用户名: 密码: 验证码:
绿色航运背景下的泊位分配问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对全球气候变化的广泛关注,燃油价格的不断上升,以及各国政府和国际组织对船舶废气排放的严格限制,航运公司和港口企业逐渐意识到节能减排对企业生存的重要意义,并纷纷通过各种措施降低船舶、集卡等运输工具的燃油消耗和废气排放,绿色航运时代悄然来临。泊位是港口为船舶提供装卸服务的地方,泊位分配问题关系着港航双方的生产运作,是双方共同践行节能减排的最佳契合点,在泊位分配问题研究领域,一个新的研究分支——绿色泊位分配问题——正在形成。本文旨在为这一新的研究分支贡献理论成果,从运作层面为业界实施绿色航运、建设绿色港口提供理论支持。
     本文首先从码头一个企业单独决策的角度研究了面向绿色服务的泊位和岸桥联合调度问题,然后将航运公司的航速控制行为考虑进来,研究了港航协作条件下的绿色泊位分配问题:先是在码头集中决策的环境下研究了考虑船舶燃油消耗和废气排放的泊位分配问题,并将研究成果从非潮汐港扩展到了潮汐港;后又在港航双方分散决策的环境下基于Multi-agent技术研究了绿色泊位分配问题。具体而言,本文的研究工作包括如下四个方面:
     首先,研究了面向绿色服务的泊位和岸桥联合调度问题。在模型中,用离港延误时间的凸函数刻画船公司在下一航段追赶船期、加速航行而过多消耗燃油和排放废气带来的不满意情绪,同时用计划期内可用的岸桥总工时限制集卡过多的水平跑动,引导集卡节能减排;为降低求解难度,将混合整数非线性规划模型等价转换为混合整数二阶锥规划模型,并采用分支切割优化工具CPLEX对模型求解,由于在有些实例上分支切割算法存在求解时间过长、内存溢出等问题,文中对混合整数非线性规划模型巧妙分解,基于此设计了外逼近算法;数值实验验证了算法的有效性,并对模型中的关键参数进行了灵敏度分析。
     第二、将航运公司的航速控制行为考虑进来,研究了码头集中决策环境下的绿色泊位分配问题。从一个新的VAT (Variable Arrival Time)策略出发,将船舶的抵港时间(航速)看作决策变量,以最小化船舶在航行中的燃油消耗和废气排放、最小化离港延误时间为目标建立了双目标优化模型;为克服计算困难,将混合整数非线性规划模型等价转换为混合整数二阶锥规划模型,同时采用ε-constraint方法求解模型的Pareto有效解;在燃油消耗计算的基础上,还对船舶在航行中的废气(CO2、NOX、SOX、PM)排放进行了定量评估;最后,通过一个后优化过程分析了船舶在港等待期间的废气排放。实验表明,新的VAT策略能在不降低(甚至提高)码头服务水平的情况下有效降低船舶在航行中的燃油消耗和废气排放,同时,也能极大降低船舶在港等待期间的废气排放。
     第三、将新的VAT策略从非潮汐港推广到潮汐港,研究了节能减排背景下潮汐港的泊位分配问题。据本文作者所知,这也是第一次研究潮汐海港中集装箱码头的泊位分配问题。先是从潮汐对船舶进出港的影响出发进行建模,为减轻非凸性和非线性带来的求解困难,对模型进行了等价变换。本文还从潮汐港中几个重要的管理问题出发进行了全面的数值实验,实验表明,在潮汐港中实施新的VAT策略,不仅能帮助船公司节能减排,还能有效缓解潮汐对岸边作业的影响,很多时候还可以避免挖掘航道的大兴土木和资金消耗。此外,还给出了潮汐港的离散泊位分配模型,指出其可以应用到散货码头,从两个方面扩展了前人的研究工作。
     最后,研究了港航双方分散决策环境下的绿色泊位分配问题。在这一问题中,码头不再是集中决策者,港航双方被看作平等、自治的决策主体。文中基于Multi-agent技术提出了解决方案,并以泊位分配模型的影子价格为基础设计了港航双方的协商机制,为适应潮汐港的应用,还针对潮汐船舶设计了基于几种启发式算法的协商机制;之后讨论了代表码头Agent和船舶Agent各自理性的优化模型和算法,其中,证明了航速优化模型的凸性,并采用Newton法对全局最优值进行搜索;为推广此Multi-agent系统在航运实践中的应用,文中还讨论了船-岸双方各自需做的软硬件部署。
The global concern about climate change, the rapid growth of bunker fuel prices, and the more stringent legislation, of governments and international organizations, on vessel emissions have been conveying the signals of the coming of a new green shipping era. Shipping lines and ports are therefore making great efforts to reduce fuel consumption and emissions from both vessels and container trucks. The berth is the place in the port where vessels moor for the service of loading and unloading their cargoes. The berth allocation problem (BAP) is thus the business operation interface of the shipping line and the port, which also provides the best chance to coordinate both parties'decisions on energy saving and emission reduction. In fact, a new research stream, named green berth allocation problem (GBAP), is forming in the field of BAP. This dissertation aims to contribute some theoretical studies to this new research stream, and to theoretically support the implementation of green shipping and the construction of green ports.
