用户名: 密码: 验证码:
轮辐式索膜结构损伤情况下的动力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮辐式索膜结构具有质量轻、受力合理、跨越跨度大等优点。该结构由内环索、径向索(脊索、谷索)和压环等构件组成,索系预应力水平及应力分布对整个结构的刚度和受力性能起着至关重要的作用。由于施工偏差、荷载及环境等因素的影响,会导致拉索应力分布不均匀、预应力松弛、连接节点锈蚀等损伤,从而导致结构的受力性能发生明显变化,在地震、飓风等偶然荷载作用下产生潜在的破坏危险。因此,对该类结构开展损伤情况下的动力性能研究十分必要。
     论文以世纪莲体育中心为背景,通过定性模型试验测试、有限元模拟分析等手段,对轮辐式索膜结构损伤情况下的风致振动、抗震性能和抗倒塌性能进行深入研究,取得了以下几个方面的创新性研究成果:
     (1)在风洞试验测试基础上,根据逆傅立叶变换技术和频率双索引概念,在谐波合成法的基础上,借助Matlab程序,构造本结构120个节点的脉动风速时程,通过ANSYS有限元程序建立结构的有限元模型,将构造的脉动风速时程施加于结构模型上,分析索松弛损伤情况下结构的风致振动情况。得到了风荷载作用下结构动力反应的基本规律以及损伤情况下结构的敏感风向角(63°和135°风向角);得到了结构整体动力放大系数的分布规律,认为由风洞试验确定的压力分布系数和风振系数宜乘以结构损伤动力调整系数(取值为1.1),以防止索系预应力松弛或分布不均匀带来的结构动力效应放大,同时给出了结构损伤情况下动力放大系数计算公式。
     (2)在以上有限元模型基础上,分析了轮辐式索膜结构的动力特性和损伤情况下的抗震性能。结果表明:该结构自振频率较低,频谱集中,频率跳跃现象不明显,结构动力特性复杂,且结构模态质量参与系数与考虑的振型阶数有关;为保证各方向的模态质量参与系数达到90%以上,建议反应谱分析时,其振型取到140阶以上;不同类型地震波作用下本结构的地震反应差别不大,地震分析时可考虑只采用一种地震波进行,但不同方向及多维组合作用对结构的危害主次不明显,应受到同样的关注;索松弛情况下,设计地震作用的内力和位移反应均有可能大于本地区设计风荷载作用下结构的反应,结构设计时应分别进行整体结构地震作用和风荷载作用下的内力分析。
     (3)按1:60的缩尺比例制作定性模型,进行静力性能试验和数值分析,得到了结构损伤情况下的力学反应和响应规律。分析表明:索松弛对结构的整体刚度和屈服荷载影响较小,但对结构的极限荷载和耗能能力影响较大;压环、腹杆等的刚度对结构的极限荷载和耗能能力影响较大,通过拟静力分析,得到了此类结构上压环、腹杆、下压环、柱之间的合理刚度比:1:1.2:1.3:4.8。
     (4)对定性模型进行动力损伤测试,并对原型结构进行抗倒塌数值分析,研究了局部索破坏对结构性能的影响。分析表明:动力测试设备无法精确灵敏地捕捉结构密集的频率,通过动力特性测试来监测本结构损伤、判断结构损伤程度和损伤部位非常困难;轮辐式索膜结构主要构件的重要性由小到大依次为悬挂索、腹杆、下压环、上压环、墩柱、分叉索、脊索、谷索、内环索;重要构件断裂造成的破坏程度由轻到重依次为一根谷索断裂、一根脊索断裂、两根相邻谷索断裂、两根相邻脊索断裂、墩柱断裂、两根相邻索断裂、三根相邻索断裂、内环索断裂;结构具有较好的抗连续倒塌能力,重要杆件裂后,能将其承担的荷载迅速传递给相邻构件,从而较好地将坍塌部分限制在有限的区域内;通过采用双索体系、分区域设计和多柱式墩可提高该结构的抗倒塌能力。
Wheel-spoke cable-membrane structures have the advantages of light quality, reasonableforce and increasing the span etc, which is composed of the inside pull cables, radial cables,and external pressure rings. Prestressing force level of cables and its distribution plays a vitalrole in the system stiffness and performance. Because of the effect of construction errors,external loads and environmental factors, the cables are likely to be led to the relaxation ofprestressing force, unevenly distributed level stress, and the corrosion on the surface ofcables’ joints. The structure’s behavior will be changed significantly and potential danger maybe caused under Accidental loads, such as earthquake, cyclone, and so on. Therefore, it’s verynecessary to carry out the research of dynamic performance for these damaged structures.
     Engineering background with Century Lotus Stadium, based on experimental test ofqualitative model and finite element analysis, wind-induced vibration, seismic performance,and collapse-resistant performance of Wheel-spoke cable-membrane structure were subjectedto intensive studies when it was damaged. The following new results were obtained.
