用户名: 密码: 验证码:
火灾后型钢混凝土柱、平面框架力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入研究遭受包括升、降温过程的全过程火灾作用后型钢混凝土结构的力学性能,对合理进行型钢混凝土结构的抗火设计及其火灾后性能评估具有重要的理论意义和应用价值。本文对火灾作用后型钢混凝土柱和型钢混凝土柱—混凝土梁平面框架的力学性能进行研究,主要研究内容和取得的成果如下:
     1.进行了五根型钢混凝土柱和十榀型钢混凝土柱—混凝土梁平面框架在外荷载和火灾升、降温共同作用下的力学性能试验,深入研究了型钢混凝土柱和型钢混凝土柱—混凝土梁平面框架的特征截面的温度分布、梁柱变形、典型破坏形态以及火灾后剩余承载力等的变化规律。
     2.编制了可自动识别和转换材料不同阶段本构关系、考虑混凝土高温徐变和瞬态热应变以及高强混凝土高温爆裂影响的计算程序;建立了在外荷载和火灾升、降温共同作用下型钢混凝土柱和型钢混凝土柱—混凝土梁平面框架的有限元模型,该模型得到了试验结果的验证。
     3.基于建立的有限元模型,对型钢混凝土柱和型钢混凝土柱—混凝土梁平面框架的温度场分布及其在外荷载和火灾升、降温共同作用下的变形特点、破坏形态、应变分布、内力重分布和火灾后剩余承载力等进行了深入研究。
     4.对影响型钢混凝土柱火灾后剩余承载力系数的各参数进行了分析计算,结果表明,升温时间、截面周长、长细比和混凝土强度是影响型钢混凝土柱火灾后剩余承载力系数的主要因素;对影响火灾后型钢混凝平面框架柱计算长度系数的各参数进行了计算,结果表明,升温时间、梁柱线刚度比、柱混凝土强度、水平向约束刚度比、竖直向约束刚度比和面内转动约束刚度比是影响型钢混凝土平面框架柱火灾后计算长度系数的主要因素;在此基础上,给出了火灾后型钢混凝土柱剩余承载力系数和框架柱计算长度系数的实用计算方法。
A thorough study on performance of steel reinforced concrete (SRC)structures under the coupled loading and full-range fire with both heating andcooling, is of theoretical and applied significance for fire safety design andassement of a SRC structure after fire exposure. Performance of SRC columnsand SRC column to reinforced concrete (RC) beam portal frames are thusinvestigated after exposure to fire.
     The main research work and results of the current thesis is as follows:
     1. Experiments were conducted on five SRC columns, ten SRC column toRC beam portal frames after exposure to fire. The time relationships oftemperature field of characteristic cross-section, deformations of columns andbeams, typical failure modes and residual load bearing capacities of the SRCcolumns and SRC column to RC beam portal frames were analyzed.
     2. Several subroutines, including material constitutive relations conversion,concrete thermal creep strain, concrete instantaneous thermal strain andexplosive spalling of high strength concrete were developed. Finite elementanalysis (FEA) models of SRC columns and SRC column to RC beam portalframes under the full-range fire were then established and were verified by thetests.
     3. Based on the verified FEA models, the temperature distributions,deformations, failure modes, strain distributions, internal force redistributionand residual load bearing capacities of the SRC columns and SRC column to RCbeam portal frames under the combined fire and loading sequences wereanalyzed.
     4. Influences of various parameters on the residual load bearing capacitycoefficient of the SRC columns were calculated. It is found that, in general,heating time, perimeter of column section, slenderness ratio and concretestrength clearly affect the residual load bearing capacity coefficient of the SRCcolumns. Influences of various parameters on the equivalent length of the SRCcolumn in the SRC portal frames after exposure to fire were also investigated. It is found that the heating time, beam-column linear stiffness ratio, columnconcrete strength, stiffness ratios of the horizontal restraint spring, the verticalrestraint spring and the rotational restraint spring clearly affect the equivalentlength of the SRC column in the SRC portal frames after fire. Tables forcalculating the residual load bearing capacity coefficient of the SRC columns, aswell as the equivalent length of the SRC column in the SRC portal frames afterfire were proposed finally.
