用户名: 密码: 验证码:
大口径弹体辊挤—引伸成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炮弹是战争中消耗量最大、杀伤性能最高的武器,同时也是军工生产中批量最大的产品。大口径弹体毛坯为典型的变壁厚筒体构件,其传统生产方式为:采用“冲压-引伸”工艺形成直壁筒体构件,然后通过机加工的方法切削出不同的壁厚。采用该种方式进行生产带来材料利用率低、加工时间长、刀具消耗量大、生产成本高等问题。针对这一情况,本文提出了辊挤-引伸的新工艺,能够实现变壁厚筒体构件的塑性成形,达到少切削或者无切削的目的,不但可以大大提高了材料利用率和生产效率,还能够使金属流线沿工件轮廓合理分布,提高零件的力学性能。
     针对50SiMnVB高强度合金钢,借助于热模拟压缩实验、光学金相显微分析、硬度测试等研究手段,系统研究了不同变形参数下材料的流变行为,构建了该种材料的J-C本构模型,并对本构方程经验参数C进行了修正。获得了50SiMnVB基于动态材料模型的热加工图,发现该种材料具有三个峰值能量耗散区域:(I)650~750℃,0.01s1(II)800~900℃,0.001s1,(Ⅲ)1050~1150℃,0.01s1~0.1s1,结合生产实际情况,建议优先选择变形温度为1050~1150℃,应变速率为0.01s1~0.1s1范围内的工艺参数,为该种合金钢的热塑性加工提供理论依据。
     在辊挤-引伸成形的原理研究中,首先分析了工件实现端部咬入的条件,推导了极限咬入角的计算公式,并得出了稳定辊挤条件;其次分析摩擦系数对咬入条件的影响,给出了摩擦系数的近似计算公式;然后分析了辊挤过程中金属的流动规律,对前滑问题进行了重点研究,根据辊轮凹槽的形状特征推导了辊挤的前滑公式;最后给出了辊挤力的计算公式。
     根据对挤压件尺寸精确控制的原则,完成辊轮的凹槽设计,制定了辊轮主要结构参数的设计准则;根据有限元数值模拟结果,采用中心复合设计的方法完成了辊轮结构参数优化的实验设计,建立了回归模型,并进行了响应面分析;设计了加权渴望函数的综合评定因子,并计算出了的最优辊轮结构参数:轴线距离189.7475,飞边槽顶角29.9495,辊轮宽度130.1515。在此基础上,完成了辊挤-引伸装置的设计与制造,并对原有生产线进行了改造。
     通过有限元数值模拟,分析了工艺参数对场变量分布均匀性的影响,并以此为依据选取了工艺参数设计变量;从控形与控性相结合的角度选取目标函数。采用BBD实验设计的方法制定了各因素不同水平下的实验方案,将响应曲面法应用到层次分析中,得到了三个目标函数的分配权重;依据灰色关联度分析结果,获得了最优的工艺组合:T=950℃, V=32mm/s,μ=0.2。
     对辊挤-引伸成形方案和工艺参数优化结果进行了实验验证,结果表明:与传统工艺相比,采用辊挤-引伸工艺可使弹体毛坯材料利用率提高9.8%,生产效率提高一倍以上,降低了综合生产成本,实现了节能降耗,达到了预期研究目标,为辊挤-引伸技术的推广应用提供了有力的支撑。
The production of shells is one of the largest groups of products in militaryproduction.Shells have the largest consumption in the war as the main body of conventionalweapons. The large caliber projectile blank is typical variable wallthickness ofcylinder components. The traditional mode of producing is "stamping-stretch" to form thestraight wall cylinder components, and then cut out different wall thickness, using the methodof machining. This method leads to low material utilization ratio, long processing time, largecutting tool consumption, and high cost. In this paper, in order to solve these quetions, therolling-extrusion and drawing technology is put forward to make the parts with plasticforming methods, with less cutting or no cutting, which not only can greatly improve thematerial utilization and production efficiency, also can make the reasonable distribution ofmetal flow along the contour and improve the mechanical properties of the parts.