     (1) Based on wind tunnel tests, according to inverse Fourier Transform, and the conceptof frequency double index, and harmonic synthesis method, time history of turbulent windspeed of120joints of the structure were gained by using Matlab program. And then, adoptingANSYS program, wind-induced vibration of the structure were analyzed under these timehistory of turbulent wind speed when prestressing force of the structure’s cables were slacked.The fundamental law of the dynamic response and the sensitive wind direction of the structure,63°angle and135°angle, were gained under wind loads when the structure was damaged.The distribution law of the dynamic magnification factor of the whole structure was obtained.To deter the dynamic amplifying caused by the relaxation of prestressing force or unevenlydistributed level stress of cable system, the pressure distribution coefficient and the winddynamic coefficient gained from wind tunnel tests should be multiplied by adjustingcoefficient of structure’s dynamic damage, equaling1.1. The calculation method of thedynamic coefficient was proposed.
     (2) Based on the above FEM model, the structure’s dynamic characteristics and itsseismic performance were analyzed. The results show that natural frequencies of the structureare all lower and concentrate in a small range, and its jumping phenomenon isn’t in evidence.Its dynamic characteristics are very complicated. The mode mass participating coefficient isrelated to the mode order. To ensure that the mode mass participating coefficient is not less than90%, the contribution of the former140modes should be considered when the analysisof response spectrum is done. The seismic responses have only a little difference underdifferent types of seismic waves. So we should only calculate one type seismic waves inseismic analysis. Because the harming degree of the seismic loading to the structure is notsimilar when the directions of the earthquake waves are different, the effects of the waves’direction and their combination should be considered. Because the structure’s internal forceand displacement are bigger under designing seismic loads than under designing wind loadswhen the prestressing force of the cable system is released, the internal force should berespectively calculated under seismic loads and wind loads.
     (3) The qualitative model was made with1:60scales. And then, its static testing andnumerical analysis were done. Mechanics responses and its law were obtained when themodel was damaged. The results shows that the relaxation of prestressing force of cablesystem has only a low impact on the whole stiffness and yield load, but it has a stronginfluence on the limit load and energy dissipating capacity of the structure. The stiffness ofthe compression ring and the truss web also has a strong influence on the limit load andenergy dissipating capacity of the structure. Based on quasi-static analysis of the model, theappropriate stiffness ratio of the upper compression ring, the truss web, the lower compressionring, and the column was obtained, which was1:1.2:1.3:4.8.
     (4) Dynamic damage test of the qualitative model was done, and the influence of localcables failure on the whole structure was researched based on the collapse-resistant analysis.The results shows that because of the dense natural frequencies and the low impact of cables’damage on the structure’s frequencies, dynamic test equipments couldn’t collect the densenatural frequencies with neat exactitude. It is very difficulty to watch the structure’s damage,judge the degree of structure’s damage and the damage location by testing the dynamiccharacteristics. The importance degree of main components of structure from the little to thegreat is the hanging cables, the truss web, the lower compression ring, the upper compressionring, the column, the divaricating cable, the upper radial cable, the lower radial cable, and theinside pull cables. The degree of the damage caused by the important members breaking fromthe little to the great is the breaking of one lower radial cable, one upper radial cable, twoneighboring lower radial cables, two neighboring upper radial cables, column, twoneighboring radial cables, three neighboring radial cables, the inside pull cables. The structurehas good collapse-resistant performance. After the breaking of important members, their loadscould be rapidly transferred to the neighboring members. And the collapse range was preferably restricted in limited region. Double cables system, zone-design, and multi-columnstyle pier could improve the collapse-resistant performance of the structure.
