喷注浆法在达成铁路金堂滑坡治理中的应用[J].中国地质灾害与防治学报1996,7(001):64-68.
    [8]徐海清.离子土固化剂加固滑带土研究[D].中国地质大学博士学位论文,2008.05.
    [9]郑志明.三峡库区公路碎石土路基渗流弱化机理及其稳定性研究[D].重庆大学博士学位论文,2012.05.
    [10]殷跃平,于文贞,陈宝荪,等.三峡移民安置区松散堆积体灌浆加固试验研究[J].土木工程学报,2000,33(4):101-104.
    [11]岩土注浆理论与工程实践协作组.岩土注浆理论与工程实例[M].北京:科学出版社,2001.
    [12]黄明琦,郭衍敬,张斌.软弱围岩大断面隧道径向注浆变形的控制[J].北京工业大学学报,2007,33(5):512-516.
    [13]周国庆,刘雨忠,冯学武,等.围土注浆缓释和抑制井壁附加力效应及应用[J].岩土工程学报,2005,27(7):742-745.
    [14]商翔宇,周国庆,赵光思,等.立井井筒地层注浆加固实测数据分析[J].岩土力学,2009,30(4):1073-1077.
    [15]刘长武,陆士良.水泥注浆加固对工程岩体的作用与影响[J].中国矿业大学学报,2000,29(5):454-458.
    [16]张顺金.砂砾地层渗透注浆的可注性及应用研究[D].中南大学硕士学位论文,2007.05.
    [17]黄德发,王宗敏,杨彬.地层注浆堵水与加固施工技术[M].徐州:中国矿业大学出版社,2003.
    [18]岩土工程手册编写委员会.岩土工程[M].北京:中国建筑工业出版社,1994.
    [19]刘丹,刘凤翔,叶淑萍.渗透注浆简介及其发展[J].山西建筑,2006,32(3):103-104.
    [20]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报, 2001,20(6):839-841.
    [21]刘传孝,田鸿业,张加旺,等.炉渣置换软土地基的注浆均质度影响试验研究[J].岩土工程学报.2010,32(S2):517-520.
    [22]Ohashi, A. et al. Study ondynamic injection into small fractures. Grouting and Deep Mixing, Yonekura, jerashi & Shibazaki (eds), Balkema, Rotterdam,1996.
    [23]L. Bogresson and R. Pusch. Rock sealing in radwaste repositories using modern grouting methods and smectite clay[A], Proc.7th ISRM Inter. Cong, on Rock Mechanics [C], V.1, 1991.
    [24]G. Lombardi and Deere.Grouting design and Control using the GIN Principle,1998.
    [25]张志良.对GIN灌浆法的看法[J].水利水电工程设计,1997(1):50-53.
    [26]刘文永,王新刚,冯新喜,等.注浆材料与施工工艺[M].北京:中国建材工业出版社,2008.11.
    [27]邝健政,月稳,王杰等主编.岩土注浆理论与工程实例[M].北京:科学出版社,2001.
    [28]任记华.注浆技术在少水或无水中粗砂层中的应用[J].山西建筑,2006,32(4):147-148.
    [29]焦瑞玲,吴连海,崔维孝,等.北京高速铁路动车段垃圾填埋场地基处理现场试验研究[J].铁道标准设计,2009,(2):76-80.
    [30]秦尚林,陈善雄,汪稔.水平掏土法与注浆技术在建筑物纠偏中的应用[J].岩土力学.2002,23(S):88-91.
    [31]李鹏飞,张顶立,房倩,等.变位分配原理在隧道穿越建筑物施工中的应用研究[J].北京工业大学学报,2009,35(10):1344-1349
    [32]杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].中南大学博士学位论文,2005.05.
    [33]徐海清.离子土固化剂加固滑带土研究[D].中国地质大学博士学位论文,2008.05.
    [34]张永钧,叶书麟.既有建筑地基基础加固工程实例应用手册[M].北京:中国建筑工业出版社,2002.
    [35]汤文岗,李晓昭,黄慷.注浆沉降法建筑物纠偏加固机理与关键技术研究[J].工程地质学报,2005,13(4):551-556.
