用户名: 密码: 验证码:
提升机故障智能诊断理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械设备在线监测是企业安全生产、产品质量保证的关键。一方面机械设备结构、运行状态复杂难以建立准确的数学模型,另一方面设备运行状态数据量大,非线性度高、噪声干扰强、不确定等特性使得故障诊断比较困难。本论文借鉴机器学习、故障诊断、人工智能等理论和应用成果,对复杂机械设备的智能故障检测、诊断进行了深入研究,主要内容有:
     (1)复杂非线性、动态信号处理以及故障统计量构造研究。该方法使用希尔伯特-黄变换(Hilbert-Huang Transform,HHT)振动信号分解到感兴趣的子频带;然后使用HHT把子频带信号分解为多个内蕴模式函数(Intrinsic Mode Function, IMF),根据IMF系数的邻域相关性去噪,基于信号能量准则消除虚假IMF;提出基于数据依赖KICA(Data Dependent Kernel Component Analysisn, DDKICA)获取描述过程特征的内蕴信息,给出经验特征空间的DDKICA模型选择准则;最后根据抽取的时频域特征分布使用支持向量描述(Support Vector Data Description, SVDD)构造新的统计量、确定置信度进行故障监控。研究表明该方法能够及时发现异常情况。
     (2)基于多尺度理论的振动信号去噪和故障特征提取。分析了形态梯度小波的多尺度特性及其特点,使用形态梯度小波对振动信号进行多尺度分解,对各层的细节系数进行软阈值降噪处理,然后进行信号重构;对降噪后的信号采用S-变换进行多分辨率时频分析,从S变换谱图中提取故障特征。仿真和实例证明该方法能有效提取故障特征,适合在线监测和诊断。
     (3)先进机器学习理论在提升机故障监控研究和应用。针对具有冗余、异构(heterogenous)和多尺度特性的高维数据集,本文提出多核正交局部鉴别分析和全局保持(Multiple Kernel Orthogonal Locality Discriminative Analysis with GlobalityPreserving, MKOLDAGP)维数约简算法。该方法不仅保证了低维特征空间与原始数据空间具有相似的几何结构,具有更好的鉴别特性,而且使得数据局部聚类概率密度近似服从高斯分布。最后给出基于GMM的故障监测和故障统计量,较好地克服了现有因非线性、非高斯特性而导致高斯混合模型(Gaussian Mixture Model,GMM)的故障监测性能下降问题。仿真实验表明了本算法可以有效抽取数据特征,有较强的故障检测能力。
     (4)不平衡数据集的v-NSVDD多分类研究。分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法。该方法基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法。为实现多分类器拒判,防止因每个分类器的核函数参数不同而影响判决结果的准确性和可靠性,本文给出基于相对距离和K-NN规则相结合的多分类方法。使用Benchmark数据集。进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题。
Large scale machines are widely used in industry. The safe and reliable operationscan effectively improve the economic and social profits. As a result, the online perfor-mance monitoring of manufacturing process is essential for ensuring process safety andthe delivery of high quality of products. Although the fault detection and diagnosis tech-nologies for machines have been extensively researched in recent years, some openproblems have not yet resolved. The reasons are as following: on the one hand, the largemachines consist of many complex and different components, operate in complex andpoor working conditions and strong noising background. Thus, it is hard to model themin mathematics; On the other hand, a large amount of data collected from machines ischaracterized with complex nonlinearity, nonstationary, strong noises and uncertainties,resulting in more and more difficult to manage, for example, process and understand thesystem structure, identification of process states, feature extraction, fault monitoring sta-tistics construction, decision function development and etc. Inspired form the advancedtheory and technologies of machine learning, fault detection and diagnosis, artificial in-telligence and manifold learning theory et al., Taking account into the above problems,we take the large scale hoist as research subjects and study the theory and applications ofintelligent fault detection and diagnosis in dissertation. The main work includes the fol-lowing:
     (1) Signal processing method for dynamic and nonlinear signal and the constructionof fault are studied.(1) Hilbert-Huang transform-Data dependent kernel independentcomponent analysis (HHT-DDKICA) method is proposed to denoise and extract featuresfor dynamic and nonlinear vibration signals, i.e. a new denoising algorithm based oncorrelations among neighboring intrinsic mode functions (IMFs) coefficients obtained byHHT is proposed, and the true IMFs describing the original signals are selected to elimi-nate spurious IMFs according to signal energy criteria.(2) DDKICA is presented to de-termine intrinsic information source from IMFs, and a model selection criteria in the em-pirical feature space is also given.(3) Support vector data description (SVDD) is adoptedfor fault monitoring, and new statistics and confidence limits are established. Hoist ma-chinery application shows the efficiencies of the proposed method.