引文
[1]杨庆山,姜忆南.张拉索一膜结构分析与设计.第一版.北京.科学出版社.2004
    [2] Jorg Schlaich. Cable and membrane structures for buildings[C]. In: Porc. Of the lst Oleg KerenskyMemorial Confrence, Section3. London,1988,6-13
    [3] L. Glaeser. The Work of Frei Otto. The Museum of ModemArt, New York,1972
    [4] F. Otto. Tensile Structures. MIT, Cambridge, MA,1973
    [5] Kazuo Ishii. Membrane Designs and Structures in the World. Shinkenchiku-sha Tokyo,1999
    [6]周道明.膜结构工程的发展和应用[J].工业建筑,1999,29(11):1-4
    [7]钟莉莉.膜结构的灵魂一膜材料[J].工业建筑,1999,29(11):4-7
    [8]蓝天.当代膜结构发展概述[J].世界建筑,2000(9):17-20
    [9]廖士骏.膜结构今昔面面观[J].世界建筑,2000(9):55-57
    [10]郭笑平,李纯.膜结构的空间创造一介绍21世纪斯图加特火车站创作构思[J].世界建筑,2000(9):70-72
    [11]商欣萍,储才元.建筑用膜结构材料[J].产业用纺织品,2001,19(10):12-15
    [12]齐藤嘉仁(日).膜结构的现状与展望[J].建筑学报,2001(6):62-64
    [13]李中立、吴健生.国外膜结构在大跨度结构中的应用与发展趋势.空间结构.1996,2(3):
    [14]H. Berger. Tensile structures highlight new Denver airport. IASS Symp. On spatial, Lattice, tensionstructures,1994:957-967
    [15]林颖儒.上海八万人体育场马鞍型大悬挑钢管空间屋盖结构设计简介[J].空间结构,1996,1(2):47-53
    [16]赵基达,李明顺.大跨度空间结构在我国的发展及其关键技术[J].建筑技术,2002,28(7):483-484
    [17]傅学怡,顾磊,施永芒,刑民.北京奥运国家游泳中心结构初步设计.土木工程学报,2004,37(2):1-11
    [18]张爱林,刘学春.2008奥运会羽毛球馆新型弦支穹顶结构模型静力试验研究[J].建筑结构学报,2007,28(6):58-67
    [19]沈世钊.膜结构一发展迅速的新型空间结构[J].哈尔滨建筑大学学报,1999,32(2):11-15
    [20]Fei Otto. Tensile structures, The M.I.T Press, l967
    [21]Otto, Frei, et al. Tensile structures: design, structure, and calculation of buildings of cables, nets, andmembranes, Cambridge, Massachusetts; M.I.T Press,1973
    [22] Edmund happold. Tensile building development [C]. In: Proc. of the1st Oleg Kerensky MemorialConfrence, London,1988:31-36
    [23] Krishna P. Tension roofs and bridges [J]. Journal of Constructional Steel Research,2001,57:1123-1140
    [24]Riccardo Barsotti, Salvatore S. Ligaro. The web bridge [J]. International Journal of Solids andStructures,2001,38:8831-8850
    [25]葛家琪,张爱林,刘鑫刚,等.索穹顶结构张拉找形与承载全过程仿真分析[J].建筑结构学报,2012,33(4):1-11
    [26]宋智杰,卓新.肋环型逐层双环索穹顶初始预应力快速计算法[J].浙江大学学报(工学版),2012,46(9):1619-1624.
    [27]岑迪钦.肋环型刚性索穹顶结构的静动力性能分析[J].建筑结构,2013,43(15):76-79
    [28]宗钟凌,郭正兴.葵花型索穹顶结构力学性能及拉索破断试验研究[J].工程力学,2013,30(1):271-276.
    [29]龙文志.北京奥运会体育场游泳馆的幕墙[J].中国建筑装饰,2004,169(1):15-19
    [30]Seung-Deog Kim. On the Membrane Collapse of JEJU World Cup Stadium by Typhoon. IASS2003,Korea,2003:321-328
    [31]Quick dome fix will let NFL falcons fly[J]. Engineering News-Recorded,1995,235(9):14
    [32]沈世钊.大跨空间结构理论研究和工程实践[J].中国工程科学,2001,3(3):51-54
    [33]Deodatis G, Shinozuka M. Auto-regressive model for nonstationary stochastic process [J]. J. ofEng.Mech.,ASCE,1988,114(11):1995-2012
    [34]Grigoriu M. Simulation of nonstationary Gaussian process by random trigonometric polynomials[J].J.of Eng.Mech.,ASCE,1993,119(2):328-343
    [35]R. B. Haber. Initial Equilibrium Solution Methods for Cable Reinforced Membranes PartI-Formulations[J]. Computer Method in Applied Mechanics and Engineering,1982,30:263-284
    [36]Grundig L. Minimal surfaces for finding forms of structural membranes, Computer&Struct ure,1988,30(3):679-683
    [37]卫东.张拉膜结构形态分析及优化[D].哈尔滨:哈尔滨工业大学,2001
    [38]叶小兵,李中立,吴健生,用曲面有限单元建立的膜结构分析理论,建筑结构学报,1998,19(5),17-21
    [39]Maurin B, Motro R. Stability and mechanism order of isotropic prestressed surfaces[J]. InternationalJournal of Solids and Structures,2004,41(9):2731-2741.
    [40]徐其功,李澄,韩大建.张拉膜结构力密度法找形分析及若干问题[[J].华南理工大学学报(自然科学版),2003,31(5):85-90
    [41]周树路,叶继红.膜结构找形方法——改进力密度法[J].应用力学学报,2008,25(3):421-425.
    [42]A. S. Day, J. H. Bunce. Analysis of Cable Networks by Dynamic Relaxation[J]. Civil Eng. PublicWorks Rew,1970,4:383-386
    [43]M.R.Barnes. Form and Stress Engineering of Tension Structures[J]. Structural Engineering Review,1994,6(3-4):175-202
    [44]Grote D L, Park1S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I.experimental characterization[J]. International Journal of Impact Engineering,2001,25:869-886.
    [45]Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a splitHopkinson pressure bar test [J]. International Journal of Solids and Structures,2003,40:343-360.
    [46]毛国栋,孙炳楠,唐志山.控制网格变形的动力松弛法膜结构找形分析[J].浙江大学学报(工学版),2004,38(5):598-602.
    [47]叶继红,周树路.改进动力松弛法在膜结构找形中的应用[J].工程力学,2008,25(12):194-200.