     This dissertation studies the GBAP in three decision contexts:(a) The terminal constructs the berth plan without considering the speed optimization of the vessels;(b) The speed optimization problem (SOP) is integrated into the BAP, and the terminal is regarded as the sole centralized decision maker; and (c) The terminal and the vessel are treated as separate autonomic agents. They make their own decisions in a decentralized context and coordinate with each other via a dedicatedly-designed negotiation mechanism. The latter two contexts are both driven by port-shipping coordination. More specifically, the studies in this dissertation can be summarized as follows.
     First, in the first decision context mentioned above, the berth allocation and quay crane assignment problem with green considerations is addressed. In the mathematical model, a convex objective function of the departure delay time is employed to describe the dissatisfaction of the shipping line resulted from excessive fuel consumption and vessel emissions due to the speed-up in the sailing leg to next port. Also the emissions from the container trucks are implicitly considered by imposing a constraint on the available working hours of the quay cranes in the planning horizon. To overcome the computational intractability and the optimality absence, the mixed integer nonlinear programming (MINLP) model is equivalently transformed to a mixed integer second order cone programming (MISOCP) model, which is solved by the branch and cut (B&C) solver CPLEX. Since the B&C algorithm is time-consuming and runs out of memory for some test instances, an outer approximation (OA) algorithm is put forward based on a novel decomposition towards the original MINLP model. Through numerical experiments, the efficiency and effectiveness of the OA algorithm are verified, and the sensitivity analysis on the key parameters is conducted.
     Second, the BAP and the SOP are integrated into a comprehensive optimization model, in which the terminal is the centralized decision maker assuming that the vessels will accept the arrival times suggested by the terminal. By adopting a new berthing strategy called VAT (Variable Arrival Time) and regarding the arrival times of the vessels as decision variables, a bi-objective optimization model is formulated, which aims to minimize the departure delay time of the vessels, and to minimize the fuel consumption and the vessel emissions in the sailing period. To run over the barrier of the nonlinear complexity introduced by fuel calculation, the model is cast as a MISOCP one. Meanwhile, the ε-constraint approach is employed to generate the Pareto efficient solutions of the model. Furthermore, the vessel emission calculation (in sailing periods) is conducted with the widely-used emission factors. Besides, vessel emissions in mooring periods are also analyzed through a post-optimization phase on waiting time. Experimental results demonstrate that the VAT strategy is competent to significantly reduce fuel consumption and vessel emissions, while simultaneously retaining the service level of the terminal.
     Third, the VAT strategy is extended to the tidal seaport, and the GBAP in the tidal seaport is studied. As far as we know, this is the first study on the BAP of the container terminal in the tidal seaport. The mathematical model reflects the influence of the tide on the sailing of vessels in the navigation channel, and is equivalently transformed to weaken the potential nonconvexity and the nonlinearity involved. Extensive numerical experiments are conducted to answer several interesting questions arising from the management of the tidal seaport. Apart from the economic benefit of the reduction of fuel expenses and the environmental benefit of emission mitigation, experimental results also show that the VAT strategy can substantially ease the influence of the tide on the seaside operations in the container terminal, and is an applicable substitute for deepening the navigation channel in the tide port. Moreover, a model on the BAP with discrete berth space is also formulated, which contributes to the literature on the BAP in the tidal bulk port in two aspects.