     (2)The applications of multiscale theory in signals denoise and fault feature genera-tion are researched. The morphological gradient wavelet (MGW) is performed to elimi-nate signal noises. The gear vibration signals are decomposed into multiple scales byMGW, the detailed coefficients in each scale are processed using soft threshold de-nosingand the true fault signals are reconstructed by the processed wavelet coefficients. Mul- ti-resolution S transform is employed to analyzed the reconstructed vibration signals, thegear fault features with good time and frequency resolution can be extracted from thespectral graphs. Simulations show that the proposed method can maintain multiscleproperty, and does not involve the problem of negative frequency and cross frequencydisturbances, resulting to extract the gear fault features effectively.
     (3)The applications of advanced machine learning algorithms in fault monitoringand disgnosis are researched. Inspired from manifold learning and multiple kernel learn-ing theory, a novel dimensional reduction algorithm called multiple kernel orthogonallocality discriminative analysis with globality preserving (MKOLDAGP) is developed todeal with redundant and heterogeneous features. The local and global geometric structureof the projected data in low dimensional space through MKOLDAGP is consistent withthat of original data set in high dimension space, the extracted feature also include locallydiscriminative information and the distributions of the local clusters approximate Gauss-ian distribution, overcoming the problem that nonlinearity and non-Gaussian of data re-sult in unsatisfying performance of Gaussian mixture model (GMM). A two-stage itera-tive optimization algorithm is proposed to adaptively adjust the weights and parametersof kernel functions, and then the fault statistics of GMM are developed to online condi-tion monitoring machine. Finally, a case study of hoist illustrates the efficiency of theproposed algorithm on the information extraction and fault detection
     (4)The imbalancedv NSVDD for multiclass classification is developed. To re-duce the influences of noise and outliers and correct the optimization problem in Ref[199],new unbalance datav NSVDD algorithm for multiclass classification is pro-posed. The samples are weighted to deal with the unbalanced data classification problem,and the method to determine the weight coefficients are deduced in theory. The proposedalgorithm can be extended to nonlinear cases by means of kernel trick. Most multiclassclassification methods are lack of rejection decision and the distances between the sam-ple and hypersphere centers in different feature spaces are not equal to their true distanc-es, which influence classification performance and reliability. Combining relative dis-tance with K-NN rule, a multiclass classification method is presented to deal with theabove problems. The results of benchmark testing show that the proposed method canprovide lower classification errors, overcoming the unbalanced data problem.
引文
[1] Z.K. Peng, F.L. Chu. Application of the wavelet transform in machine condition monitoring andfault diagnostics: a review with bibliography [J]. Mechanical Systems and Signal Processing2004,18(2):199–221.
    [2] T. Marwala. Condition monitoring using computational intelligence methods: applications in me-chanical and electrical systems [M]. London: Springer-Verlag,2012.
    [3]何正嘉,警艳阳,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [4]陈玉东等,陈玉东,施颂掓,翁正新.动态系统的故障诊断方法综述[J].化工自动化及仪表,2001,28(3):1-14.
    [5]周东华,王桂增等.故障诊断技术综述[J].化工自动化及仪表,1998,25(1):58-62.
    [6]陈国金.工业过程监控:基于主元分析和盲源信号分析的方法[D].杭州:浙江大学,2004.
    [7] Wen Bao, Rui Zhou, Jianguo Yang etc. Anti-aliasing lifting scheme for mechanical vibration faultfeature extraction [J]. Mechanical Systems and Signal Processing,2009,23:1458-1473.
    [8] H.B. Hong, M. Liang. Separation of fault features from a single-channel mechanical signal mix-ture using wavelet decomposition [J]. Mechanical Systems and Signal Processing,2007,21(5):2025-2040.
    [9]胡晓依.基于非高斯、非平稳信号处理的机械故障特征提取方法研究[D].北京:北京交通大学,2009.
    [10]张贤达.现代信号处理(第2版)[M].北京:清华大学出版社,2002.