引文
[1]陈家强.高层建筑火灾与应对措施[J].消防科学与技术,2007,26(2):109-113.
    [2]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [3]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [4] Menzies J. Learning from disaster [J]. The Structural Engineer,2001,79(19):14-15.
    [5] University of Manchester. The Windsor Tower Fire, Madrid [DB/OL].[2012-05-20].http://www.mace.manchester.ac.uk/project/research/structures/strucfire/CaseStudy/HistoricFires/BuildingFires/default.htm.
    [6]新浪新闻.衡阳大火案简介[EB/OL].(2003-11-06)[2012-05-20].http://news.sina.com.cn/z/hnhyhz/index.shtml.
    [7]新浪新闻.中央电视台新址北配楼突发大火(组图)[EB/OL].(2010-02-10)[2012-05-20]. http://news.sina.com.cn/c/2009-02-10/021417179629.shtml.
    [8]网易新闻.上海“11.15”大火已致53人遇难8名嫌犯被刑拘(组图)[EB/OL].(2010-11-17)[2012-05-20]. http://news.163.com/10/1117/11/6LMH5TS800014AED.html.
    [9]腾讯新闻.沈阳扑灭皇朝万鑫大火五星酒店面目全非(图)[EB/OL].(2011-02-04)[2012-05-20]. http://news.qq.com/a/20110204/000029.htm.
    [10]刘维亚.钢与混凝土结合结构理论与实践[M].北京:中国建筑工业出版社,2008.
    [11]郑永乾.型钢混凝土构件及梁柱连接节点耐火性能研究[博士学位论文].福州:福州大学,2007.
    [12]韩林海,宋天诣.钢—混凝土组合结构抗火设计原理[M].北京:科学出版社,2012.
    [13]韩林海.钢管混凝土结构——理论与实践(第二版)[M].北京:科学出版社,2007.
    [14] ISO-834. Fire-resistance tests-elements of building construction [S]. International Standard,ISO834: Amendment1, Amendment2,1980.
    [15] Armer G S T, Moore D B. Full-scale testing on complete multi-storey structures [J].Structural Engineer,1994,72(2):30-31.
    [16]韩林海,宋天诣,谭清华.钢-混凝土组合结构抗火设计原理研究[J].工程力学,2011,28(S2):54-66.
    [17] El-Rimawi J A, Burgess I W, Plank R J. The treatment of strain reversal in structural membersduring the cooling phase of a fire [J]. Journal of Constructional Steel Research,1996,37(2):115-135.
    [18] Bailey C G, Burgess I W, Plank R J. Analyses of the effects of cooling and fire spread onsteel-framed buildings [J]. Fire Safety Journal,1996,26(4):273-293.
    [19]李国强,郭士雄.受火约束钢梁在升温段和降温段行为的理论分析(I)[J].防灾减灾工程学报,2006,26(3):241-250.
    [20]郭士雄,李国强.受火约束钢梁在升温段和降温段行为的理论分析(II)[J].防灾减灾工程学报,2006,26(4):359-368.
    [21] Wang P J, Li G Q, Guo S X. Effects of the cooling phase of a fire on steel structures [J]. FireSafety Journal,2008,43(6):451-458.
    [22] Lien K H, Chiou Y J, Wang R Z, et al. Nonlinear behavior of steel structures considering thecooling phase of a fire [J]. Journal of Constructional Steel Research,2009,65(8-9):1776-1786.
    [23] Yang H, Han L H, Wang Y C. Effects of heating and loading histories on post-fire coolingbehaviour of concrete-filled steel tubular columns [J]. Journal of Constructional SteelResearch,2008,64(5):556-570.
    [24] Huo J S, Huang G W, Xiao Y. Effects of sustained axial load and cooling phase on post-firebehaviour of concrete-filled steel tubular stub columns [J]. Journal of Constructional SteelResearch,2009,65(8-9):1664-1676.
    [25] Song T Y, Han L H, Yu H X. Concrete filled steel tube stub columns under combinedtemperature and loading [J]. Journal of Constructional Steel Research,2010,66(3):369-384.