     Last, the GBAP in the decentralized decision context is considered, in which the terminal and the shipping line are regarded as rational but selfish agents.In our solution based on the multi-agent technology, the terminal agent solves its BAP, the vessel agent (the shipping line) optimizes its sailing speed, and the performance of the whole system is improved incrementally through an iterative negotiation procedure based on a dedicatedly-designed mechanism. This study designs the negotiation mechanism for the tide-independent vessels based on the shadow prices derived from the linear programming relaxation of the BAP model, and some heuristics for the tide-dependent vessels. Afterwards, the optimization models and the corresponding algorithms, which reflect the individual rationality of the terminal agent and the vessel agent, are discussed. For the speed optimization model of the vessel agent and the algorithms, some analytical results are introduced in the form of propositions and theorems, and the Newton's method is employed to find the global optima. Besides the experimental results, the issue on how to deploy the multi-agent system with respect to hardware and software is addressed such that the decentralized VAT strategy can be put into practice.
引文
[1]UNCTAD. Review of Maritime Transport 2011. New York and Geneva:United Nations Publication,2011.
    [2]Maine Department of Environmental Protection, Bureau of Air Quality. Air Emissions from Marine Vessels,2005. http://www.maine.gov/dep/blwq/topic/vessel/airemissionsreport.pdf. Accessed Sept.10,2010.
    [3]BunkerWorld Rotterdam. Monthly Bunker Prices,2012. http://www.bunkerworld.com/ prices/port/nl/rtm/. Accessed Feb.2,2012.
    [4]Notteboom T, Vernimmen B. The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography,2009,17(5):325-337.
    [5]Buhaug 0, Corbett J, Endresen 0, et al. Second IMO Greenhouse Gas Study 2009. London: International Maritime Organization,2009.
    [6]Psaraftis H N, Kontovas C A. CO2 emission statistics for the world commercial fleet. WMU Journal of Maritime affairs,2009,8(1):1-25.
    [7]Corbett J J, Wang H F, Winebrake J J. The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D:Transport and Environment,2009,14(8):593-598.
    [8]COSCO. COSCO sustainability report 2010. Beijing:COSCO,2011. http://www.cosco. com/GC_report/GC_report2011/index-cn.html. Accessed Mar.3,2012.
    [9]梁晓强.航运企业第三方物流绿色供应链实施现状与策略探讨.现代商贸工业,2009,21(023):8-9.
    [10]COSCON. COSCON carbon calculator. http://219.233.207.7/CalculatorEEOI.jsp. Accessed Mar.3,2012.
    [11]张云鹏,李庆祥.轮胎式集装箱门式起重机节能技术研究,交通节能与环保,2008,(02):9-11.
    [12]刘洪波,汪锋,张志平.集装箱轮胎吊“油改电”技术在港口节能减排中的应用.水运工程,2011,(9):123-125.
    [13]Mariterm AB. Shore-side electricity for ships in ports. Gothenburg:Maritenn AB,2004. http://www.mariterm.se. Accessed Oct.10,2010.
    [14]鄙克存,戴瑜兴,李加升.一种新型电子静止式岸电电源.电力电子技术,2011,45(2):86-88.
    [15]Abu-Zaid M. Performance of single cylinder, direct injection diesel engine using water fuel emulsions. Energy conversion and management,2004,45(5):697-705.
    [16]Lin C Y, Wang K H. Diesel engine performance and emission characteristics using three-phase emulsions as fuel. Fuel,2004,83(4-5):537-545.
    [17]吴平,韩才元.船舶和机车用高速柴油机废气再循环试验.国外内燃机车,2007,(02): 25-31.
    [18]Schrooten L, De Vlleger I, Panis L I, et al. Inventory and forecasting of maritime emissions in the Belgian sea territory, an activity-based emission model. Atmospheric Environment, 2008,42(4):667-676.
    [19]Psaraftis H N, Kontovas C A. Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D:Transport and Environment,2010, 15(8):458-462.
    [20]Song D P. CO2 emission analysis for containerships based on service activities.12th World Congress on Transport Research, Lisbon, Portugal, July 11-15,2010.
    [21]Cariou P. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transportation Research Part D:Transport and Environment,2011,16(3): 260-264.
    [22]Bierwirth C, Meisel F. A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research,2010,202(3):615-627.
    [23]Li C L, Cai X Q, Lee C Y. Scheduling with multiple-job-on-one-processor pattern. HE Transactions,1998,30(5):433-445.
    [24]Guan Y, Xiao W Q, Cheung R K, et al. A multiprocessor task scheduling model for berth allocation:heuristic and worst-case analysis. Operations Research Letters,2002,30(5): 343-350.