    [11]杨叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,2000.
    [12]张磊.矿井提升机远程监测与故障诊断系统的研究[D].徐州:中国矿业大学,2007.
    [13] Yaguo Lei, Zhengjia He, Yangyang Zi. EEMD method and WNN for fault diagnosis of locomo-tive roller bearings [J]. Expert systems with applications,2011,38:7334-7341.
    [14] Ashari, A.E. Mevel, L. Input design for subspace-based fault detection [J]. IEEE Decisionand Control and European Control Conference (CDC-ECC),2011,50:3724-3729.
    [15] Seungchui Lee, Lin Li, Jun Ni. Online degradation assessment and adaptive fault detection usingmodifie hidden markov model [J]. Journal of manufacturing science and engineering,2010,132:1232-1242.
    [16] Masoud Sadeghian, Alireza Fatehi. Identification, prediction and detection of the process fault ina cement rotary kiln by locally linear neuro-fuzzy technique [J]. Journal of Process control,2011,21:302-308.
    [17] Shibin Wang, Weiguo Huang, Z. K. Zhu. Transient modeling and parameter identification basedon wavelet and correlation filtering for rotating machine fault diagnosis [J]. Mechanical systemsand signal processing,2011,25:1299-1320.
    [18]李志农,何永勇,褚福磊.用于机械故障诊断的门限自回归模型盲辨识[J].清华大学学报,2005,45(8):1036-1039.
    [19]王姝,胡学发,赵珍等.基于MPCA-AR的故障预测方法研究[J].仪器仪表学报,2009,30(8):1178-1182.
    [20]刘芳,毛志忠.过程控制时间序列中异常值的动态检测[J].控制理论与应用,2012,29(4):424-432.
    [21] Soumalya Sarkar, Kushal Mukherjee, Soumik Sarkar et al. Symbolic Dynamic Analysis of Tran-sient Time Series for Fault Detection in Gas Turbine Engines [J]. Journal of Dynamic, System,Measurement and Control,2012,135(1):415-425.
    [22] Feiyun Cong, Jin Chen, Guangming Dong, Fagang Zhao. Short-time matrix series based singularvalue decomposition for rolling bearing fault diagnosis [J]. Mechanical Systems and Signal Pro-cessing, http:/dx.doi.org/10.1016/j.ymssp.2012.06.005
    [23] Tan Shuai, WANG Fu-Li, CHANG Yu-Qing, WANG Shu et al. Fault Detection of Multi-modeProcess Using Segmented PCA Based on Differential Transform [J]. ACTA sina,2010,36(11):1626-1636.
    [24] Jialin Liu, Ding-Sou Chen. Nonstationary fault detection and diagnosis for multimode processes[J]. AIChE Journal,2009,56(1):207–219.
    [25] Jie Yu, S. Joe QinMultimode process monitoring with Bayesian inference‐based finite Gaussianmixture models [J].AIChE Journal,2011,54(7):1811-1829.
    [26] I.T. Jolliffe, Principal Component Analysis [M]. Berlin: Springer-Verlag,2002.
    [27] Jinna Li, Yuan Li, Haibin Yu et al. Adaptive fault detection for complex dynamic processesbased on JIT updated data set [J]. Journal of Applied Mathematics,2012:1-11.
    [28] Rongyu LI, Gang RONG. Fault Isolation by Partial Dynamic Principal Component Analysis inDynamic Process [J]. Chinese Journal of Chemical Engineering,2006,14(4):486–493.
    [29] Juan C. Tudón Martínez, Rubén Morales Menéndez. Fault Detection in a Heat Exchanger, Com-parative Analysis between Dynamic Principal Component Analysis and Diagnostic Observers [J].Computación y Sistemas,2011,14(3):269-282.
    [30] S.X. Ding, P. Zhang, A. Naik. Subspace method aided data-driven design of fault detection andisolation systems [J]. Journal of Process Control,2009,19:1496–1510.
    [31] M. Basseville, Model-based statistical signal processing and decision theoretical approaches tomonitoring [J]. Proceedings of the IFAC Symposium safe process,2003:1-12.
    [32] J.J. Gertler, Residual generation from principle component models for fault diagnosis in linearsystems [J].Proceedings of the2005IEEE International Symposium on Intelligent Control, Li-massol, Cyprus,2005:628–639.