    [26] Song T Y, Han L H, Uy B. Performance of CFST-column to steel-beam joints subjected tosimulated fire including the cooling phase[J]. Journal of Constructional Steel Research,2010,66(4):591-604.
    [27] Li G Q, Guo S X. Experiment on restrained steel beams subjected to heating andcooling [J]. Journal of Constructional Steel Research,2008,64(3):268-274.
    [28]霍然,袁宏永.性能化建筑防火分析与设计[M].合肥:安徽科学技术出版社,2003.
    [29]马忠诚.火灾下钢筋混凝土结构损伤评估与抗震修复[博士学位论文].哈尔滨:哈尔滨建筑大学,1997.
    [30] Barnett C R. BFD curve: a new empirical model for fire compartment temperatures [J].Fire Safety Journal,2002,37(6-7):437-463.
    [31] Zehfuss J, Hosser D. A parametric natural fire model for the structural fire design ofmulti-storey buildings [J]. Fire Safety Journal2007,42(2):115–126.
    [32] American Society of Civil Engineering (ASCE).!Manuals and report on engineeringpractice No.78, Structural fire protection. ASCE Committee,1992, New York, USA.
    [33] Eurocode1. EN1991-1-2:2002. Actions on Structures–Part1.2: General Actions-Actions on structures exposed to fire [S]. European Committee for Standardization,Brussels,2002.
    [34] American Society of Testing Material (ASTM). Standard methods of fire test ofbuilding construction and materials: Test Method.[S] West Conshohocken, PA:American Society for Testing and Materials;2001, E119.
    [35] Malhotra H L, Stevens R F. Fire resistance of encased steel stanchions [C].Proceedings of the Institution of Civil Engineers—ICE,1964,27(1):77–97.
    [36] Hass R. Zur Praxisgerechten brandschutz-technischen beurteilung von stützen aus stahl undbeton [R]. Institut für Baustoff, Massivbau und Brandschutz der Technischen UniversitatBraunschweig, Heft69,1986.
    [37]宋天诣,韩林海,经建生.型钢混凝土柱耐火性能的实验研究[C].第四届全国钢结构防火及防腐技术研讨会暨第二届全国钢结构抗火学术交流会,2007,上海:158-172.
    [38] Yu J T, Lu Z D, Xie Q. Nonlinear analysis of SRC columns subjected to fire [J]. Fire SafetyJournal,2007,42(1):1-10.
    [39] Huang Z F, Tan K H, Phng G H. Axial restraint effects on the fire resistance of compositecolumns encasing I-section steel [J]. Journal of Constructional Steel Research,2007,63(4):437-447.
    [40] Moura Correia A J P, Rodrigues J P C. Fire resistance of partially encased steelcolumns with restrained thermal elongation. Journal of Constructional Steel Research2011,67(4):593–601.
    [41]蒋东红,李国强,王世伟,张彬.钢骨混凝土轴压柱抗火极限承载力计算[J].钢结构,2005,20(6):87-91.
    [42]蒋东红,李国强,张彬.钢骨混凝土偏压柱抗火极限承载力分析研究[J].建筑钢结构进展,2006,8(2):55-62.
    [43] Huang Z F, Tan K H, Toh W S, et al. Fire resistance of composite columns with embeddedI-section steel-Effects of section size and load level [J]. Journal of Constructional SteelResearch,2008,64(3):312-325.
    [44]韩林海,郑永乾. SRC和RC柱的耐火性能及抗火设计方法[C].第三届全国钢结构防火及防腐技术研讨会暨第一届全国结构抗火学术交流会,2005,福州:21-56.
    [45] Ellobody E, Young B. Investigation of concrete encased steel composite columns at elevatedtemperatures [J]. Thin-Walled Structures,2010,48(8):597–608.
    [46] ECCS-Technical Committee3. Fire safety of steel structures, technical note, Calculation ofthe fire resistance of centrally loaded composite steel-concrete columns exposed to thestandard fire [S].1988.