    [48]向新岸,董石麟,赵阳.上海世博轴复杂张拉索膜结构的找形及静力风载分析[J].空间结构,2013,19(2):75-82.
    [49]J. Bonet, J. Mahaney. Form Finding of Membrane Structures by the Updated Reference Method withMinimum Mesh Distortion[J]. International Journal of Solid And Structures,2001,38:5469-5480
    [50]彭涛.向量式有限元在索膜结构分析中的应用[D].杭州,浙江大学,2012.
    [51]朱明亮,董石麟.向量式有限元在索穹顶静力分析中的应用[J].工程力学,2012,29(8):236-242.
    [52]Kimoto E, Kawamura S. Aerodynamic criteria of hanging roofs for structural design[J]. Osaka: Shells,Membranes and Space Frames, Proceedings IASS Symposium,1986,2:249-256.
    [53]Matsumoto T. Self-excited oscillation of a pretensioned cable roof with single curvature in smooth flow[J]. Journal of Wind Engineering and IndustrialAerodynamics,1990,34(3):303-304.
    [54]Minami H, Okuda Y, Kawamura S. Experimental studies on the flutter behavior of membranes in awind tunnel [J]. Space Structures4, London: Thomas Telford,1993:935-945.
    [55]Yasui H, Marukawa H, Katagiri J, et al. Study of wind-induced response of long-span structure[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [56]Glück M, Breuer M, Durst F, et al. Computation of fluid-structure interaction on light weightstructures[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1351–1368.
    [57]Glück M, Breuer M, Durst F, et al. Computation of wind-induced vibrations of flexible shellsandmembranous structures[J]. Journal of Fluids and Structures,2003,17(5):739-765.
    [58]Bjorn Hubner, Elmar Walhorn, Dieter Dinkler. A monolithic approach to fluid-strueture interaetionusing space-time finite elements. Computer Methods in applied mechanies and Engineering,2004,193(23-26):2087-2104
    [59]PRF Teixeira, AM Awruch. Numerical simulation of fluid-structure interaction using the finite elementmethod.ComPuters&Fluids,20()5,34(2):249-273
    [60]武岳,沈世钊.膜结构风振分析的数值风洞方法[J].空间结构,2003,9(2):38-43.
    [61]武岳,杨庆山,沈世钊.索膜结构风振气弹效应的风洞实验研究[J].工程力学,2008,25(1):8-15
    [62]周骥,张其林,殷惠君.底裙开敞伞形膜结构风荷载的数值模拟[C].第十二届空间结构学术会议,北京,2008.
    [63]秦敬伟,杨庆山,谭锋.张拉薄膜结构动力特性研究[J].空间结构,2008,14(2):42-47
    [64]陈亚楠,陈怡然,周岱,等.典型组合形体空间膜结构风振响应的数值分析[J].上海交通大学学报,2012,46(10):1087-1593.
    [65]周岱,钱锟,马骏,等.漏斗形开敞式膜结构的风致振动效应分析[J].上海交通大学学报,2013,47(6):862-871.
    [66]卢旦,楼文娟,杨毅.索膜结构风致流固耦合气动阻尼效应研究[J].振动与冲击,2013,32(6):47-53
    [67]Ishii K. On developing of curved surfaces of pneumatic structures[C]. IASS Symposium on PneumaticStructures. Delft,1972.
    [68]Meek JL,Tan KY. Post-shape finding determination of geodesic lines in cutting pattern design formembrane structures[J]. Space Structure,1986,(2):231-239.
    [69]向阳,沈世钊.薄膜结构的实用裁剪设计方法[J].空间结构.1999,5(2):46-50.
    [70]赵杰,谭锋,杨庆山.膜结构裁剪膜片展开的二次测地线法[J].空间结构.2003,9(2):56-60.
    [71]毛国栋,孙炳楠.索膜结构初始形状确定的综合设计法[J].建筑结构学报,2004,25(4):87-93
    [72]毛国栋,孙炳楠,濮钧.索膜结构裁剪分析中测地线生成的非线性有限单元法[J].工程力学.2005,22(2):33-37
    [73]MA Miner. Cumulative Damage in Fatigue[J]. Journal ofApplied Meehanics,1945,67:159-164.
    [74]JC Simo, JW Ju. Strain and Stress based Continuum Damage Model-I, Formulation[J]. InternationalJournal of solids Structures,1987,23:821-840.
    [75]JA Lemaitre. Continuous damage mechanics model for duetile fraeture[Jl. Journal of Engineeringmaterials and Teehnology,1988,107:83-89
    [76]李贤兴.钢筋混凝土空间结构的地震损伤评估[C].结构工程科学发展青年专家研讨会,哈尔滨,1992,165-174
    [77]楼志文.损伤力学基础[M].西安交通大学出版社,1991.
    [78]H Krawinkler, M Zohrei. Cumulative damage in steel strueture subjeeted to earthquake groundmotions[J]. Computers and Struetures,1983,16(l-4):531-541.
    [79]YJ Par, AHS Ang. Mechanistic seismic damage model for reinforeed conerete[J]. ASCE, Journal ofstruetural Engineering,1985,111(4):722-739.