    [33] Frank PM. Fault diagnosis in dynamic systems using analytical and knowledge based redundancy:a survey of some new results [J]. Automatica,1990,26(3):459-74.
    [34] Silvio Simani, Cesare Fantuzzi. Dynamic system identification and model-based fault diagnosisof an industrial gas turbine prototype [J]. Mechatronics,2006,16:341-363.
    [35] Fantuzzi C, Simani S, Beghelli S, Rovatti R. Identification of piecewise affine models in noisyenvironment [J]. International Journal Control,2002,75(18):1472-1478.
    [36] Simani S, Fantuzzi C, Beghelli S. Diagnosis techniques for sensor faults of industrial pro-cesses [J]. IEEE Trans Control Syst Technol,2000,8(5):848-55.
    [37] Korbicz J, Koscielny JM, Kowalczuk Z, Cholewa W, editors. Fault diagnosis: models, artificialintelligence, applications.1st ed [M]. Berlin: Springer-Verlag,2004.
    [38] Edelmayer A, Bokor J, Szabo Z, Szigeti F. Input reconstruction by means of system inversion: ageometric approach to fault detection and isolation in nonlinear systems [J]. International JournalApplication Mathematics Computation Science,2004,14(2):189-99.
    [39] M. Basseville. Model-based statistical signal processing and decision theoretical approaches tomonitoring, in: Proceedings of the IFAC Symposium SAFEPROCESS,2003.
    [40] Chenxing Sheng, Zhixiong Lia, Li Qinb etc. Recent Progress on Mechanical Condition Monitor-ing and Fault diagnosis [J]. Procedia Engineering,2011,15:14-146.
    [41] Watanabe K, Himrnelblau D M. Inei Pient. Fault diagnosis of nonlinear Process with multiplecauses of faults [M]. Chemieal Engineering Seienee,1984,39(3):491-508.
    [42]胡笃庆.转子碰摩非线性行为与故障辨识的研究[D].长沙:国防科学技术大学,2001.
    [43] Hui Peng, Kazushi Nazushi Nakano, Hideo Shioya. Nonlinear predictive control using neuralnets-based local linearization ARX model–stability and industrial application [J]. IEEE Transac-tions on Control systems technology,2007,15(1):130-145.
    [44] Dejan Dovzan, Igor Skrjan. Predictive functional control based on an adaptive fuzzy model of ahybrid smi-batch reactor [J]. Control engineering practice,2010,18:979-989.
    [45] Wangdong Ni, Soon Keat Tan, Wun Jern. Recursive GPR for nonlinear dynamic process model-ing [J]. Chemical Engineering Journal,2011,173:636-643.
    [46]张正道,胡寿松.基于未知输入观测器的非线性时间序列故障预报[J].控制与决策,2005,20(7):769-777.
    [47]李岳.机械动力传动系统核基故障识别与状态预测技术研究[D].长沙:国防科学技术大学,2007.
    [48] Xianfeng Fan, Ming J. Zuo. Fault diagnosis of machines based on D-S evidence theory. Part2:Application of the improved D–S evidence theory in gearbox fault diagnosis [J]. Pattern Recog-nition Letters,2006,27:377-385.
    [49] XiaoSheng Si, ChangHua Hu, JianBo Yang etc. On the dynamic evidential reasoning algorithmfor fault prediction [J]. Expert Systems with Applications,2011,38:5061-5080.
    [50] Paula J. Dempsey, Shuangwen Sheng. Investigation of data fusion applied to health monitoringof wind turbine drivetrain components [J]. Wind Energy,2012.
    [51]周瑾.矿井提升机故障机理与智能诊断研究[D].徐州:中国矿业大学,2001.
    [52] C.D. Duan, Z.J. He, H.K. Jiang, A sliding window feature extraction method for rotating ma-chinery based on the lifting scheme [J]. Journal of Sound and Vibration,2007,299(4–5):774-785.
    [53] J.S. Cheng, D.J. Yu, Y. Yang. The application of energy operator demodulation approach basedon EMD in machinery fault diagnosis [J]. Mechanical Systems and Signal Processing,2007,21:668-677
    [54] Shibin Wang, Weiguo Huang, Z.K. Zhu. Transient modeling and parameter identification basedon wavelet and correlation filtering for rotating machine fault diagnosis [J]. Mechanical systemsand signal processing,2011,25:1299-1320.