    [36]马强,宋丽,蔡江东,姜振泉.软土区低(多)层建筑纠偏加固原则及应用分析[J].常州工学院学报,2008,21(10):41-45.
    [37]高海,施建勇,陈继东,等.垃圾土地基灌浆处理试验[J].水利水电科技进展,2011,31(1):58-62.
    [38]张朝清,刘炤伟.高速公路路基压密注浆加固效果研究[J].天津建设科技,2010,(4):50-53.
    [39]蔡业青,刘朝权,舒翔.钢花管注浆加固山区高填土路基、台背工艺探讨[J].中外公路,2006,26(3):48-51.
    [40]周国庆,梁恒昌,赵光思.桩侧土注浆提高单桩承载力试验研究[J].中国矿业大学学报,2005,34(3):265-269.
    [41]李瑞.注浆技术在砂砾石地层定(导)向钻进施工中的应用研究[D].中南大学硕士学位论文,2011.05.
    [42]王国际.注浆技术理论与实践[M].北京:中国矿业大学出版社,2000.8.
    [43]刘文永,王新刚,冯新喜,等.注浆材料与施工工艺[M].北京:中国建材工业出版社,2008.11.
    [44]卓越.饱水砂层渗透注浆加固理论探讨[J].岩土工程技术,2002,(5):284-289.
    [45]杨坪,唐益群,彭振斌,等.砂卵(砾)石层中注浆模拟试验研究[J].岩土工程学报,2006,28(12):2134-2138.
    [46]AMADEIA B, SAVAGEB W Z. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:285-296.
    [47]FUNEHAG J, GUSTAFSON G. Design of grouting with silicasol in hard rock-New methods for calculation of penetration length, Part I[J]. Tunnelling and Underground Space Technology,2008,23:1-8.
    [48]UMLAUF R. Rheological characterization of microfine cement suspension examination with a shear stress controller rheometer[C]//Grouting in Rock and Concrete. Rotterdam, 1993.
    [49]王星华.黏土固化浆液在地下工程中的应用[M].北京:中国铁道出版社,1998:46-72.
    [50]郑玉辉.裂隙岩体注浆浆液与注浆控制方法的研究[D].长春:吉林大学,2005:7-9.
    [51]曾祥熹,郑长成.水泥浆的流变性及其对浆液运动的影响[J].华东地质学院学报,1999,22(2):137-141.
    [52]KELESSIDIS V C, MAGLIONE R, TSAMANTAKI C. Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J]. Journal of Petroleum Science and Engineering,2006,53:203-224.
    [53]HUILGOL R R, YOU Z. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids[J]. Journal of Non-Newtonian Fluid Mech,2005,128:126-143.
    [54]PAVEL V, ZDENEK C. Laminar and turbulent flow experiments with yield-power law slurries[J]. Powder Technology,1999,104:200-206.
    [55]HUANG X, MARCELO H G. A Herschel-Bulkley model for mud flow down a slope[J]. Journal of Fluid Mechanics,1998,374:305-333.
    [56]Yun Sung Kim, Andrew J. Whittle. Particle network model for simulating the filtration of a microfine cement grout in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(2):224-236.
    [57]章敏,王星华,汪优Herschel-Bulkley浆液在裂隙中的扩散规律研究[J].岩土工程学报,2011,33(5):815-820.
    [58]马海龙,杨敏,夏群.对基于渗透注浆理论公式的探讨[J].工业建筑,2000,(2),47-61.
    [59]曹作忠,朱君星,黄婉宣.劈裂注浆的机理及实践[J].矿业快报,2002,(4):3-4.
    [60]R. te Grotenhuis. Fracture grouting in theory--Modelling of fracture grouting in sand[D]. Delft:Delft University of Technology,2004.
    [61]Chang Hong. Hydraulic fractures in particulate materials[D]. Atlanta:Georgia Institute of Technology,2004.
    [62]Adam Bezuijen. Compensation grouting in sand--Experiments, field fxperiences and mechanisms[D]. Delft:Delft University of Technology,2010.
    [63]张建山,仵彦卿,李哲.高压注浆渗流分析与工程应用[J].西北农林科技大学学报(自然科学版),2004,(12):96-99.