     50SiMnVB alloy steel was analyzed in this paper by means of isothermal compression,optical microscopy, scanning electron microscopy, hardness testing. The deformation behaviorof the alloy steel with different deformation parameters was systematically studied, and theJ-C constitutive model of the alloy steel under the different stress states was established.Based on the dynamic material model, the steel’s two-dimension processing map was created,which showed that the alloy stell has three peak energy dissipation areas:(I)650~750℃,0.01s1(II)800~900℃,0.001s1,(Ⅲ)1050~1150℃,0.01s1~0.1s1.According to theactual production situation,the best choice of process parameters was within temperature1050~1150℃and strain rate0.01~0.1.This provides the reference for choosing theforming parameters.
     In the study of the principle of the rolling-extrusion and drawing, firstly, the end biteconditions of the workpiece were analyzed, and the formula of limit bite angle and thestability rolling-extrusion conditions were deduced; Secondly, the impact on the biting condition of friction coefficient was analyzed, and the approximate formula of the coefficientof friction was got; the analysis of the metal flow law in the process of rolling-extrusion wasdone. A research is focused on the forward slip and the formula was deduced, according to thecharacters of the shape of the roll grooves. At last, A calculation formula of rolling-extrusionforce was given.
     The roll grooves were designed based on the principle of precise control on parts size, andthe design criterias of main structure parameters of the rollers were made. According to theresults of finite element numerical simulation, the optimization experiment on roller structureparameters was worked out; using the method of central composite design, and the regressionmodel was established. By response surface analysis and comprehensive evaluation based onthe weighted desire function factor, the optimal roller structure parameters were obtained: theaxis distance189.7475, the apex angle of flash gutter29.9495, the roller width130.1515. Onthis basis, the rolling-extrusion and drawing equipment was designed and manufactured.What’more, and the transformation of the original production line was finished.
     Through the finite element numerical simulation, analysis of the process parameters onthe distribution uniformity of the field variables was done. The design variables were selected,with impact assessment on the workpiece deformation uniformity as a reference, and theselection of objective function was done with a combined way of shape controland performance control. The experimental scheme of each factor under different level wasdesigned by using the method of BBD, and the three objective function distribution of weightwere got, through the application of response surface method on the analytical hierarchyprocess. The results of grey correlation degrees analysis showed the optimal combination ofprocess: T950C, V32mm/s,0.2.
     Experiments were carried out to verify the feasibility of the rolling-extrusion and drawingprocess and the correctness of the optimization of process parameters. The results showed thatas compared with the traditional process, the rolling-extrusion process can make the materialutilization rate of projectile blanks be improved9.8%, and make the production efficiency be improved by more than double, along with reducing of the overall production cost, saving ofenergy and reducing consumption, which meet the expected research goal, and powerfullysupported the application of the rolling-extrusion technology.
引文
[1]郝博,袁志华,张建.现代弹箭系统概论.北京:兵器工业出版社,2007.88~92.
    [2]魏惠.弹丸设计理论.北京:国防工业出版社,1985.78-92.
    [3]王彬良等,弹体热冲压技术,国防工业出版社,1987.10
    [4]钟履泰,浅谈大弹弹体毛制造工艺,中国兵工学会压力加工学术年会,1991.3
    [5]李佑华,关于大弹体毛坯热冲压最佳工艺路线的探讨[J],中国兵工学会第三届压力加工学术年会,1985.11
    [6]夏巨谌,塑性成形工艺及设备,机械工业出版社,2001.7
    [7]夏巨谌,精密塑性成形工艺,北京:机械工业出版社,1999
    [8]曹敏,阎洪寿,阎建国.高破片率榴弹弹体钢材的研制[J].兵工学报弹箭分册,1983(3):37~45.
    [9]朱林生.高破片率钢弹丸结构及机理研究[J].太原机械学院学报,1987(3):98~104.
    [10]宋继鑫.弹体材料技术研究与发展.北京:兵器工业出版社,2000.56~58.
    [11]赵文宣.弹丸设计原理.北京:北京工业学院出版社,1987.247~251.
    [12]华忝.弹丸作用和设计理论.北京:国防工业出版社,1976.78~96.
    [13] ZHOU Zhi-chao, WU Xiao-feng, LENG Hua-ping. Projectile power analysis of navalgunproximity fuze precast flinders bomb used in anti-missile[J]. Military Strategy andSystem Engineering,2005,19(2):67~70.