    [47] Eurocode4. EN1994-1-2:2005. Design of composite steel and concrete structures-part1-2:General rules-structural fire design [S]. European Committee for Standardization, Brussels,2005.
    [48]中华人民共和国国家标准GB50016-2006.建筑设计防火规范[S].北京:中国计划出版社,2006.
    [49]中华人民共和国国家标准GB50045-95(2005年版).高层民用建筑设计防火规范[S].北京:中国计划出版社,2005.
    [50]广东省地方标准DBJ/T15-81-2011.建筑混凝土结构耐火设计技术规程[S].北京:中国计划出版社,2011.
    [51]李俊华,刘明哲,唐跃锋,郑荣跃.火灾后型钢混凝土梁受力性能试验研究[J].土木工程学报,201144(4):84-90.
    [52] Lin T D, Gustaferro A H, Abrams M S. Fire endurance of continuous reinforced concretebeams [R]. Research and Development Bulletin RD072.01B, Construction TechnologyLaboratories, PCA,1981.
    [53] Dotreppe J C, Franssen J M. The use of numerical models for the fire analysis of reinforcedconcrete and composite structures [J]. Engineering Analysis,1985,2(2):61-74.
    [54] Ellingwood B, Lin T D. Flexure and shear behavior of concrete beams during fire [J].Journal of Structural Engineering,1991,117(2):440-458.
    [55] Dwaikat M. Flexural response of reinforced concrete beams exposed to fire [D]. MichiganState: Ph.D. thesis of Michigan State University,2009.
    [56]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54.
    [57]时旭东,过镇海.高温下钢筋混凝土简支梁受力性能的试验研究[C].徐州:首届结构工程学术会议论文集,1991.结构工程学报(专刊)1991,2(3-4):368-373.
    [58]时旭东,过镇海.不同混凝土保护层厚度钢筋混凝土梁的耐火性能[J].工业建筑,1996,26(9):12-19.
    [59]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究[J].土木工程学报,1997,30(4):26-34.
    [60]孙劲峰,时旭东,过镇海.三面受热钢筋混凝土梁在高温时和降温后受力性能的试验研究[J].建筑结构,2002,32(1):34-36.
    [61] El-Hawary M M, Ragab A M, El-Azim A A, et al. Effect of fire on flexural behavior ofRC beams [J]. Computer&Structure,1996,64(2):147-150.
    [62] El-Hawary MM, Ragab AM, El-Azim AA, et al. Effect of fire on shear behavior of RCbeams [J]. Computer&Structure,1997,65(2):281-287.
    [63]应建敏,钱在兹.荷载与高温同时作用下钢筋混凝土梁的试验研究[J].浙江工学院学报,1993,(4):77-84.
    [64]伍志平,袁锦根.简支梁火灾反应及梁、板灾后剩余承载力的试验[J].住宅科技,2003,(7):31-33.
    [65] Kang S W, Hong S G. Analytical method for the behavior of a reinforced concreteflexural member at elevated temperatures [J]. Fire and Materials,2004,28(2-4):227-235.
    [66] Bratina S, Saje M, Planinc I. The effects of different strain contributions on theresponse of RC beams in fire [J]. Engineering Structures,2007,29(3):418-430.
    [67] Kodur V K R, Dwaikat M. Performance-based fire safety design of reinforced concretebeams [J]. Journal of Fire Protection Engineering,2007,17(4):293-320.
    [68] Kodur V K R, Dwaikat M. A numerical model for predicting the fire resistance ofreinforced concrete beams [J]. Cement&Concrete Composites,2008,30(5):431-443.
    [69]王学谦.火灾高温下钢筋砼梁截面极限弯矩的计算[J].建筑结构,1996,(7):38-42.
    [70]陆洲导,朱伯龙.一种预测钢筋混凝土梁耐火时间的方法[J].建筑结构学报,1997,18(1):41-48.
    [71]贺军利.钢筋混凝土简支梁耐火数值计算的新方法[J].哈尔滨建筑大学学报,1998,31(2):14-19.
    [72]何小巧.火灾时钢筋混凝土梁承载力计算[J].中南工学院学报,2000,14(3):24-26.