    [25]Song L, Cherrett T, Guan W. Study on Berth Planning Problem in a Container Seaport:Using an Integrated Programming Approach. Computers& Industrial Engineering,2012,62(1): 119-128.
    [26]Lai K. K, Shih K. A study of container berth allocation. Journal of Advanced Transportation, 1992,26(1):45-60.
    [27]Brown G G, Lawphongpanich S, Thurman K P. Optimizing ship berthing. Naval Research Logistics,1994,41(1):1-15.
    [28]Brown G G, Cormican K J, Lawphongpanich S, et al. Optimizing submarine berthing with a persistence incentive. Naval Research Logistics,1997,44(4):301-318.
    [29]Imai A, Nagaiwa K I, Tat C W. Efficient planning of berth allocation for container terminals in Asia. Journal of Advanced Transportation,1997,31(1):75-94.
    [30]Chen C Y, Hsieh TW.A time-space network model for the berth allocation problem.19th IFIP TC7 Conference on System Modeling and Optimization, Cambridge, UK, July 12-16, 1999.
    [31]Imai A, Nishimura E, Papadimitriou S. The dynamic berth allocation problem for a container port. Transportation Research Part B:Methodological,2001,35(4):401-417.
    [32]Nishimura E, Imai A, Papadimitriou S. Berth allocation planning in the public berth system by genetic algorithms. European Journal of Operational Research,2001,131(2):282-292.
    [33]Imai A, Nishimura E, Papadimitriou S. Berth allocation with service priority. Transportation Research Part B:Methodological,2003,37(5):437-457.
    [34]韩笑乐,陆志强,奚立峰.具有服务优先级别的动态离散泊位调度优化.上海交通大学学报,2009,43(6):902-905.
    [35]Cheong C, Tan K, Liu D, et al. Multi-objective and prioritized berth allocation in container ports. Annals of Operations Research,2010,180(1):63-103.
    [36]Golias M M, Boile M, Theofanis S. A lamda-optimal based heuristic for the berth scheduling problem. Transportation Research Part C:Emerging Technologies,2010,18(5):794-806.
    [37]Cordeau J F, Laporte G, Legato P, et al. Models and tabu search heuristics for the berth-allocation problem. Transportation Science,2005,39(4):526-538.
    [38]Golias M M, Haralambides H E. Berth scheduling with variable cost functions. Maritime Economics & Logistics,2011,13(2):174-189.
    [39]Buhrkal K, Zuglian S, Ropke S, et al. Models for the discrete berth allocation problem:a computational comparison. Transportation Research Part E:Logistics and Transportation Review,2011,47(4):461-473.
    [40]Christensen C G, Holst C T. Berth allocation in container terminals:[Master's Thesis]. Copenhagen:Technical University of Denmark,2008.
    [41]Lim A. The Berth planning problem. Operations Research Letters,1998,22(2-3):105-110.
    [42]Guan Y, Cheung R K. The berth allocation problem:models and solution methods. OR Spectrum,2004,26(1):75-92.
    [43]Park K T, Kim K H. Berth scheduling for container terminals by using a sub-gradient optimization technique. Journal of the Operational Research Society,2002,53(9): 1054-1062.
    [44]Kim K H, Moon K C. Berth scheduling by simulated annealing. Transportation Research Part B:Methodological,2003,37(6):541-560.
    [45]Wang F, Lim A. A stochastic beam search for the berth allocation problem. Decision Support Systems,2007,42(4):2186-2196.
    [46]Dai J, Lin W, Moorthy R, et al. Berth allocation planning optimization in container terminals. Supply Chain Analysis:A Handbook on the Interaction of Information, System and Optimization,2007,69-104.
    [47]Lee D H, Chen J H, Cao J X. The continuous berth allocation problem:a greedy randomized adaptive search solution. Transportation Research Part E:Logistics and Transportation Review,2010,46(6):1017-1029.
    [48]Imai A, Sun X, Nishimura E, et al. Berth allocation in a container port:using a continuous location space approach. Transportation Research Part B:Methodological,2005,39(3): 199-221.
    [49]Ganji S R S, Babazadeh A, Arabshahi N. Analysis of the continuous beith allocation problem in container ports using a genetic algorithm. Journal of Marine Science and Technology, 2010,15(4):408-416.
    [50]Lee Y, Chen C Y. An optimization heuristic for the berth scheduling problem. European Journal of Operational Research,2009,196(2):500-508.