    [64]张建山,仵彦卿,李哲,等.高压注浆渗流解析分析[J].煤田地质与勘探,2005,(6):36-38.
    [65]郭密文.高压封闭环境下孔隙介质中化学浆液扩散机制试验研究[D].中国矿业大学博士学位论文,2010.12.
    [66]杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004,35(6):75-79.
    [67]杨志全,侯克鹏,郭婷婷,马秋.黏度时变性宾汉体浆液的柱-半球形渗透注浆机制研究[J].岩土力学,2011,32(9):2697-2703.
    [68]Lars Hassler, Ulf Hakansson, Hakan Stille. Computer-Simulated Flow of Grouts in Jointed Rock[J].Tunneling and Underground Space Tech.1992,7(4):441-446.
    [69]郝哲,王介强,何修仁.岩体裂隙注浆的计算机模拟研究[J].岩土工程学报,1999,21(6):727-730.
    [70]杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46.
    [71]罗平平,朱岳明,赵咏梅等.岩体灌浆的数值模拟[J].岩土工程学报,2005,27(8):918-921.
    [72]罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].河海大学博士学位论文,2006:1-62.
    [73]王开,田取珍,张小强.松软破碎带中巷道围岩注浆加固参数研究[J].太原理工大学学报,2011,42(5):521-524.
    [74]卢郭华,何忠明,林杭.节理岩坡中注浆效应FLAC3数值分析.煤田地质与勘探[J].2007,25(2):45-48.
    [75]闫常赫,向可明,邱延峻.基于不同扩散方式的路基渗透注浆模拟[J].铁道建筑,2008,(11):40-42.
    [76]李向红,刘建航,傅德明,等.CCG注浆过程的数值模拟研究[J].岩石力学与工程学报,2003,22(S1):2322-2327.
    [77]Terzaghi K.Theoretical Soil Mechanies.New York:John Wiley and Sons,1943.
    [78]Biot M A. Consolidation settlement under a rectangular load distribution. Journal of Applied Physics,1941,12(5):426-430.
    [79]Biot M A. Clingan F M.Consolidation settlement of a soil with an impervious top surface. Journal of Applied Physics,1941,12(7):578-581.
    [80]Biot M A, Willis D G. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, Trans. ASME,1956,18:91-96.
    [81]Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics,Trans.ASME,1957,24:594-601.
    [82]袁士义,冉启全,胡永乐,韩东考虑裂缝变形的低渗透双重介质油藏数值模拟研究[J]自然科学进展2005,15(1):77-83.
    [83]黎水泉,徐秉业.双重孔隙介质流固耦合理论模型.水动力学研究展.2001,16(4):460-466.
    [84]黎水泉,徐秉业.裂缝性油藏流固耦合渗流.计算力学学报.2001,18(2):133-137.
    [85]程鹏达.孔隙地层中粘性时变注浆浆液流动特性研究[D].上海大学流体力学博士学位论文,2011.10.
    [86]Sung-Yul Ahn, Kyung-Chul Ahn, Se-Gu Kang. A study on the grouting design method in tunnel under ground water[J]. Tunnelling and Underground Space Technology,2006,21(3): 400.
    [87]平扬,白世伟,徐燕平.深基坑工程渗流渗流—应力耦合分析数值模拟研究,岩土力学,2001(3).
    [88]汪斌,唐辉明.含弱透水层岸坡地下水渗流特征的数值模拟[J].岩土力学,2006增刊,27(130):193-197.
    [89]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型,水动力学研究与进展A辑,2003,18(4):419-426.
    [90]张延军,王恩智,王思敬.非饱和土中的流固耦合研究[J].岩土力学,2004,25(6):1999-1004.
    [91]田杰.岩体渗流的流固耦合问题及其工程应用[D].北京:中国科学院研究生院(渗流流体力学研究所)硕士学位论文,2005.
    [92]孙家学,吴理云.砂体中注浆结石体强度的试验研究[J].化工矿山技术,2008,20(6):17-19.
    [93]侯克鹏,李克钢.松散体灌浆加固试验研究[J].矿业研究与开发,2008,28(1):25-27.