    [80]欧进萍,何政,吴斌,等.钢筋混凝上结构的地震损伤控制设计[J].建筑结构学报,2000,21(1):63-71.
    [81]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44-49.
    [82]李宏男,何浩祥.利用能力谱法对结构地震损伤评估简化方法[J].大连理工大学学报,2004,44(2):267-271.
    [83]蒋建,丁建.框架结构直接基于损伤性能的抗震设计方法研究.结构工程师.2006,22(1):6-10.
    [84]何浩祥,闫维明,周锡元.基于性能的钢混框架结构多元模糊地震损伤评估[J].工程抗震与加固改造,2006,28(1):100-106.
    [85]梁兴文,田野,瞿岳前.基于能量分析法的地震损伤性能智能优化设计[J].工业建筑,2005,35(6):5-10
    [86]孙彬,牛荻涛.在役结构基于能力谱方法的抗震性能评估[J].世界地震工程,2006,22(1):9-15
    [87]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报,1997,30(l):37-42.
    [88]叶继红,沈祖炎.单层网壳结构的动力稳定实验研究.空间结构[J].1997,3(2):34-39.
    [89]丁阳,郭峰,李忠献.地震作用下空间网架结构考虑损伤累积效应的弹塑性分析[J].工程力学,2005,22(l):54-58.
    [90]支旭东,聂桂波,范峰等.大跨度单层球面网壳的损伤模型及强震失效[J].哈尔滨工业大学学报,2009,41(8):6-11.
    [91]范峰,支旭东,沈世钊.大跨度网壳结构强震失效机理研究[J].建筑结构学报,2010,31(6):153-158.
    [92]Zdenek Kala. Sensitivity assessment of steel members under compression[J]. Engineering Structures,2009,31(6):1344-1348.
    [93]高博青,谢忠良,梁估,等.拉索对肋环型索弯顶结构的敏感性分析[J].浙江大学学报(工学版),2005,39(11):1685-1689.
    [94]田广宇,郭彦林,张博浩,等.宝安体育场车辐式屋盖结构施工误差敏感性试验及误差限值控制方法研究[J].建筑结构学报,2011,32(3):11-18.
    [95]周峰,杨卓.新型大跨度空间结构损伤动力特性数值研究[J].工程抗震与加固改造,2013,35(4):32-41
    [96]M Blandford G E. Review of progressive failure analysis for truss structures[J]. Journal of StructuralEngineering,1997,123(2):122-129.
    [97]沈俊峰.基于抗连续性倒塌的网架设计方法研究[D].南京:东南大学,2008.
    [98]蔡建国,王蜂岚,冯健,等.大跨空间结构连续倒塌分析若干问题探讨[J].工程力学,2012,29(3):143-149.
    [99]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报(自然科学版),2012,42(1):109-113.
    [100]熊进刚,钟丽媛,张毅.网架结构连续倒塌性能的试验研究[J].南昌大学学报(工科版),2012,34(4):369-372.
    [101]Malla R, Wang B. Response of space structures under sudden local damage[C]. EngineeringConstruction and Operations in Space III. Reston: ASCE,1992,1(12):909-920.
    [102]Shiro Kato, Murata M. Dynamic elasto-plastic buekling simulation system for single layer reticulardomes with semi-rigid conneetions under multiple loadings[J]. International Journal of SpaceStructures,1997,12(3-4):161-172.
    [103]Eriling Murtha. Alternate path analysis of space truss for progressive collapse[J]. Journal of StructuralEngineering,1988,114(9):1978-1999.
    [104]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报(自然科学版),2012,42(1):109-113
    [105]丁阳,刘碧文,葛金刚.地震作用下单层柱面网壳倒塌机理分析与试验研究[J].地震工程与工程振动,2013,33(2):68-73.
    [106]丁阳,葛金刚,李忠献.考虑损伤累积及杆件失稳效应的网壳结构极限承载力分析[J].工程力学,2012,29(5):13-18.
    [107]王磊,陈以一.引入初始破坏的桁梁结构倒塌试验研究[J].同济大学学报,2010,38(5):644-649.
    [108]Qinghua Han, Yan Lu, Zemin Xu, et al. Bearing Capacity and Energy Absorption Characteristics ofThin-walled Circular Steel Tube and Its Application in Retractable Roof Structures. Advanced SteelConstruction,2011,7(3):206-219.
    [109]郑君华,袁行飞,董石麟.两种体系索穹顶结构的破坏形式及其受力性能研究[J].工程力学,2007,24(1):44-50
    [110]何键,袁行飞,金波.索穹顶结构局部断索分析[J].振动与冲击,2010,29(11):13-16
    [111]蔡建国,王蜂岚,冯健.新广州站索拱结构屋盖体系连续倒塌分析[J].建筑结构学报,2010,31(7):103-109
    [112]王蜂岚.索拱结构屋盖体系的连续倒塌分析[D].南京:东南大学,2009.