    [55]熊良才,史铁林.基于双谱分析的齿轮故障诊断研究[J].华中科技大学学报(自然科学版),2001,29(11):4-5.
    [56]丁夏完,刘葆,刘金朝等.基于自适应sTFT的货车滚动轴承故障诊断[J].中国铁道科学,2005,26(6):21-27.
    [57] Yang-Harm Kim, Byoung Duk Lim. Histantaneous frequeney of a transient mechanical signatureand its estimation moving window: applicability and Physical interpretation [J]. MechanicalSystems and signal processing,1994,8(4):381-394.
    [58] H.Oehlmann, D.Brie, V.Begotto, M.Tomezak. Examination of geathox eraeks using Time-fre-quency distribution [J].IEEEICASSP,1995:925-928.
    [59]杨国安,高金吉.多分量振动信号时频分析与应用研究[J].振动工程学报,2003,16(2):133-136.
    [60] Yaguo Lei, Jing Lin, Zhengjia He etc. Application of an improved kurtogram method for faultdiagnosis of rolling element bearings [J]. Mechanical Systems and signal processing,2011,25:1738-1749.
    [61] N. Baydar, A. Ball. Detection of gear failures via vibration and acoustic signals using wavelettransform [J]. Mechanical System and Signal Processing,2003,17(4):787–804.
    [62] G.Y. Gary, C.L. Kuo, Wavelet packet feature extraction for vibration monitoring [J]. IEEETransaction on Industrial Electronics,2000,47(3):650–667.
    [63]韩璞,张君,董泽,潘笑.汽轮机振动信号的最优小波包基消噪与检测[J].动力工程,2005,25(l):92-96.
    [64] Baoping Tang, Wenyi Liu, Tao Song. Wind turbine fault diagnosis based on Morlet wavelettransformation and Wigner-Ville distribution [J]. Renewable Energy,2010.
    [65]何正嘉;孙海亮;訾艳阳.自适应多小波基函数构造与机械故障诊断应用研究[J].中国工程科学,2011,13(10).
    [66] B Liu. Selection of wavelet packet basis for rotating machinery fault diagnosis [J]. Journal ofSound and Vibration,2005,284:567-582.
    [67] R. Claypoole, R. Baraniuk, and R. Nowak. Adaptive wavelet transforms via lifting. in Proc.IEEE Int. Conf. Acoust., Speech, and Signal Proc., May1998.
    [68] Z. Li, Z.J. He, Y.Y. Zi, H.K. Jiang, Rotating machinery fault diagnosis using signal-adapted lift-ing scheme[J]. Mechanical Systems and Signal Processing,2008,22(3):542–556.
    [69] H.X. Chen, Patrick S.K. Chua, G.H. Lim, Vibration analysis with lifting scheme and generalizedcross validation in fault diagnosis of water hydraulic system [J]. Journal of Sound and Vibration,2007,301(3–5):458–480.
    [70] H.R. Cao, X.F. Chen, Y.Y. Zi, F.D.H.X. Chen, J.Y. Tan, Z.J. He, End milling tool breakage de-tection using lifting scheme and Mahalanobis distance [J]. International Journal of MachineTools and Manufacture,2008,48(2):141–151.
    [71]周瑞,鲍文,左国华等.基于改进冗余提升方案的汽轮机组振动故障特征提取[M].中国电机工程学报,2008,28(8):88-93.
    [72] Rui Zhou, Wen Bao, Ning Li. Mechanical equipment fault diagnosis based on redundant secondgeneration wavelet packet transform [M]. Digital Signal Processing,2010,20:276–288.
    [73] Gelle G, Colas M, Dalauny G. Blind source separation applied to rotating machines monitoringby acoustical and vibrations analysis [M]. Mechanical systems and Signal Processing,2000,13(3):427-442.
    [74] Knaak M, Kunter M, Filberi D. Blind source separation for acoustical machine diagnosis.14thInternational conference on Digital Signal Processing,2002,1-3,1:159-162,
    [75]李加文.盲信号理论及在机械设备故障检测与分析中的应用研究[D].上海:上海交通大学,2006.
    [76]赵知劲.一种时频域上的盲信号分离方法[J].信号处理,2004,20(4):384-386.
    [77]李舜酩.振动信号的盲源分离技术及应用[M].北京:航空工业出版社,2011.