    [94]孙家学,吴理云.影响注浆结石体强度的因素分析[J].金属矿山,1992,(4):22-25.
    [95]唐新军,陆述远.胶结堆石料的力学性能初探[J].武汉水利电力大学学报,1997,30(6):15-18.
    [96]陈伟.裂隙岩体灌浆压力及其稳定性控制方法研究[D].中南大学博十学位论文,2008.
    [97]何忠明.裂隙岩体复合防渗堵水浆液试验及作用机理研究[D].中南大学博士学位论文,2007.
    [98]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].徐州:中国矿业大学博士学位论文,1999.
    [99]程骁,张凤祥.土建注浆施工与效果检测[M].上海:同济大学出版社,1999.
    [100]韩立军,贺永年.破裂岩体注浆加锚特性模拟数值试验研究[J].中国矿业大学学报, 2005,34(4):418-422.
    [101]黄戡.裂隙岩体中隧道注浆加固理论研究及工程应用[D].中南大学博士论文,2011.05.
    [102]聂笃宪.随机分形裂缝模型的研究[D].广东工业大学工学硕士学位论文,2005.
    [103]TAO Q, LEE H. P., LIM S. P. Contact mechanics of surfaces with various models of roughness descriptions[J]. Wear,2001,249:539-545.
    [104]PATRIKAR R. M.. Modeling and simulation of surface roughness[J]. Appl Surf Sci,2004, 228:213-220.
    [105]CAI Z. J., CHEN D. Q., LU S. Reconstruction of a fractal rough surface[J]. Physica D, 2006,213:25-30.
    [106]ZOU Mingqing, YU Boming, FENG Yongjin, et al. A monte-carlo method for simulating fractal surfaces[J]. Physica A,2007,386:176-186.
    [107]肯尼思.法尔科内(英),曾文曲,等译.分形几何-数学基础及其应用[M],东北大学出版社1991
    [108]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科技大学出版社,1995.
    [109]李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.
    [110]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497.
    [111]BARTOLI F, PHILIPPY R, DOIRISSE M, et al. Structure and self-similarity in silty and sandy soils:The fractal approach[J]. Journal of Soil Science,1991,42(2):167-185.
    [112]杜学玲,杨俊彪,袁吉鸿.分形分维与土力学参数关系探讨[J].西部探矿工程,2005,(4): 23-28.
    [113]王大鹏,王秋兵,韩春兰,等.辽宁省古红土颗粒分形特征研究[J].安徽农业科学,2007,35(20):6186-6189.
    [114]伍丢峰.土颗粒粒径分维值与土的黏聚力的关系[J].湖南水利水电,2007,2: 23-24.
    [115]张佑林,夏家华,黎国华,等.粉体颗粒的形状与分维[J].武汉工业大学学报,1996,18(4):53-56.
    [116]周宏伟,于广明.土体物理参数及空间构形的分形研究[J].阜新矿业学院学报(自然科学版),1997,16(6):645-647.
    [117]LIU L., NERETNIEKS I.. Analysis of fluid flow and solute transport in a fracture intersecting a canister with variable aperture fractures andarbitrary intersection angles[J]. Nuclear Technology,2005,150:132-144.
    [118]Katz A J, Thompson A H. Fractal sandstone pores:Implications for conductivity and pore formation[J]. Physical Review Letters,1985,54:1325-1328.
    [119]Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation [J]. soil Science Society of America Journal, 1989,53:987-996.
    [120]Tyler S W, Wheatcraft S W. Fractal processes in soil water retention[J]. Water Resources Research,1990,26:1047-1054.
    [121]Rieu M, Sposito G. Fractal fragmentation, Soil porosity, and Soil water properties: Ⅰ.Theory, Ⅱ Applications[J].Soil Seience Society of America Journal,1991, 55:1231-1248.
    [122]Kravchenko A, Zhang R. Estimating the soil water retention from Particle size distribution: a fractal approach[J]. Soil Science,1998,163:171-179.
    [123]Arya L M, Paris, J F. A physicoempirical model to predict the soil moisture charaeteristic from Particle-size distribution and bulk density data[J]. soil Sci. Soc. Am. J.,1981, 45:1023-1030.