    [113]陈强,沈婷,盛平,等.新广州站索拱结构性能研究[J].铁道工程学报,2008(6):71-75.
    [114]赵冉,魏德敏,孙文波.深圳宝安体育场屋盖索膜结构的找形和索的破断分析[J].工程力学,2010,27(SI):266-269
    [115]林智斌,杨联萍,钱若军.佛山世纪莲体育馆索结构监控分析(1)——无应力索原长的计算[C].第六届全国现代结构工程学术研讨会,河北保定,2006,119-127.
    [116]苏波,林智斌,钱若军.佛山世纪莲体育馆索结构监控分析(2)——整体预应力施加[C].第六届全国现代结构工程学术研讨会,河北保定,2006,128-132.
    [117]钱若军,林智斌,杨联萍.佛山世纪莲体育馆索结构监控分析(3)——分阶段预应力施加[C].第六届全国现代结构工程学术研讨会,河北保定,2006,133-141.
    [118]林启鹏,王帆.佛山世纪莲体育场索膜屋盖施工现场监测[J].工程施工技术,2007,(7):84-89
    [119]杨洪智,殷志祥.大跨度柔性结构风荷载分析的数值风洞方法及其在ANSYS中实现[C].第八届全国现代结构工程学术研讨会论文集,2008,732-739.
    [120]郝成新,刘小弟,钱基宏,等.佛山世纪莲体育中心主体育场索膜结构工程施工过程索力检测[C].第七届全国现代结构工程学术研讨会论文集,2007,415-420.
    [121]Yin Zhou, Tracy Kijewski, Ahsan Kareem. Along-Wind Load Effects on Tall Buildings: ComparativeStudy of Major International Codes and Standards[J]. Journal of Structural Engineering. ASCE2002,128(6):788-796.
    [122]A. G. Davenport. The spectrum of horizontal gustiness near the ground in high winds[J]. J. RoyalMeteorol. Soc.1961,87:194-211.
    [123]王修琼,崔剑峰. Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报(自然科学版),2002,30(7):849-852.
    [124]张相庭.结构风压和风振计算[M].同济大学出版社出版,1997年.
    [125]J.C. Kaimal. Spectral characteristics of surface layer turbulence[J]. J. Royal Meteorol. Soc,1972,98:563-589.
    [126]黄本才.结构抗风分析原理及应用[M].同济大学出版社出版,2001年.
    [127]J.D. Holmes. Wind loading of structures[M].London: Spon Press,2001.
    [128]Simiu E., Scanlan R. H.著,刘尚培,项海帆,等译.风对结构的作用一风工程导论[M].同济大学出版社出版,1998年.
    [129]王之宏,风荷载的模拟研究[J],建筑结构学报,1994,15(2):41-52
    [130]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟[J].空间结构,1996,2(2):21-25
    [131]E Simiu, RH Scanlan. Wind Effects on Structures (2Ed)[M]. New York, John Wiley&Sons,1986
    [132]Architectural Institute of Japan.AIJ Recommendations for loads on Building[S].1996.
    [133]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D].杭州:浙江大学,2005.
    [134]Plate, E.J. Wind tunnel modeling of wind effects in engineering [J]. Engineering Meteorology,Elsevier,Amsterdam-Oxford-New York,1982,573-639.
    [135]李国豪.桥梁结构稳定与振动[M].中国铁道出版社,1997
    [136]L.E. Borgman. Ocean wave simulation for engineering design[J]. Journal of Waterways and HarborsDivision.ASCE1969, WW4:557-583.
    [137]Shinozuka M. Simulation of multivariate and multidimensional random process[J]. Journal of theAcoustical Society ofAmerica.1971,49(1):357-367.
    [138]Li Y, Kareem A. Simulation of multivariate random processes: Hybrid DFT and digital filteringapproach [J]. Journal of Engineering Mechanics.ASCE1993,119(5):1078-1098.
    [139]Deodatis G. Simulation of ergadic multivariate stochastic processes[J]. Journal of EngineeringMechanics.ASCE1996,122(8):778-787.
    [140]Jannuzzi A, Spinelli P. Artificial wind generation and structural response[J]. Journal of StructuralEngineering.ASCE1987,113(12):2382-2398.
    [141]Li Y, Kareem A. ARMA system in wind engineering [J]. Probabilistic Engineering Mechanics,1990,5(2):50-59.
    [142]王修琼,张相庭.混合回归模型及其在高层建筑风响应时域分析中的应用[J].振动与冲击.2000,19(1):5-8.
    [143]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构.2001,7(3):3-11.
    [144]Riccardo Rossi, Massimiliano hazzari, Renato Vitaliani. Wind field simulation for structuralengineering purposes[J]. International Journal for Numerical Methods in Engineering.2004,61:738-763.