    [73]杨建平,时旭东,过镇海.高温下钢筋混凝土梁极限承载力的简化计算[J].工业建筑,2002,32(3):26-28.
    [74]吴波,洪洲.钢筋混凝土简支梁的耐火极限[J].华南理工大学学报(自然科学版),2006,34(7):82-87.
    [75]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [76]宋天诣,韩林海.组合结构耐火性能研究的部分新进展[J].工程力学,2008,12(S2):230-253.
    [77]宋天诣.火灾后钢-混凝土组合框架梁-柱节点的力学性能研究[博士学位论文].北京:清华大学,2010.
    [78] Wald F, Silva L S, Moore D B, et al. Experimental behaviour of a steel structure undernatural fire [J]. Fire Safety Journal,2006,41(7):509–522.
    [79] Moore D B, Lennon T. Fire engineering design of steel structures [J]. Progress in StructuralEngineering and Materials,1997,1(1):4–9.
    [80] Plank R J. The performance of composite-steel-framed building structures in fire [J]. Progressin Structural Engineering and Materials,2000,2(2):179–186.
    [81] Wang Y C. An analysis of the global structural behaviour of the Cardington steel-framedbuilding during the two BRE fire tests [J]. Engineering Structures,2000,22(5):401-412.
    [82] Wang Y C. Steel and composite structures: Behaviour and design for fire safety [M]. UK:Spon Press;2002.
    [83] Foster S, Chladná M, Hsieh C, et al. Thermal and structural behaviour of a full-scalecomposite building subject to a severe compartment fire [J]. Fire Safety Journal,2007,42(3):183–199.
    [84] NIST NCSTAR1. Final report on the collapse of the World Trade Center Towers, NationalConstruction Safety Team for the Federal Building and Fire Safety Investigation of the WorldTrade Center Disaster [R]. National Institute of Standards and Technology, Gaithersburg,MD.2005.
    [85] Usmani A S, Chung Y C, Torero J L. How did the WTC towers collapse: a new theory [J].Fire Safety Journal,2003,38(6):501-533.
    [86] Usmani A S. Stability of the world trade center twin towers structural frame in multiple floorfires [J]. Journal of Engineering Mechanics,2005,131(6):654-657.
    [87] Usmani A S. Stability0f Tall Buildings in a Major Fire[C].第四届全国钢结构防火及防腐技术研讨会暨第二届全国结构抗火学术交流会,2007,上海:18-29.
    [88] Flint G, Usmani A, Lamont S, et al. Structural response of tall buildings to multiple floor fires[J]. Journal of Structural Engineering,2007,133(12):1719-1732.
    [89]李国强,贺军利,蒋首超.约束钢梁的抗火试验与验算[J].土木工程学报,2000,33(4):23-26.
    [90]郭士雄,李国强.火灾下约束钢梁的受力性能及抗火设计方法[J].建筑结构,2005,35(12):59-61.
    [91] Yin Y Z, Wang Y C. Numerical simulations of the effects of nonuniform temperaturedistributions on lateral torsional buckling resistance of steel I-beams [J]. Journal ofConstructional Steel Research,2003,59(8):1009-1033.
    [92] Yin Y Z, Wang Y C. A numerical study of large deflection behaviour of restrained steelbeams at elevated temperatures [J]. Journal of Constructional Steel Research,2004,60(7):1029-1047.
    [93] Yin Y Z, Wang Y C. Analysis of catenary action in steel beams using a simplified handcalculation method, Part1: theory and validation for uniform temperature distribution [J].Journal of Constructional Steel Research,2005,61(2):183-211.
    [94] Yin Y Z, Wang Y C. Analysis of catenary action in steel beams using a simplified handcalculation method, Part2: validation for non-uniform temperature distribution [J]. Journal ofConstructional Steel Research,2005,61(2):213-234.
    [95] Liu T C H, Fahad M K, Davies J M. Experimental investigation of behaviour of axiallyrestrained steel beams in fire [J]. Journal of Constructional Steel Research,2002,58(9):1211–1230.