    [124]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报,2004,12(2):182-186.
    [125]Cupta S C, Larson W E. Estimating soil water retention characteristics from Particle-size distribution, organic matter percent and bulk density[J]. Water Resour. Res.,1979, 14:1633-1635.
    [126]Haverkamp R, Parlange, J Y. Predicting the water retention curve from Particle-size distribution:Sandy soils without organic matter[J]. soil Sci.,1986,142:325-399.
    [127]徐永福,史春乐.用土的分形结构确定土的水分特征曲线[J].岩土力学,1997,18(2):40-43.
    [128]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405.
    [129]Arya L M, Leij F J, Shouse P J, et al. Relationship between the hydraulic conductivity function and Particle-size distribution[J]. soil Sci. Soc. Am. J.,1999(63):1063-1070.
    [130]Young, IM, Crawford JW, Anderson A. Comment on number-size distributions[J].soil structure and fractals. soil Sci. Soc. Am. J.,1997, (61):1799-1800.
    [131]陈亮,熊琦华,等.用正演井间分形克里格方法预测储集层的非均质[J].石油勘探与开发.1998,2:62-67.
    [132]赵亮,无锡令.非均质油层分形模型与测井描述研究[J].测井技术.2001,25(3):195-199.
    [133]桂峰,黄智辉,马正.利用相控模型进行井间参数预测[J].地球科学—中国地质大学学报.2001,26(1):44-49.
    [134]李越,段永刚,胡勇.井间储层参数分形预测及其应用[J].新疆石油学院学报.1997:40-45.
    [135]练章贵,张绍槐,焦棣,等.分形插值在储层参数预测中的应用[J],西南石油学报.1998,20(2):16-18.
    [136]毛宁波,桂志先,等.井间储层参数分形预测及其应用[J].江汉石油学院学报.1995,17(6):43-47.
    [137]金强,曾怡,任怀强,杨少春.两口井条件下的储层参数预测方法[J].石油实验地质.1995,17(3):26-32.
    [138]张占松,王冠贵,陈佩珍.井间非均质渗透率分形预测[J].石油勘探与开发.1998(2):65-70.
    [139]方战杰,郭海敏,沈世波.分形在油藏动态参数预测中的应用[J].测井技术.2001,25(1):21-23.
    [140]唐俊伟,沈平平,黄平中.分形插值模拟渗透率及孔隙度平面分布(Ⅰ)——理论分析[J].石油勘探与开发.1997,24(3):66-69.
    [141]唐俊伟,沈平平,黄平中.分形插值模拟渗透率及孔隙度平面分布(Ⅱ)——计算实例[J].石油勘探与开发.1997,24(4):38-41.
    [142]施泽进,罗哲潭,彭大钧,等.四川盆地油气田空间分布的分形特征[J].地球科学—中国地质大学学报.1995,20(1):68-72.
    [143]施泽进,罗哲潭,贺振华,等.油气藏体积分布的分形特征及其意义——以四川地区气藏为例[J].大地构造与成矿学.1995,29(3):70-75.
    [144]施泽进,罗哲潭,彭大钧,等.四川地区断层空间分布的多重分形特征[J].现代地质.1995,12:467-474.
    [145]胡瑞林,李向全等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995.
    [146]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,(4):60-65.
    [147]黄丽.饱和软粘土微观孔隙的定量分析及其分形研究[J].武汉理工大学硕士学位论文,2007.05.
    [148]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报,2006,(10):92-96.
    [149]刘孝贤,张凤山.对分形参数施加随机性影响的研究[J].山东大学学报(工学版),2002,32(4):358-3363.
    [150]王锦国,周志芳.基于分形理论的裂隙岩体地下水溶质运移模拟[J].岩石力学与工程学报,2004,23(8):1358-1362.
    [151]Guerrini, Swartzendruber D. Fractal concepts in relation to soil water diffusivity [J]. soil Science,1997,162(11):778-784.
    [152]Mualem Y. A new model for Predicting the hydraulic conductivity of unsaturated porous media[J].Water Res.Res.,1976,12:513-522.