    [14]董瀚,李桂芬,陈南平.高强度榴弹钢的破片形成机理研究[J].爆炸与冲击,1996,16(4):369~371.
    [15]常列珍.50SiMnVB合金钢动态力学性能研究[D].中北大学,2007.
    [16]张治民,方敏.60SiZMn温变形力学行为研究[J].材料科学与工艺.1998,6(1):86~89.
    [17]张治民,方敏,李一峰.弹钢温变形特性研究及力学模型建立[J].兵工学报.1998,19(2):163~166.
    [18]张宝红,张星,张治民.35CrMnSi钢温成形力学行为研究[J].材料科学与工艺.2003,11(2):196~199.
    [19]于建民,张治民,崔亚.30CrMnSiNi2A长锥形深孔件成形技术研究[J].新技术新工艺.2009,10:66~68.
    [20]薛智,张治民等.30CrMnSiNi2A钢的动态屈服强度研究[J].兵器材料科学与工程.2009,32(1):10~13.
    [21]周义清,张治民.30CrMnSiNi2A钢在不同应变率下的力学性能研究[J].兵器材料科学与工程.2010,33(4):46~50.
    [22]崔亚,张治民等.热处理工艺对50SiMnVB合金钢的准静态压缩性能的影响[J].兵器材料科学与工程.2008,31(4):63~66.
    [23]吕文生,徐世毅.30CrMnSiA和30CrMnSiNi2A钢超高温淬火组织与性能的研究[J].材料工程.1996,1:20-21.
    [24]张代东.30CrMnSiNi2A钢等温淬火性能的研究[J].山西机械.1999,4:12-13.
    [25]刘天琦.回火温度对30CrMnSiNi2A钢组织和性能的影响[J].特殊钢.2003,24(2):16-18.
    [26]花峰,刘宪民,王春旭.化学成分对30CrMnSiNi2A钢力学性能的影响[J].钢铁研究学报.2003,15(3):25-26.
    [27]赵金茹,殷涛.硼含量对50SiMnVB钢冲击功能的影响[J].电子显微学报,1996,15(6):559-560.
    [28]董翰,李桂芬,陈南平.高强度50SiMnVB钢的动态变形行为[J].材料科学与工艺,1996,4(2):16-19.
    [29]张玮,陈炯.50SiMnVB钢圆筒在爆炸载荷作用下断裂行为研究[J].兵器材料科学与工程,2004,27(5):31-34.
    [30]常列珍.50SiMnVB合金钢动态力学性能研究[D].中北大学,2007.
    [31]刘盼萍,尹燕,常列珍.正火态50SiMnVB钢Johnson-Cook本构方程的建立[J].兵器材料科学与工程,2009,32(1):45-49.
    [32]常列珍,潘玉田等.热处理工艺对50SiMnVB合金钢的准静态压缩性能的影响[J].中北大学学报.2010,31(5):523-527.
    [33] J. Bartnicki, Z. Pater: The aspects of stability in cross-wedge rolling processes ofhollowed shafts[J], Journal of Material Processing Technology,155–156,2004, pp.1867-51873.
    [34] J. Bartnicki, Z. Pater, Theoretical analysis of cross-wedge rolling process of hollowedshafts, in:National Academy of Sciences of Belarus Deform ability Conference[C]. BelarusPoland,2004, pp.80-584.
    [35] Z.Pater,A.Gontarz and W.Weronski.Cross-wedge rolling by means of one flat wedgeand two shaped rolls[J].Journal of Materials Processing Technology,2006,177:550-5554.
    [36] S.Urankar, M.Lovell,C.Morrow, Q.Li and K.Kawada. Development of a critical frictionmodel for cross wedge rolling hollow shafts[J].Journal of Materials ProcessingTechnology,2006,177:539-544.
    [37] S.Urankar, M.Lovell,C.Morrow, Q.Li and K. Kawada.Establishment of failureconditions for the cross-wedge rolling of hollow shafts[J]. Journal of Materials ProcessingTechnology,2006,177:545-549.
    [38] Reimund Neugebauer, Roland Glass.Matthias Kolbe, Michael Hoffimann, Optimizationof processing routes for cross rolling and spin extrusion[J]. Journal of Material ProcessingTechnology,2002,125-126:856-862.