    [78] Trang K.Ta,Walter Pelton,Pochang Hsu,Nipa Yossakda.Sample integrated Fourier transform(SIFT): An approach to low latency,low power high performance FT for real time signal pro-cessing.http://klabs.org/richcontent/MAPLDCon01/Abstracts/Ta_A.pdf.
    [79] Erik G.Learned-miller,John W.Fisher. ICA using spacings estimates of entropy [J].Journel of ma-chine learning research,2003,4:1271-1295.
    [80] J. Antonino-Daviu, P. Jover Rodriguez, M. Riera-Guasp etc. Transient detection of eccentrici-ty-related components in induction motors through the Hilbert–Huang Transform [J]. EnergyConversion and Management,2009,50:1810–1820.
    [81]唐贵基,向玲,朱永利.基HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报,2008,28(2):77-81.
    [82]杨将新,郑华文,曹衍龙.基于希尔伯特变换的核电站松动部件定位方法[J].机械工程学报,2009.45(12):232-236.
    [83]邓拥军,王伟. EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):257-263.
    [84]张郁山,梁建文.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003,13(10):0542-1059.
    [85]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(1):1211.
    [86] Jian Xuna, Shaoze Yan. A revised Hilbert–Huang transformation based on the neural networksand its application in vibration signal analysis of a deployable structure. Mechanical Systems andSignal Processing22:1705–1723,2008
    [87] Cheng J S, Yu D J, Yang Y. Research on the intrinsic mode function (IMF) criterion in EMDmethod [J]. Mechanical Systems and Signal Processing,2006,20:817-824.
    [88] Junsheng Cheng, Dejie Yu, Yu Yang. Application of support vector regression machines to theprocessing of end effects of Hilbert–Huang transform [J]. Mechanical Systems and Signal Pro-cessing,2007,21:1197–1211.
    [89] Qi K, He Z, Zi Y. Cosine window-based boundary processing method for EMD and its applica-tion in rubbing fault diagnosis [J]. Mech Syst Signal Process,2007,21:2750-2760.
    [90] Rai VK, Mohanty AR. Bearing fault diagnosis using FFT of intrinsic mode functions in Hil-bert–Huang Transform [J]. Mech Syst Signal Process,2007,21:2607-2615.
    [91]王晓建,王玲,彭启琮.部分HHT和ICA的混合语音增强算法[J].电子科技大学学报(增刊),2008,37:74-77.
    [92] Rong Jianga, Hong Yan. Studies of spectral properties of short genes using the wavelet subspaceHilbert–Huang transform (WSHHT)[J]. Physica,2008,387:4223-4247.
    [93]苗刚,马孝江,任全民.多尺度Hilbert谱熵在故障诊断中的应用[J].农业机械学报,2007,38(3):176-180.
    [94] Tomas Kalvoda, Yean-RenHwang. A cutter tool monitoring in machining process using Hil-bert–Huang transform [J]. International Journal of Machine Tools&Manufacture,2010,50:495–501.
    [95] Li Lin, Fulei Chu. Feature extraction of AE characteristics in offshore structure model usingHilbert–Huang transform [J]. Measurement,2011,44:46-54.
    [96] Olivier Adam. The use of the Hilbert-Huang transform to analyze transient signals emitted bysperm whales [J]. Applied Acoustics,2006,67:1134–1143.
    [97] Nandi S, Toliyat HA. Condition monitoring and fault diagnosis of electrical motors-a review [J].IEEE Trans Energy Convers,2005,20(4):719-29.
    [98]刘毅华,王媛媛,宋执环.基于平稳小波包分解和希尔伯特变换的故障特征自适应提取[J].电工技术学报,2009,24(2):145-150.
    [99]陈赟,张中杰,田小波.基于加窗Hilbert变换的复偏振分析方法及其应用[J].地球物理学报,2005,48(4):889-895.
    [100] Dong Han, Shuang-Nan Zhang. Comparison between windowed FFT and Hilbert-Huang trans-form for analyzing time series with possionan flunctuations: a case study [J]. Chinese Journal ofAstronomy and Astrophysics,2006,6(4):503-512.
    [101]任达千,杨世锡,吴昭同等.基于LMD的信号瞬时频率求取方法及实验[J].浙江大学学报(工学版),2009,43(3):523-526.
    [102]余红英.机械系统故障信号特征提取技术研究[D].太原:中北大学,2005.