    [51]李强.集装箱码头泊位调度均衡优化方法研究:[博士学位论文].大连:大连理工大学,2009.
    [52]Cheung R K, Li C L, Lin W. Interblock crane deployment in container terminals. Transportation Science,2002,36(1):79-93.
    [53]Linn R J, Zhang C Q. A heuristic for dynamic yard crane deployment in a container terminal. HE Transactions,2003,35(2):161-174.
    [54]Chen P, Fu Z, Lim A, et al. Port yard storage optimization. IEEE Transactions on Automation Science and Engineering,2004,1(1):26-37.
    [55]Kim K H, Park Y M. A crane scheduling method for port container terminals. European Journal of Operational Research,2004,156(3):752-768.
    [56]Lim A, Xu Z. A critical-shaking neighborhood search for the yard allocation problem. European Journal of Operational Research,2006,174(2):1247-1259.
    [57]Moccia L, Cordeau J F, Gaudioso M, et al, A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics,2006,53(1):45-59.
    [58]Lee Y, Hsu N Y. An optimization model for the container pre-marshalling problem. Computers & Operations Research,2007,34(11):3295-3313.
    [59]Sammarra M, Cordeau J F, Laporte G, et al. A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling,2007,10(4):327-336.
    [60]Liu J, Wan Y, Wang L. Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Naval Research Logistics,2006,53(1): 60-74.
    [61]Chen J H, Lee D H, Cao J X. A combinatorial benders' cuts algorithm for the quayside operation problem at container terminals. Transportation Research Part E:Logistics and Transportation Review,2012,48(1):266-275.
    [62]Park Y M, Kim K H. A scheduling method for Berth and Quay cranes. OR Spectrum,2003, 25(1):1-23.
    [63]Meisel F, Bierwirth C. Heuristics for the integration of crane productivity in the berth allocation problem. Transportation Research Part E:Logistics and Transportation Review, 2009,45(1):196-209.
    [64]Chang D, Jiang Z, Yan W, et al. Integrating berth allocation and quay crane assignments. Transportation Research Part E:Logistics and Transportation Review,2010,46(6):975-990.
    [65]杨春霞,王诺,杨华龙.集装箱码头泊位—岸桥分配耦合优化.计算机集成制造系统,2011,17(10):2270-2277.
    [66]Lu Z, Han X, Xi L. Simultaneous berth and quay crane allocation problem in container terminal. Advanced Science Letters,2011,4(6-7):2113-2118.
    [67]Imai A, Chen H C, Nishimura E, et al. The simultaneous berth and quay crane allocation problem. Transportation Research Part E:Logistics and Transportation Review,2008,44(5): 900-920.
    [68]Liang C, Guo J, Yang Y. Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. Journal of Intelligent Manufacturing,2011,22(3): 471-479.
    [69]Ma H, Chan F, Chung S, et al. Maximizing the reliability of terminal service by vessel scheduling and quay crane assignment.2011 IEEE International Conference on Quality and Reliability, Bangkok, Thailand, Sept.14-17,2011.
    [70]Giallombardo G, Moccia L, Salani M, et al. Modeling and solving the tactical berth allocation problem. Transportation Research Part B:Methodological,2010,44(2):232-245.
    [71]Blazewicz J, Cheng T, Machowiak M, et al. Berth and quay crane allocation:a moldable task scheduling model. Journal of the Operational Research Society,2011,62(7):1189-1197.
    [72]Zhen L, Chew E P, Lee L H. An integrated model for berth template and yard template planning in transshipment hubs. Transportation Science,2011,45(4):483-504.
    [73]Salido M A, Rodriguez-Molins M, Barber F. Integrated intelligent techniques for remarshaling and berthing in maritime terminals. Advanced Engineering Informatics,2011, 25(3):435-451.
    [74]Gao H. Building robust schedules using temporal protection:an empirical study of constraint based scheduling under machine failure uncertainty:[Master's Thesis]. Toronto:University of Toronto,1995.
    [75]丁然.不确定条件下鲁棒性生产调度的研究:[博士学位论文].济南:山东大学,2006.
    [76]Beyer H G, Sendhoff B. Robust optimization-a comprehensive survey. Computer Methods in Applied Mechanics and Engineering,2007,196(33-34):3190-3218.
    [77]Soyster A L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research,1973,21(5):1154-1157.