    [39]胡正寰,张康生,王宝雨等.楔横轧零件成形技术与模仿真.北京:冶金工业出版社,2004.
    [40]宋玉泉,连续局部塑性成形的发展前景[J].中国机械工程,2000,11(1):65-67.
    [41]梁继才,任广升等.空心件楔横轧压扁失稳分析[J].吉林工业大学学报.1995,26(1):42-47.
    [42]梁继才,任广升,白志斌等.空心件楔横轧旋转条件的分析[J].农业机械学报.1995,26(1):97-101.
    [43]崔波,梁继才等.空心件楔横轧成形过程的应力应变分析[J].农业机械学报.2001,32(1):102-104.
    [44]张康生,王宝雨,刘晋平,胡正寰.楔横轧空心件壁厚变化规律实验研究[J].锻压技术.2000,25(2):33-36.
    [45]张康生,刘晋平,王宝雨.楔横轧空心件稳定轧制条件分析[J].北京科技大学学报,2001,23:155-157.
    [46]杜凤山,汪飞雪,杨勇.三辊楔横轧空心件成形机理的研究[J].中国机械工程,2005,24:2242-2245.
    [47]刘桂华.楔横轧三维变形的数值模拟研究及内部缺陷预防.北京:机械科学研究总院,2008
    [48]汪建敏,余凯飞,胡密,祝海燕,龚贵春.空心轴类件楔横轧仿真及壁厚变化规律[J].热加工工艺.2008,37(23):73-77.
    [49]江洋,王宝雨,胡正寰等.工艺参数对楔横轧厚壁空心轴不圆度的影响[J].塑性工程学报.2012,19(1):21-24.
    [50]张承鉴.辊锻技术[M].机械工业出版社,1986.
    [51] B.P.Bewlaya, M.F.X.Gigliottia, C.U.Hardwickea, O.A.Kaibyshevb, Net-shapemanufacturing of aircraft engine disks by roll forming and hot die forging[J]. Journal ofMaterials Processing Technology.2003,135:324-329.
    [52]王强,何芳,Hermann Eratz.辊锻模具三维CAD专用软件开发[J].模具工业,2002,(4):8-11.
    [52]张春景,蔡中义,刘纪纯.汽车前轴的辊锻成形工艺[J].汽车技术,1994,(6):31-34.
    [53] Song Yuquan, Zuo Wanyong. Mathematical Model of Thinning Patten for Non-SphereSuperplasti-c Free Bulging[J]. Science in China A,1992,35(1):122.
    [54] Song Yuquan, Zuo Wanyong.Moddels of Geometric Profile for Non-SphereSuperplastic Free Bulging [J]. Science in China A,1992,35(2):247.
    [55]黄良驹,刘化民,李义.辊锻技术的发展现状与展望[J].机械工人,2005.(11):73-77.
    [56] Yang Shenhua, Kou Shuqing, Deng chunping. Research and application of precisionroll-forging taper-leaf spring of vehicle [J]. Journal of Materials ProcessingTechnology,1997,(65):268-271.
    [57]蒋鹏,胡福荣,张忠东,于华龙.坯辊锻在铁路车辆组合式制动梁中间支柱生产中的应用[J].机械工人,2005(12):22-23.
    [58] Hoffinanner A L, Iyer K R. Rotary Swaging of Precision Barrels[R]. Rock IslandArsenalIL, Sep.1974,ADA008987
    [59] Barth C F, Dibenedetto J D. Improved Materials and Manufacturing Method for GunBarrels[R]. Rock Island Arsenal IL, Jun.1975, ADAO19520
    [60] Mataya M C. Simulating Microstructural Evolution during the Hot Working ofAlloy718[J]. Hot Working Superalloys,1999(1):18-26
    [61] Bapari A, Najafizadeh A, Moazeny M, Shafyei A. Simulation of Radial ForgingConditions by Third Hits Hot Compression Tests [J]. Materials Science and Engineering,2008(491):258-265
    [62] Perlovich Y, Isaenkova M, Fesenko V, Krymskaya0,Zavodchikov A. DeformationMechanisms in Tube Billets from Zr-l%Nb Alloy under Radial Forging[C]‘The14thInternational ESAFORM Conference on Material Forming, Belfast, Apr.2011:404-409
    [63] Nematzadeh F, Akbarpour M R, Kokabi A H, Sadmezhaad S K. Structural Changes ofRadial Forging Die Surface during Service under Thermo-Mechanical Fatigue[J].MaterialsScience and Engineering A,2009(527);98~102
    [64] Lahoti G D, Allan T. Analysis and Optimization of the Radial Forging Process forManufacturing Gun Barrels[R]. Rock Island Arsenal IL, Dec.1974, ADA005029
    [65] Lahoti G D, Allan T. Analysis of the Radial Forging Process for Manufacturing Rodsand Tubes [J]. Journal of Engineering for Industry,1976,98(1):265-271
    [66]章子璜.猎枪枪管精锻工艺的试验研究[J].四川机械,1979(4):2742
    [67]康永林,董德元.径向精锻变形的研究[J].鞍山钢铁学院学报,1986⑴:45-50
    [68]康永林,董德元.图相分析法在径向精锻工艺中的应用[J].北京科技大学学报,1989,11(1):38-43
    [69]聂振邦.GFM锻机的工艺应用[J].锻压机械,1982(6):30-32.