    [96] Ding J, Wang Y C. Experimental study of structural fire behaviour of steel beam to concretefilled tubular column assemblies with different types of joints [J]. Engineering Structures,2007,29(12):3485-3502.
    [97]王永昌.钢结构在火灾中的工作性能以及对今后试验研究的建议[J].建筑钢结构进展,2003,5(2):9-16.
    [98] Wang Y C, Davies J M. An experimental study of non-sway loaded and rotationallyrestrained steel column assemblies under fire conditions: analysis of test results and designcalculations [J]. Journal of Constructional Steel Research,2003,59(3):291-313.
    [99] Bailey C G. Membrane action of slab/beam composite floor systems in fire [J].Engineering Structures,2004,26(12):1691-1703.
    [100] Huang Z H, Burgess I, Plank R, et al. Comparison of BRE simple design method forcomposite floor slabs in fire with non-linear FE modeling [J]. Fire ans Materials,2004,28(2-4):127-138.
    [101] Huang Z H, Burgess I W, Plank R J. Fire resistance of composite floors subject tocompartment fires [J]. Journal of Constructional Steel Research,2004,60(2):339-360.
    [102] Huang Z H, Burgess I W, Plank R J. Modeling membrane action of concrete slabs incomposite buildings in fire. I: Theoretical development [J]. Journal of StructuralEngineering,2003,129(8):1093-1102.
    [103] Huang Z H, Burgess I W, Plank R J. Modeling membrane action of concrete slabs incomposite buildings in fire. II: Validations [J]. Journal of Structural Engineering,2003,129(8):1103-1112.
    [104]朱伯龙,胡克旭.钢筋混凝土框架在高温下作用的内力重分布研究[J].同济大学学报,1991,19(12):57-66.
    [105]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析[J].土木工程学报,1995,28(6):18-27.
    [106]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究[J].土木工程学报,2000,33(1):36-45.
    [107]董毓利.两层两跨组合钢框架抗火性能的试验研究[C].第四届全国钢结构防火及防腐技术研讨会暨第二届全国结构抗火学术交流会,2007,上海:99-119.
    [108] Dong Y L, Zhu E C, Prasad K. Thermal and structural response of two-storey two-baycomposite steel frames under furnace loading [J]. Fire Safety Journal,2009,44(4):439-450.
    [109]吴波,卢锦钟.约束钢筋混凝土框架的耐火性能试验研究[J].华中科技大学学报(城市科学版),2009,26(1):12-18.
    [110] Han L H, Wang W H, Yu H X. Experimental behaviour of RC beam to CFST column framessubjected to ISO-834standard fire[J]. Engineering Structures,2010,32(10):3130-3144.
    [111] Han L H, Wang W H, Yu H X. Analytical behaviour of RC beam to CFST column framessubjected to fire [J]. Engineering Structures,2012,36:394-410.
    [112]中华人民共和国国家标准JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002.
    [113]中华人民共和国国家标准GB/T228-2002.金属材料室温拉伸试验方法[S].国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [114]王帆,吴波,张正先,林洁梅.建筑构件耐火试验炉的研制和应用.实验技术与管理,2007,24(3):55-58.
    [115]吴波,袁杰,李惠,周文松.高温下高强混凝土的爆裂规律与柱截面温度场计算[J].自然灾害学报,2002,11(2):65-69.
    [116] Lie T T. Fire resistance of circular steel columns filled with bar-reinforced concrete [J].Journal of Structural Engineering,1994,120(5):1489-1509.
    [117]中华人民共和国国家标准JGJ55-2011.普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2011.
    [118] ACI318-05. Building code requirements for structural concrete (ACI318-05) andcommentary (ACI318R-05)[S]. Detroit (MI): American Concrete Institute;2005.
    [119] Phan L T, Lawson J R, Davis F L. Effects of elevated temperatures exposure on heatingcharacteristics, spalling, and residual properties of high performance concrete [J]. Materialsand Structures,2001,34(2):83–91.
    [120] Kodur V K R, Phan L. Critical factors governing the fire performance of high strengthconcrete systems [J]. Fire Safety Journal,2007,42(6-7):482-488.