    [78]Ben-Tal A, Nemirovski A. Robust solutions of uncertain linear programs. Operations Research Letters,1999,25(1):1-14.
    [79]Ben-Tal A, Nemirovski A. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming,2000,88(3):411-424.
    [80]Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications. Mathematical Programming,2002,92(3):453-480.
    [81]Bertsimas D, Sim M. Robust discrete optimization and network flows. Mathematical Programming,2003,98(1):49-71.
    [82]Bertsimas D, Sim M. The price of robustness. Operations Research,2004,52(1):35-53.
    [83]Yu G, Qi X. Disruption management:framework, models and applications. Singapore:World Scientific Pub Co Inc.2004.
    [84]Daniels R L, Kouvelis P. Robust scheduling to hedge against processing time uncertainty in single-stage production. Management Science,1995,41(2):363-376.
    [85]Yu G, Arguello M, Song G, et al. A new era for crew recovery at Continental Airlines. Interfaces,2003,33(1):5-22.
    [86]Huisman D, Freling R, Wagelmans A P M. A robust solution approach to the dynamic vehicle scheduling problem. Transportation Science,2004,38(4):447-458.
    [87]Qi X, Bard J F, Yu G. Supply chain coordination with demand disruptions. Omega,2004, 32(4):301-312.
    [88]于辉,陈剑,于刚.协调供应链如何应对突发事件.系统工程理论与实践,2005,25(7):9-16.
    [89]Lee C Y, Leung J Y T, Yu G. Two machine scheduling under disruptions with transportation considerations. Journal of Scheduling,2006,9(1):35-48.
    [90]Li J Q, Borenstein D, Mirchandani P B. A decision support system for the single-depot vehicle rescheduling problem. Computers & Operations Research,2007,34(4):1008-1032.
    [91]Lambrechts O, Demeulemeester E, Herroelen W. A tabu search procedure for developing robust predictive project schedules. International Journal of Production Economics,2008, 111(2):493-508.
    [92]Lambrechts O, Demeulemeester E, Herroelen W. Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling,2008,11(2):121-136.
    [93]胡祥培,张漪,丁秋雷等.干扰管理模型及其算法的研究进展.系统工程理论与实践,2008,28(10):40-46.
    [94]徐亚.集装箱码头作业调度优化模型与算法研究:[博士学位论文].天津:南开大学,2009.
    [95]Xu Y, Chen Q, Quan X. Robust berth scheduling with uncertain vessel delay and handling time. Annals of Operations Research,2012,192(1):123-140.
    [96]杜玉泉.两种不确定情况下的鲁棒泊位分配问题研究:[硕士学位论文].天津:南开大学,2009.
    [97]Du Y, Xu Y, Chen Q. A feedback procedure for robust berth allocation with stochastic vessel delays.8th World Congress on Intelligent Control and Automation, Jinan, China, July 7-9, 2010.
    [98]Zhen L, Lee L H, Chew E P. A decision model for berth allocation under uncertainty. European Journal of Operational Research,2011,212(1):54-68.
    [99]Moorthy R, Teo C P. Berth management in container terminal:the template design problem. OR Spectrum,2006,28(4):495-518.
    [100]张晋东.基于鲁棒优化的集装箱码头泊位分配问题研究:[硕士学位论文].北京:清华大学,2008.
    [101]Han X, Lu Z, Xi L. A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. European Journal of Operational Research,2010,207(3):1327-1340.
    [102]周鹏飞,康海贵.面向随机环境的集装箱码头泊位-岸桥分配方法.系统工程理论与实践,2008,28(1):168-169.
    [103]Hendriks M, Laumanns M, Lefeber E, et al. Robust cyclic berth planning of container vessels. OR Spectrum,2010,32(3):501-517.
    [104]曾庆成,胡祥培,杨忠振.集装箱码头泊位分配-装卸桥调度干扰管理模型.系统工程 理论与实践,2010,30(11):2026-2035.
    [105]Zeng Q, Hu X, Wang W J, et al. Disruption management model and its algorithms for berth allocation problem in container terminals. International Journal of Innovative Computing, Information and Control,2011,7(5B):2763-2773.
    [106]Zeng Q, Yang Z, Hu X. Disruption recovery model for berth and quay crane scheduling in container terminals. Engineering Optimization,2011,43(9):967-983.
    [107]杨春霞.不确定环境下的集装箱码头泊位—岸桥调度优化研究:[博士学位论文].大连:大连海事大学,2011.