    [70]崔柏伟.高速机车锥形空心轴的锤上径向锻造成型[J].机械工程师,2006(7):136-138
    [71]彭嘉,李树奎,才鸿年,周晓青.变形量对旋转锻造鹤合金组织及绝热剪切敏感性影响[J].稀有金属,2011,35(2):218-222
    [72]王世钧,关长友,姜喜群,陈少辉.高比重鹤合金径向锻造工艺分析[J].哈尔滨工业大学学报,2000,32(5):57-59
    [73]杨文义.高速钢精锻试验研究[J].河北冶金,1993(5):41-44
    [74]胡宗式.精锻(径向锻造)过程的局部温升现象[C].2000年材料科学与工程进展(下)-2000年中国材料研讨会论文集,北京:中国材料研究学会,2000:1404-1407
    [75]苏长清,王维华,杨时永.滑移线矩阵算子法分析高速钢径向热精锻变形过程[J].重庆大学学报,1987(4):32-41
    [76]王振苑,胡宗式.径向锻造终锻过程的流函数法解析[J].东北大学学报,1994,15(1):35-39.
    [77]李艳萍,张治民,武月英.车轴径向锻造过程分析[J].锻压装备与制造技术,2007(1):31-33.
    [78]陈适先.强力旋压工艺与设备[M].北京:国防工业出版社,1986:1-50.
    [79]徐恒秋,樊桂森.旋压设备及工艺技术的应用与发展[J].新技术新工艺,2007(2):6-8
    [80]建华,杨合,李玉强.旋压技术基本原理的研究现状与发展趋势[J].重型机械,2002,(3):l-4.
    [81]山益次郎.回转塑性加工学.近代编辑社.1978.
    [82] KalPakeioglu. A Experimental Study of Plastie Deformation in Power Spin.CIRP.Annalen10-1,1961.
    [83]王成和,刘克璋.旋压技术.北京:机械工业出版社.1986.
    [84] J.LOF. Elasto-viscoplastic FEM simulations of the aluminum flow inthe bearing area for extrusion of thin-walled sections [J].Journal of Manufacture Scienceand Engineering,114,2001,PP.174-183.
    [85] J.LOF, Y. Blokhuis.FEM simulation of the extrusion of complex thin-walled aluminumsections[J],Journal of Manufacture Science and Engineering,122,2002:344-354.
    [86]徐文臣,单德斌,吕炎.锥形件剪旋变形分析.锻压技术,2004,1,33-35.
    [87]徐文臣,单德彬,吕炎,李春峰.小锥角零件多道次剪旋成形试验研究.材料科学与工艺,2004,12(12):33-36.
    [88]夏琴香,阮锋,岛进,小寺秀俊.锥形件柔性旋压成形质量的研究.锻压技术,2003,l:35-38.
    [89]韩冬,陈辉.温度梯度对Tal旋压圆筒件质量的影响.固体火箭技术.1999,1.
    [90]任洁,赵文珍,吴洪新.旋压成型波纹管的内表面裂纹生成机理与对策.机械设计与制造.1998,4:35-36.
    [91]薛克敏等.带纵向内筋薄壁筒形件强旋成形,材料科学与工艺,2002,3:287-290.