    [145]Shinozuka M, Sato Y. Simulation of nonstationary random process[J]. J. of Eng.Mech., ASCE,1967,63(1):11-40
    [146]Shinozuka M, Jan C.M., Digital simulation of random process and its application and its application[J]. J. Sound Vibration,1972,49(1), Part2:357-367
    [147]Deodatis G, Shinozuka M. Auto-regressive model for nonstationary stochastic process [J]. J. ofEng.Mech.,ASCE,1988,114(11):1995-2012
    [148]Grigoriu M. Simulation of nonstationary Gaussian process by random trigonometric polynomials[J].J.of Eng.Mech.,ASCE,1993,119(2):328-343
    [149]Kumar K S, Stathopoulos T. Wind loads on low building roofs: A stochastic perspective [J]. Journal ofStructural Engineering, ASCE,2000,126(8):944-956.
    [150]Cope A D, Gurley K R. Low-rise gable roof wind loads: Characterization and stochastic simulation [J].Journal Wind Engineering Industrial Aerodynamics,2005,93:719-738.
    [151]Gioffre M, Gusella V. Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field [J].Journal of Structural Engineering, ASCE,2001,127(9):981-989.
    [152]Gurley K R, Kareem A. A conditional simulation of non-normal velocity/pressure fields [J]. Journal ofWind Engineering Industrial Aerodynamics,1998,77-78:39-51.
    [153]Deodatis G, Micaletti R C. Simulation of highly skewed non-Gaussian stochastic processes [J].Journal of Engineering Mechanics,2001,127(12):1284-1295.
    [154]Gioffre M, Gusella V. Non-Gaussian wind pressure on prismatic buildings. II: Numerical simulation[J]. Journal of Structural Engineering, ASCE,2001,127(9):990-995.
    [155]Grigoriu M. Simulation of stationary non-Gaussian translation processes [J]. Journal of EngineeringMechanics,1998,124(2):121-126.
    [156]Holmes J D, Cochran L S. Probability distributions of extreme pressure coefficients [J]. Journal ofWind Engineering Industrial Aerodynamics,2003,91:893-901.
    [157]Shinozuka M, Deodatis G. Simulation of stochastic processes and fields [J]. Prob. Eng. Mech.,1997,12(4):203-207
    [158]秦前清,杨宗凯.实用小波分析[M].西安电子科技大学出版社,1995
    [159] Han Dajian, Zeng Xianwu. Report of the form-finding, static analysis and wind induced vibration ofthe tensioned cable-membrane structure of the century lotus sports center in Foshan [R]. Guangzhou:Building Research Center of South China University of Technology,2005.
    [160] Zienkiewicz, O. C. The Finite Element Method, McGraw-Hill Company, London,1977.
    [161]ANSYS Element Reference[M]. Electronic Release, SAS IP Inc.,1998
    [162]ANSYS Theory Reference[M]. Electronic Release, SAS IP Inc.,1998
    [163]ANSYS非线性分析指南[M].ANSYS中国,2000
    [164]ANSYS高级技术分析指南[M]. ANSYS中国,2000
    [165]江见鲸,陆新征,等.钢筋混凝土结构有限元分析[M].北京:清华大学出版社,2005
    [166]ANSYS Theory Reference[M]. Electronic Release, SAS IP Inc.,1998
    [167]孙文波,王剑文,刘永桂,等.车辐式大跨度张拉索膜结构的自振和静风作用分析[J].工业建筑,2007,37(增刊):672-675
    [168]王文胜,薄燕培,胡庆卫.佛山世纪莲体育中心索膜结构[C],第十一届空间结构学术会议论文集,2005,604-609.
    [169]罗俊杰,韩大建.大跨度索-膜屋盖结构风振响应分析[J].土木工程学报,2009,42(10):15-21
    [170]孙文波,王剑文.佛山世纪莲体育场大跨度索膜结构的风振响应分析[C].第15届全国结构工程学术会议论文集(第Ⅲ册),河南焦作,2006,238-243.
    [171]韩大建,罗俊杰.大跨度张拉式索膜结构风振响应分析[C].第十三届全国工程建设计算机应用学术会议论文集,广东佛山,2006,29-35
    [172]王剑文,孙文波,陈汉翔.车辐式大跨度张拉索膜结构的风振响应分析[J].空间结构,2010,16(2):67-71
    [173]李璟,韩大建.索膜结构风振响应的神经网络辅助参数分析方法[J].建筑科学与工程学报,2008,25(4):98-104.
    [174]陈波,武岳,沈世钊.张拉式膜结构抗风设计[J].工程力学,2006,23(7):65-71
    [175]裴永忠.大跨度机库屋盖结构的风荷载及风振响应研究[D].北京:清华大学,2008
    [176]陆锋,楼文娟,孙炳楠.大跨度平屋面的风振响应及风振系数[J].工程力学,2002,19(2):52-57.
    [177]Y. Uematsu, M. Yamada, A. Sasaki. Wind-induced dynamicresponse and resultant load estimation fora flat long-span roof [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,65:155-166.
    [178]Y. Uematsu, K. Watanabe, A. Sasaki, et al.Wind-induced dynamic response and resultant loadestimation of a circular flat roof [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:251-261.
    [179]Yang Q S, Liu R X. On aerodynamic stability ofmembrane structures [J]. International Journal ofSpace Structures,2005,20(3):181-188.