    [121] Khoury G A. Effect of fire on concrete and concrete structures [J]. Progress in StructuralEngineering and Materials,2000,2(4):429–447.
    [122] Hamarthy T A. Effect of moisture on the fire endurance of building elements [R]. ASTMPublication STP385,1965, American Society for Testing and Materials, West Conshohocken,USA.
    [123] Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research,2000,30(12):1915-1927.
    [124] Saito H. Explosive spalling of prestressed concrete in fire [R]. Occasional Report No.22.Japan: Building Research Institute.1965.
    [125] Dougill J W. Modes of failure of concrete panels exposed to high temperatures [J]. Magazineof Concrete Research,1972,24(79):71-76.
    [126] Bazant Z P. Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete
    [C]. International workshop on fire performance of high-strength concrete, NIST SpecialPublication919,1997:155-164.
    [127] Kodur V K R, Wang T C, Cheng F P. Predicting the fire resistance behaviour of high strengthconcrete columns [J]. Cement&Concrete Composites,2004,26(2):141–153.
    [128] Dwaikat M B, Kodur V K R. Hydrothermal model for predicting fire-induced spalling inconcrete structural systems [J]. Fire Safety Journal,2009,44(3):425–434.
    [129] Dwaikat M B, Kodur V K R. Fire induced spalling in high strength concrete beams [J]. FireTechnology,2010,46(2):251–274.
    [130] Davie C T, Zhang H L, Gibson A. Investigation of a continuum damage model as an indicatorfor the prediction of spalling in fire exposed concrete [J]. Computers and Structures,2012,94–95:54–69.
    [131]谢希文,过梅丽.材料科学基础[M].北京:北京航空航天大学出版社,2005.
    [132] Fields B A, Fields R J. The prediction of elevated temperature deformation ofstructural steel under anisothermal conditions [R]. National Institute of Standards andTechnology, Gaithersburg, MD, NCSTIR4497, January1991.
    [133] Li L Y, Purkiss J. Stress-strain constitutive equations of concrete material at elevatedtemperatures [J]. Fire Safety Journal,2005,40(7):669-686.
    [134]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992.
    [135]中华人民共和国国家标准GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [136] Lin C H, Chen S T, Yang C A. Repair of fire-damaged reinforced concrete columns [J]. ACIStructural Journal,1995,92(4):1-6.
    [137] Lie T T, Rower T J, Lin T D. Residual strength of fire exposed RC columns: evaluation andrepair of fire damage to concrete [R]. SP-92, American Concrete Institute, Detroit,1986,153-174.
    [138] Youssef M A, Moftah M. General stress–strain relationship for concrete at elevatedtemperatures [J]. Engineering Structures,2007,29(10):2618-2634.
    [139] Anderberg G Y, Thelandersson S. Stress and deformation of concrete at hightemperatures:2Experimental investigation and material behaviour [R]. Bulletin54,Lund: Lund Institute of Technolgy,1976.
    [140] Harmathy T Z. Fire safety design and concrete, Concrete Design and ConstructionSeries[M]. UK: Longman Scientific and Technical,1993.
    [141] Khoury G A, Grainger B N, Sullivan P J E. Transient thermal strain of concrete:literature review, conditions within specimen and behaviour of individual constituentsunder load [J]. Magazine of Concrete Research,1985,37(132):131-144.
    [142] Khoury G A, Grainger B N, Sullivan P J E. Strain of concrete during first heating to600℃under load [J]. Magazine of Concrete Research,1985,37(133):195-215.
    [143] Khennane A, Baker G. Uniaxial model for concrete under variable temperature and stress [J].Journal of Engineering Mechanic,1993,119(8):1507-1525.
    [144] Bratina S, Cas B, Saje M, et al.. Numerical modelling of behaviour of reinforcedconcrete columns in fire and comparison with Eurocode2[J]. International Journal ofSolids and Structures,2005,42(21–22):5715–5733.
    [145] Bratina S, Saje M, Planinc I. The effects of different strain contributions on theresponse of RC beams in fire [J]. Engineering Structures,2007,29(3):418-430.