    [92]张利鹏等.带内筋筒形件清理旋压成形试验研究,特种成形,2005,4,86-88。
    [93]陈宇,康达昌.钛合金筒形件温热强旋热力耦合有限元模拟[J].哈尔滨工业大学学报.2006(2):191-193.
    [94]田辉,黄海青,陈国清,周文龙.强旋工艺参数对TC4钛合金筒形件旋压成形的影响[J].制造技术研究,2009,5(10):14-17.
    [95]汪凌云、刘静安,计算金属成形力学及应用,重庆大学出版社,1991.6.
    [96]陈如欣、胡忠民,塑性有限元法及其在金属成形中的应用,重庆大学出版社,1989.12-50.
    [97] Hrenikoff A. Solution of problems in elastieity by the framework method [J].Journal ofApplied Mechanies,1941,A8:169-175.
    [98] Courant R.Variation methods for the solution of problems of equilibrium andvibration[J].Bulletin of the American Mathematical Society.1943,49:1-3.
    [99] Tumer M J,Clough R W,Martin H C.Stiffness and defleetion analysis of complexstruetures[J]. Journal of Aerosol Scienee.1956,23:805-823.
    [100] DuggiralaR.Design of forging Moulds for forming Flashless Ring Gear Blanks UsingFinite Element Methods[J].Journal of Material Shaping Technology.1989,17:33-47.
    [101] Kang B S,Kim N Y,Kobayashi S.ComPuter–aided Preform Design in Forging of anAirfoil Section Blade[J].International Journal of MachineTools&Manufacture,1990,30(l):43-52.
    [102] Kim N Y,Kobayashi S.Preform Design in H-Shaped Cross Sectional AxiaymmetricForging by The Finite Element Method [J] International Journal of MachineTools&Manufaeture,1990,30(2):243-268.
    [103]赵国群,阮雪榆,张鸿光,关廷栋.链轨节锻造过程的有限元分析[J].模具技术,1991,(4):1-9.
    [104]王忠金.模锻过程的三维模拟及连杆终锻成形规律的研究[D].吉林:吉林工业大学博士学位论文,1995
    [105].陈军.虚拟模具制造及其金属成形过程三维仿真技术研究[D〕.上海:上海交通大学博士学位论文,1996.
    [106]袁文生,史宝军,杜朝蓬,杜宪伟.多楔楔横轧轧件金属流动数值模拟[J].固体力学学报,2008,29(51):70-75.
    [107]王玉凤,李付国,谢汉芳,刘趁意,付静波.铝金属径向精锻工艺的数值模拟[J].稀有金属材料与工程,2009,33(12),2136-2140.
    [108]王华君,夏巨堪,胡国安,王新云.前轴成型辊锻工艺及三维有限元模拟[J].华中科技大学学报(自然科学版),2005,33(7):84-86.
    [109]冀东生,夏巨堪,王新云,金俊松.节套体多向精锻工艺的模拟分析及实验研究[J].华中科技大学学报(自然科学版),2005,37(6):117-220
    [110] Badrinarayanan S,Zabaras N.A Sensitivity Analysis for the Optimal Design of Metalforming Process [J].Journal of Materials ProeessingTechnology,1994,129:83-104.
    [111] D. Vieilledent,L. Fourment. Shape Optimization of Ax symmetric Preform Tools inForging Using a Direct Differentiation Method[J]. International Journal for NumericalMethods in Engineering,2001,52:1301-1321.
    [112] Joun M S,Hwang S M.Mould Shape Optimal Design in Three-Dimensional ShapeMetal Extrusion by the Finite Element Method[J]. International Journal for NumeriealMethodsin Engineering,1998,41:311-335.
    [113] J. Kusak, E.G. Thompson. Optimization Techniques for Extrusion Die Shape Design.Proc[C].3th Int. Conf. On Numer. Methods in Ind. Forming Processes, Fort Collins.CO.,1989,569-574.
    [114] Gao S Y, Grandhi R V.Sensitivity Analysis and Shape Optimization for PreformDesignin thermo-Meehanieal Couple Analysis[J].International Journal for NumeriealMethods in Engineering,1999,45:1349-1373.
    [115]Roy S, Ghoshi S et al.a New Approach to Optimal Design of Multi-Stage MetalForming Processes with Micro Genetic Algorithms[J].Intemational Journal of MaehineTools&Manufaeture,1997,37:29-44.