    [108]Imai A, Nishimura E, Hattori M, et al. Berth allocation at indented berths for mega-containerships. European Journal of Operational Research,2007,179(2):579-593.
    [109]Tang L, Li S, Liu J. Dynamically scheduling ships to multiple continuous berth spaces in an iron and steel complex. International Transactions in Operational Research,2009,16(1): 87-107.
    [110]Barros V H, Costa T S, Oliveira A, et al. Model and heuristic for berth allocation in tidal bulk ports with stock level constraints. Computers & Industrial Engineering,2011,60(4): 606-613.
    [111]Xu D, Li C L, Leung J Y T. Berth allocation with time-dependent physical limitations on vessels. European Journal of Operational Research,2012,216(1):47-56.
    [112]Arango C, Cortes P, Munuzuri J, et al. Berth allocation planning in Seville inland port by simulation and optimisation. Advanced Engineering Informatics,2011,25(3):452-461.
    [113]王小丽.原油码头泊位调度问题仿真研究:[硕士学位论文].武汉:武汉理工大学,2011.
    [114]IMO. IMO environment meeting adopts revised regulations on ship emissions,2008. http://www.imo.org. Accessed Sept.10.
    [115]IMO. IMO environment meeting approves revised regulations on ship emissions,2008. http://www.imo.org. Accessed Sept.27,2010.
    [116]IMO. Revised MARPOL Annex VI,2008. http://www.imo.org/includes/ blastDataOnly.asp/data_id%3D23760/176%2858%29.pdf. Accessed Sept.27,2010.
    [117]Song D P. Carbon emission analysis for an Asia-Europe liner service with and without calling at UK ports.2010 Annual Conference of the International Association of Maritime Economists, Lisbon, Portugal, July 7-9,2010.
    [118]Alvarez J F. Joint routing and deployment of a fleet of container vessels. Maritime Economics& Logistics,2009,11(2):186-208.
    [119]Fagerholt K, Laporte G, Norstad I. Reducing fuel emissions by optimizing speed on shipping routes. Journal of the Operational Research Society,2010,61(3):523-529.
    [120]Ronen D. The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society,2011,62(1):211-216.
    [121]Norstad I, Fagerholt K, Laporte G. Tramp ship routing and scheduling with speed optimization. Transportation Research Part C:Emerging Technologies,2011,19(5): 853-865.
    [122]Meng Q, Wang S. Optimal operating strategy for a long-haul liner service route. European Journal of Operational Research,2011,215(1):105-114.
    [123]Lee C-Y, Lee H L, Zhang J. Optimal schedule planning with service level constraint for ocean container transport. Working paper, Hong Kong University of Science and Technology,2012.
    [124]Qi X, Song D P. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times. Transportation Research Part E:Logistics and Transportation Review,2012, Accepted.
    [125]Fagerholt K, Lindstad H. TurboRouter:An interactive optimisation-based decision support system for ship routing and scheduling. Maritime Economics & Logistics,2007,9(3): 214-233.
    [126]Golias M M, Saharidis G K, Boile M, et al. The berth allocation problem:optimizing vessel arrival time. Maritime Economics & Logistics,2009,11(4):358-377.
    [127]Golias M M, Boile M, Theofanis S, et al. The berth scheduling problem:maximizing berth productivity and minimizing fuel consumption and emission production. Transportation Research Record:Journal of the Transportation Research Board,2010, (2166):20-27.
    [128]Lang N, Veenstra A. A quantitative analysis of container vessel arrival planning strategies. OR Spectrum,2010,32(3):477-499.
    [129]Alvarez J F, Longva T, Engebrethsen E S. A methodology to assess vessel berthing and speed optimization policies. Maritime Economics & Logistics,2010,12(4):327-346.
    [130]Du Y, Chen Q, Quan X, et al. Berth allocation considering fuel consumption and vessel emissions. Transportation Research Part E:Logistics and Transportation Review,2011, 47(6):1021-1037.
    [131]杜玉泉,陈秋双,姬晓涛.面向服务的泊位和岸桥联合调度.计算机集成制造系统,2011,17(9):2051-2060.
    [132]Loch C H, Wu Y. Behavioral operations management. Foundations and Trends in Technology, Information and Operations Management,2007,1(3):121-232.
    [133]Ho T H, Su X. Peer-induced fairness in games. The American Economic Review,2009, 99(5):2022-2049.