    [153]徐永福,黄寅春.分形理论在研究非饱和土力学性质中的应用[J].岩土工程学报,2006,28(5):635-638.
    [154]管志勇,路卫卫,戚蓝,等.建筑物地基沉降曲线的分形特征分析闭.岩土力学,2008,29(5):1415-1418.
    [155]陶高梁.岩土多孔介质孔隙结构的分形研究及其应用[D].武汉理工大学博士学位论文,2010.11.
    [156]吕晓光,王德发,姜洪福.储层地质模型及随机建模技术[J].大庆石油地质与开发,2000,19(1):10-13.
    [157]吴诗勇,李自安.精细地质研究现状及发展趋势[J].地球科学与环境学报,2006,28(2):58-64.
    [158]徐颖.软弱带爆炸注浆机理及应用研究[D].中国科学技术大学博士学位论文,2003.
    [159]高贵全,杨松.非饱和土实用化研究中的参数选择分析[J].云南农业大学学报,2011,26(4):549-553.
    [160]刘孔凡,焦莉莉.普通水泥稳定浆液的研究[J].水利水电技术,1998,29(12):48-50.
    [161]涂建湘.湿磨水泥灌浆技术在五强溪水电站坝基帷幕灌浆中的应用[J].水利水电技术,1997,5:40-42.
    [162]程鹏达.孔隙地层中粘性时变注浆浆液流动特性研究[D].上海大学博士学位论文,2011.10.
    [163]王晓亮.地下工程注浆效果综合评价技术研究[D].北京市市政工程研究院硕士学位论文,2009.6.
    [164]杨晓东.水泥灌浆浆液运动及压力技术分析[J].中国水利水电科学研究院学报.2009,7(4):246-250.
    [165]阮文军.基于浆液黏度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709-2714.
    [166]金业权.非牛顿流体漏斗粘度与塑性粘度的实验研究[J].西部探矿工程,2004,93(2):37-38.
    [167]王桂莲,李德建,何满潮,等.岩石吸水特性及其孔隙结构变化研究[A].//中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会论文集,2009,251-255.
    [168]黄思静,杨永林,单任铭,等.注水开发对砂岩储层孔隙结构的影响[J].中国海上油气(地质),2001,]4(2):122-128.
    [169]王天琦,施泽进,郑红军,等.注水前后储层微观孔隙结构的分形表征[J].石油天然气学报(江汉石油学院学报),2005,27(2):242-244.
    [170]马新仿,张士诚,郎兆新.用分形方法研究水驱前后岩石的孔隙结构[J].新弦石油地质,2003,24(3):240-241.
    [171]刘子晋.对砂岩油藏水洗后岩石孔隙结构变化的探讨[J].石油勘探与开发,1980,7(2):53-58.
    [172]黄福堂.油田注水开发过程中储层岩石表面性质变化因素研究[J].石油勘探与开发,1985,12(3):45-50.
    [173]王传禹,杨普华,马永海,等.大庆油田注水开发过程中油层岩石的湿润性与孔隙结构的变化[J].石油勘探与开发,1981,7(1):54-67.
    [174]Fliihler H, Ursino N, Bundt M, etal. The Preferential Flow Syndrom—A Buzzword or a Scientific Problem. In Preferential Flow Water:Vloveanent Cheanical Transport in the Environment, Proc.2nd Intl. Symp 3-5 January 2001, Honolulu, Hawaii, USA, ASAE.
    [175]刘琼.碎石土注浆扩散规律研究[D].三峡大学硕士学位论文,2012.05.
    [176]Filip Mulier. Vapnik-Chervonenkis. Learning Theory and Its Applications[J]. IEEE Transactions on Neural Networks,1999,10(5).
    [177]Vladimir N. Vapnik. An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks,1999,10(5).
    [178]Cristianini, N. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004.3
    [179]吴振君.土体参数空间变异性模拟和土坡可靠度分析方法应用研究[J].中国科学院研究生院博士学位论文,2009.05.
    [180]徐平.三峡库区涉水滑坡体稳定性的可靠度研究[D].长安大学博士学位论文,2011.05.