    [146] Dwaikat M B, Kodur V K R. A numerical approach for modeling the fire induced restrainteffects in reinforced concrete beams [J]. Fire Safety Journal,2008,43(4):291–307.
    [147] Kodur V K R, Dwaikat M, Raut N. Macroscopic FE model for tracing the fire response ofreinforced concrete structures [J]. Engineering Structures,2009,31(10):2368-2379.
    [148] Wu B, Lu J Z. A numerical study of the behaviour of restrained RC beams at elevatedtemperatures [J]. Fire Safety Journal,2009,44(4):522–531.
    [149] Xu Y Y, Wu B. Fire resistance of reinforced concrete columns with L-, T-, and+-shapedcross-sections [J]. Fire Safety Journal,2009,44(6):869–880.
    [150] El-Fitiany S F, Youssef M A. Assessing the flexural and axial behaviour of reinforcedconcrete members at elevated temperatures using sectional analysis [J]. Fire Safety Journal,2009,44(5):691–703.
    [151] Illston J M, Sanders P D. The effect of temperature change upon the creep of mortar undertorsional loading [J]. Magazine of Concrete Research,1973,25(84):136-144.
    [152] Thelandersson S. Modeling of combined thermal and mechanical action in concrete [J].Journal of Engineering Mechanics,1987,113(6):893-906.
    [153] Yin J, Zha X X, Li L Y. Fire resistance of axially loaded concrete filled steel tubecolumns [J]. Journal of Constructional Steel Research,2006,62(7):723-729.
    [154] Sadaoui A, Kaci S, Khennane A. Behaviour of reinforced concrete frames in a fireenvironment including transitional thermal creep [J]. Austrlian Journal of StructuralEngineering,2007,7(3):167-184.
    [155] Sadaoui A, Khennane A. Effect of transient creep on the behaviour of reinforcedconcrete columns in fire [J]. Engineering Structures,2009,31(9):2203-2208.
    [156] Nielsen C V, Pearce C J, Bicanic N. Theoretical model of high temperature effects onuniaxial concrete member under elastic restraint [J]. Magazine of Concrete Research2002,54(4):239-249.
    [157] Tan Q H, Han L H and Yu H X. Fire Performance of concrete filled steel tubular (CFST)column to RC beam joints [J]. Fire Safety Journal,2012,51(1):68-84.
    [158]江莹.火灾后方钢管混凝土柱-钢梁连接节点的力学性能分析[硕士学位论文].北京:清华大学,2008.
    [159] Izzuddin B A, Elghazouli A Y, Tao X Y. Realistic modelling of composite floor slabs underfire conditions [C]. Proceedings of15th ASCE Engineering Mechanics Conference. ColumbiaUniversity, New York,2002.
    [160] Hibbitt, Karlson and Sorensen, Inc. ABAQUS/standard User's Manual, Version6.10[CP].Pawtucket, RI,2010.
    [161]中华人民共和国国家标准YB9082-2006.钢骨混凝土结构设计规程[S].北京:冶金工业出版社,2007.
    [162] Lennon T, Moore D. The natural fire safety concept—full-scale tests at Cardington [J].Fire Safety Journal,2003,38(7):623–643.
    [163] Pope N D, Bailey C G. Quantitative comparison of FDS and parametric fire curveswith post-flashover compartment fire test data [J]. Fire Safety Journal,2006,41(2):99–110.
    [164] Eurocode2. EN1992-1-1:2004, Design of concrete structures Part1-1: Generalrules and rules for buildings [S]. European Committee for Standardization, Brussels,2004.
    [165] Eurocode4. EN1994-1-1:2004. Design of composite steel and concrete structures Part1-1: General rules and rules for buildings [S]. European Committee forStandardization, Brussels,2004.
    [166] Han L H, Zheng Y Q, Tao Z. Fire performance of steel-reinforced concrete beam-columnjoints [J]. Magazine of Concrete Research,2009,61(7):409-428.
    [167] Huang Z F, Tan K H. Fire resistance of compartments within a high-rise steel frame: Newsub-frame and isolated member models [J]. Journal of Constructional Steel Research,2006,62(10):974–986.
    [168]陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700