    [134]Alizadeh F, Goldfarb D. Second-order cone programming. Mathematical Programming, 2003,95(1):3-51.
    [135]Ben-Tal A, Nemirovski A. Lectures on modern convex optimization:analysis, algorithms, and engineering applications. Philadelphia:MPA-SIAM Series On Optimization, SLAM, 2001.
    [136]Akturk M, Atamturk A, Gurel S. A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Operations Research Letters,2009,37(3): 187-191.
    [137]Duran M A, Grossmann I E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming,1986,36(3):307-339.
    [138]Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming,1994,66(1):327-349.
    [139]Lofberg J. YALMIP:A toolbox for modeling and optimization in MATLAB.2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, Sept. 2-4,2004.
    [140]Notteboom T E. The time factor in liner shipping services. Maritime Economics& Logistics, 2006,8(1):19-39.
    [141]Hughes C. Ship performance:technical, safety, environmental and commercial aspects. London:Lloyd's of London Press,1996.
    [142]Ronen D. The effect of oil price on the optimal speed of ships. Journal of the Operational Research Society,1982,33(11):1035-1040.
    [143]Schrady D, Wadsworth D. Naval combat logistics support system. Journal of the Operational Research Society,1991,42(11):941-948.
    [144]MAN Diesel& Turbo. Basic Principles of Ship Propulsion,2004. http://www.manbw.com/ files/news/filesof3859/P254-04-04.pdf. Accessed Sept.11,2010.
    [145]Mittelmann H D. SOCP (second-order cone programming) Benchmark,2010. http://plato.asu.edu/ftp/socp.html. Accessed Sept 25,2010.
    [146]T'Kindt V, Billaut J-C. Multicriteria scheduling:theory, models and algorithms.2nd ed. Berlin:Springer,2006.
    [147]http://www.shmsa.gov.cn. Accessed Oct.20,2011.
    [148]http://www.portofantwerp.com. Accessed Feb.10,2012.
    [149]http://www.hafen-hamburg.de. Accessed Feb.10,2012
    [150]Taylor P. Fitting the tide. http://www.mast.queensu.ca/-peter/gradel2/MHF4U-2/23.pdf. Accessed Nov.20,2011.
    [151]Phillips T. Harmonic Analysis and Prediction of Tides, http://www.math.sunysb.edu/-tony/ tides/harmonic.html. Accessed Nov.20,2011.
    [152]Panait L, Luke S. Cooperative multi-agent learning:the state of the art. Autonomous Agents and Multi-Agent Systems,2005,11(3):387-434.
    [153]Pechoucek M, Marik V. Industrial deployment of multi-agent technologies:review and selected case studies. Autonomous Agents and Multi-Agent Systems,2008,17(3):397-431.
    [154]Macal C M, North M J. Tutorial on agent-based modelling and simulation. Journal of Simulation,2010,4(3):151-162.
    [155]Douma A, Schutten M, Schuur P. Waiting profiles:an efficient protocol for enabling distributed planning of container barge rotations along terminals in the port of Rotterdam. Transportation Research Part C:Emerging Technologies,2009,17(2):133-148.
    [156]徐斌.基于Agent的集装箱码头实时调度系统的研究:[博士学位论文].大连:大连理工大学,2010.
    [157]Douma A, Schuur P, Jagerman R. Degrees of terminal cooperativeness and the efficiency of the barge handling process. Expert Systems with Applications,2011,38(4):3580-3589.
    [158]Yin X F, Khoo L P, Chen C H. A distributed agent system for port planning and scheduling. Advanced Engineering Informatics,2011,25(3):403-412.
    [159]Fung R Y K, Chen Q. A multiagent supply chain planning and coordination architecture. International Journal of Advanced Manufacturing Technology,2005,25(7):811-819.
    [160]Fung R Y K, Chen Q, Sun X, et al. An agent-based infrastructure for virtual enterprises using Web-Services standards. International Journal of Advanced Manufacturing Technology,2008,39(5):612-622.
    [161]陈秋双,全雄文,孙彬等.基于多agent技术的海上溢油应急反应系统研究.物流技术,2010,29(019):69-72.
    [162]Livio M. The equation that couldn't be solved. New York City:Simon & Schuster,2005.
    [163]谢政,李建平,汤泽滢.非线性最优化.长沙:国防科技大学出版社,2003.
    [164]http://www.inmarsat.com.Accessed Jan.10,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700