    [181]王长虹,朱合华.多重分形与Kriging插值在地层模型生成中的应用[J].岩土力学,2011,32(6):1864-1868,1885.
    [182]孟凡卉.随机分形在储层参数预测中的应用[D],成都理工大学硕士学位论文,2006.05.
    [183]张宁生,炱军贤.储层渗透率分布的分形预测及结果讨论[A].西安石油学院科技大会论文集[C].西安:陕西人民出版社,1997:22-29.
    [184]张艳君.低渗孔隙介质中流体流动的分形模拟研究[A].特种油气藏.2005,12(3):50-52.
    [185]Falconer K J. Fractal Geometry, Mathematical Foundationsand Applications [M]. New York:John Wiley and Sons.1990(曾文曲等译,东北工学院出版社,1991).
    [186]龚庆杰,向运川,张荣华等.地球化学场分形维数的计算方法及其C++函数实现[J].矿床地质,21(S),1136-1139.
    [187]毛用才,胡奇英.随机过程[M].西安:西安电子科技大学出版社,2004.38-39,70-75
    [188]彭仪普.地形三维可视化及其实时绘制技术.西南交通大学工学博士学位论文[C].2002.
    [189]付建林.GSI中地形可视化与铁路信息查询的研究[C].西南交通大学硕士学位论文.2002.
    [190]赵阳升.多孔介质多场耦合作用及其工程响应[M].科学出版社,2010.6.
    [191]李世烽,吴向阳,尚彦军.地下工程半经验半理论设计方法的理论基础——围岩-支护系统是一种开放的复杂巨系统[J].岩石力学与工程学报,21(3),299-305.
    [192]罗元华,孙雄.不同应力状态下地层渗透系数的变化及其对流体运移影响的数值模拟研究[J],地球学报:中国地质科学院院报,1998(2).
    [193]雷树业,王利群,贾兰庆,等.颗粒床孔隙率与渗透率的关系[J].清华大学学报(自然科学版),1998,38(5):76-79.
    [194]罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].河海大学博士学位论文,2006.
    [195]阮文军,浆液基本性能与岩体裂隙注浆扩散研究[D].吉林大学博士学位论文,2003.
    [196]韩式方.非牛顿流体连续介质力学[M].成都:四川科学技术出版社,1988.
    [197]F. M. Biot, M. A. Clingan. Consolidation settlement of a soil with an impervious top surface. Journal of Applied Physics,12(5):578-581,1941.
    [198]M. A. Biot. Consolidation settlement under a rectangular load distribution. Journal of Applied Physics,12(5):426-430,1941.
    [199]M. A. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2):155-164,1941.
    [200]M. A. Biot. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics,26(2):182-185,1955.
    [201]Carroll, M.M., "Mechanical response of fluid-saturated porous materials", In:Theoretical and Applied Mechanics,15th Int. Cong. Theoretical & Appl. Mech., Toronto, (eds.) F.P.J. Rimrott and B. Tabarrok,251-262,1980.
    [202]Detournay, E. and Cheng, A.H.-D. Comprehensive Rock Engineering:Principles, Practice and Projects, Vol.Ⅱ, Analysis and Design Method[M]. C. Fairhurst, Pergamon Press, 1993.
    [203]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.
    [204]Detournay, E. and Cheng, A.H.-D. Comprehensive Rock Engineering:Principles, Practice and Projects, Vol. Ⅱ, Analysis and Design Method[M]. C. Fairhurst, Pergamon Press, 1993.
    [205]杨秀竹,雷金山,夏力农,王星华.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806.
    [206]王立彬,燕乔,毕明亮.黏度渐变型浆液在砂砾石层中渗透扩散半径研究[J].中国农村水利水电,2010,(9):68-70.
    [207]王鹏程,白明洲,许兆义,等.注浆加固非饱和土地层控制大断面地铁隧道施工沉降效果分析[J].北京工业大学学报,2012,38(2):228-237.
    [208]高海,施建勇,陈继东,等.垃圾土地基灌浆处理试验[J].水利水电科技进展,2011,31(1):58-62.
    [209]周小能.砂砾石层中浆液渗透扩散现场模拟试验研究[J].三峡大学学报(自然科学版)2013,35(1):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700