    [180]中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2002.
    [181]清华大学、西南交通大学、北京交通大学土木T程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [182]李碧雄,雷涛,邓建辉.汶川地震中学校建筑震害研究[J].四川大学学报(工程科学版)2009,41(3):172~179
    [183]韩军,李英民,刘立平,等.512汶川地震绵阳市区房屋震害统计与分析[J].重庆建筑大学学报,2008,30(5):21-27.
    [184]王亚勇.汶川地震建筑震害启示——三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.
    [185]中华人民共和国建设部.建筑抗震设计规范(GB50011-2010)[S].北京:中国建筑工业出版社,2010.
    [186]陈红进,孙少楠,张先起.“5.12地震”中房屋震害调查及损坏机理研究[J].中州大学学报,2008,25(6):113-118
    [187]叶列平,曲哲,陆新征.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50
    [188]马玉宏,谢礼立,赵桂峰.抗震设防烈度的决策分析方法研究[J].世界地震工程,2007,23(1):86-90
    [189]中国工程建设标准化协会.膜结构技术规程(CECS158:2004)[S].北京:中国建筑工业出版社,2004.
    [190] Bathish G N. Free vibrational characteristics of Pretensioned cable roofs. Journal of Engineering forIndustry,1972,71(4):31-37
    [191](美)Roy R. Craig. Jr.结构动力学[M].北京:人民交通出版社.1996
    [192] Clough R W, Penzien J.Dynamics of structures[M]. New York: McGraw-Hill,2003.
    [193] A.M. Ruiz-Teran;A.C. Aparicio. Dynamic amplification factors in cable-stayed structures[J]. Journalof Sound and Vibration,2007,300(1-2):197-216
    [194] Junchao Ren,Qilin Zhang,Liping Tong. Static and Dynamic Pre-tension Influence Analysis aboutZhengzhou International Conference Exhibition Center[C]. The8th Conference in the Series of AsianPacific Conference on Shell and Spatial Structures (IASS-APCS2006),Beijing,China,2006:256-257
    [195] Junchao Ren,Qilin Zhang. Effect of Structural Parameters on Seismic Response in ZhengzhouInternational Conference Exhibition Center[C]. The9thCanadian Conference on EarthquakeEngineering, Ottawa, Ontario, Canada,2007, PaPer.No.1081.
    [196] Junehao Ren,Qilin Zhang. Seismic Analysis for Zhengzhou International Conference ExhibitionCenter [C]. The5thInternational Conference on Seismology and Earthquake Engineering. Subject codeSS153. Tehran. Iran.2007
    [197] Smeby, W.; Kiureghian, A. D. Modal combination rules for multicomponent earthquake excitation [J].Earthquake Engineering&Structural Dynamics,1985,24(13):1-12.
    [198] Chokshi, N.; Kenneally, R.; Morante, R.; et al. Evaluation of modal combination methods for seismicresponse spectrum analysis [C]. Transaction of the15thInternational Conference on StructuralMechannics in Reactor Technology, Seoul (KP),1999, K06/2
    [199]王龙.轮辐式索膜结构基于静力的安全评估技术研究[D].广州,华南理工大学,2009
    [200]王廷廷.索膜结构的健康监测与损伤识别研究[D].广州,华南理工大学,2007
    [201] Griffin J W. Experimental and analytical investigation of progressive collapse through demolitionscenarios and computer modeling [D]. Raleigh: North Carolina State University,2008,1-48
    [202]陈俊岭.建筑结构二次防御能力评估方法研究[D].上海:同济大学土木工程学院,2004,1-110
    [203] GSA2003. Progressive collapse analysis and design guidelines for New Federal Office buildings andmajor modernization projects[S].2003.
    [204] UFC4-023-03Design of buildings to resistprogressive collapse[S].2005.
    [205] Japanese Society of Steel Construction Council on Tall Buildings and Urban Habitat. Guidelines forcollapse control design: I design[S].2005.
    [206] Japanese Society of Steel Construction Council on Tall buildings and urban habitat. Guidelines forcollapse control design: II research[S].2005.
    [207] National Institute of Standards and Technology. Best practices for reducing the potential forprogressive collapse in building[S].2007.
    [208]王元清,胡宗文,石永久,等.门式刚架轻型房屋钢结构雪灾事故分析与反思[J].土木工程学报,2009,42(3):65-70.
    [209] Frangopol D M,Curley J P. Effects of damage and redundancy on structural reliability [J]. Journal ofStructural Engineering,1987,113(7):1533-1549.
    [210] Bertero R D, Bertero V. Redundancy in earthquake resistant design[J]. Journal of StructuralEngineering,1999,125(1):81-88.
    [211]吕大刚,李雁军,陈志恒.钢筋混凝土框架结构连续倒塌的竖向非线性动力分析[C].建筑与工程结构抗倒塌分析与设计[A],中国建筑工业出版社,2010.
    [212]GB/T18365-2001斜拉桥热挤聚乙烯高强钢丝拉索技术条件[S].北京:中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700