    [116] John Wiley. Montgomery D C. Design and Analysis of Experiments[M]. New Yoric,1984.
    [117] Kleiber M et al. Proceedings of the Fifth World Congress on ComputationalMechanics (WCCfAV)[C]. Vienna: Vienna University of Technology, Austria,2002.
    [118] Stander N. Proceedings of the9th AIAA/ISSMO Symposium on MultidisciplinaryAnalysis and Optimization[C]. Atlanta: A1AA,2002:2002.
    [119]聂绍氓,段新建等.基于刚塑性有限元和非线性规划算法的锻造毛坯形状优化[C].全国塑性力学及其应用学术研讨会论文集,1997:247-252.
    [120]罗仁平,姚华等.预锻模形状设计优化的新方法一微观遗传算法[J1.中国机械工程,2001,12(2):202-204
    [121]华林.薄钢板冲压成形性能灰色评判[J].材料与工艺,1997,4:42-43.
    [122]唐勇,薛克敏,李萍,曹婷婷.基于灰色理论的T形管内高压成形加载路径优化[J].浙江科技学院学报,2009,21(3):265-268.
    [123]丁敬国,曾庆亮,胡贤磊.中厚板轧制过程基于灰色关联度的厚度修正方法[J].钢铁研究学报,2009,21(11):20-23.
    [124]李相,刘云,杨江科.基于响应面设计脂肪酶N0V0435催化合成甘油二酯的工艺优化[J].生物加工过程,2009,7(5):13-18.
    [125]吴伟,崔光华.星点设计效应面优化法及其在药学中的应用[J].国外医学,2000,27(5):292-298.
    [126] J. H. Hollonman. Tensile Deformation. Trans AIME,1945,162:268-290.
    [127] C. M. Sellars. Modelling microstructural development during hot rolling. MaterialsScience andTechnology,1990,6:1072-1081.
    [128] C. M. Sellars. Computer modeling of hot-working processes. Materials Science andTechnology.1985,1:325-332.
    [129] H. Merking, U. F. Kocks. Kinetics of flow and strain hardening. Acta Metallurgica,1981,28:1865-1875.
    [130]Zerilli F J.Armstrong R W.Dislocation mechanics based constitutive relations formaterial dynamics calculations [J].Journal of Applied Physics.1987,61.5:1816~1825.
    [131] Marc Andre Meyers. Dynamic Behavior of Materials. New York. JohnWiley&Sons.INC.1994,323~381.
    [132]范亚夫,段祝平.Johnson-Cook材料模型参数的实验测定[J].力学与实践.2003,25:40~42.
    [133]常列珍,潘玉田,张治民,薛勇.一种调质50SiMnVB钢Johnson-Cook本构模型的建立[J].兵器材料科学与工程.2010,32(4):68-72,
    [134]余晖.变形镁合金的挤压工艺及其组织和力学性能的研究[D].山东大学,2012.
    [135]黄有林等.热加工图理论的研究进展[J].材料导报.2008,22:173:176.
    [136]傅沛福.辊锻理论与工艺[M].吉林人民出版社,1982.
    [137]王忠雷.三维金属体积成形过程有限元模拟若干关键技术研究与系统开发[D].山东大学,2011.
    [138]周朝辉.大型厚壁筒体成形工艺及有限元模拟[D].重庆大学,2002.
    [139]章争荣,肖晓婷等.圆柱体扭压成形过程热力耦合的温度分析[J].广东工业大学学报.1998.15(2):28-32.
    [140]王晶.基于响应曲面法的多响应稳健性参数优化方法研究[D].天津大学,2009.
    [141]曹品金.基于响应面法的锻造预成形优化设计方法研究[D].山东大学,2013.
    [142]赵新海,赵国群,王广春等.锻造过程优化设计目标的研究.锻压装备与制造技术.2004,1:48-52.
    [143]唐耀平,陈幼林.层次分析法在高校毕业生择业中的应用[J].零陵学院学报,2004,(6):191-193.
    [144]于立雪.黑龙江省边疆口岸东宁县土地利用功能分区研究[D].哈尔滨师范大学,2011.
    [145]谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[D].上海交通大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700