    [103]窦唯.旋转机械振动故障诊断的图形识别方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [104] M. Saimurugan, K.I. Ramachandran, V. Sugurumaran etc. Multi component fault diagnosis ofrotational mechanical systems based on decision tree and support vector machine [J]. Expertsytems with applications,2011,38:3819-3826.
    [105]安学利.水力发电机组轴系振动特险及其故障诊断策略[D].武汉:华中科技大学,2009.
    [106]冯伟.基于摩擦学和动力学建立齿轮系统的故障诊断机理研究[D].广州:华南理工大学,2010.
    [107] BIN C F, GAO J J, LI X J, DHILLON B S. Early fault diagnosis of rotating machinery based onwavelet packets-empirical mode decomposition feature extraction and neural network [J]. Me-chanical Systems and Signal Processing,2012,27:696-711.
    [108] LAILA D S, MESSINA A R, PAL B C. A Refined Hilbert-Huang Tranformn with Applicationsto Interarea Oscillation Monitoring [J]. IEEE Transactions on Power Systems,2009,24(2):610-620.
    [109] XIA S X, NIU Q, ZHOU Y etc. Mine-hoist fault-condition detection based on the waveletpacket transform and kernel PCA [J]. Journal of China University of Mining&Technol,2008,4(18):567-570.
    [110]何正嘉,陈进,王太勇等.机械故障诊断理论与应用[M].北京:高等教育出版社,2010.
    [111]秦树人.现代工程信号处理[M].北京:机械工业出版社,2010.
    [112] PENG F Q, YU D J, LUO J S. Sparse signal decomposition method based on multi-scalechirplet and its application to the fault diagnosis of gearboxes[J]. Mechanical Systems and SignalProcessing,2011,25(2):549-557.
    [113] YANG W X. Interpretation of mechanical signals using an improved Hilbert–Huang transform[J]. Mechanical Systems and Signal Processing,2008,22(5):1061-1071.
    [114] ZHOU R, BAO W, LI N, et al. Mechanical equipment fault diagnosis based on redundant sec-ond generation wavelet packet transform [J].Digital Signal Process,2010,20(1),276-288.
    [115]胡晓传.基于非高斯斯、非平稳信号处理的机械故障特征提取方法研究[D].北京:北京交通大学,2009.
    [116]马宏忠,姚华阳,黎华敏.基于Hilbert模量频谱分析的异步电机转子断条故障研究[J].电机与控制学报,2009,13(3):371-376.
    [117] XUN J, YAN S Z. A revised Hilbert-Huang transformation based on the neural networks and itsapplication in vibration signal analysis of a deployable structure [J]. Mechanical Systems andSignal Processing,2008,22(7):1705-1723.
    [118] STEFATOS G, HAMZA A B. Dynamic independent component analysis approach for faultdetection and diagnosis [J]. Expert Systems with Applications,2010,37(12):8606-8617.
    [119] GE Z Q, KRUGER U, LAMONT L,XIE L, SONG Z H. Fault detection in non-gaussian vibra-tion systems using dynamic statistical-based approaches [J]. Mechanical systems and signal Pro-cessing,2010,24(8):2972-2984.
    [120] TIAN X M, ZHANG X L, DENG X G, et al. Multiway kernel independent component analysisbased on feature samples for batch process monitoring [J]. Neurocomputing,2009,72(7):1584-1596.
    [121]刘婷婷,任兴民,杨永锋.核独立分量分析在机械振动信号分离中的应用[J].西北工业大学学报,2011,29(1):108-113.
    [122] SHEN H, JEGELKA S, GERTTON A. Fast kernel-based independent component analysis [J].IEEE Transactions on Signal Processing,2009,57(9):3498-3512.
    [123]胡晓磊.矿井提升机振动信号分析和故障诊断系统设计研究[D].徐州:中国矿业大学,2011.
    [124]蒋玲莉,刘义伦,李学军等.小波包去噪与改进HHT的微弱信号特征提取[J].振动、测试与诊断,2010,30(5):510-514.
    [125] HALIM E B, CHOUDHURY S M A A, SHAH S L, ZUO M J. Time domain averaging acrossall scales: a novel method for detection of gearbox faults [J]. Mechanical Systems and SignalProcessing,2008,22(2):261-278.
    [126] WANG X D, ZI Y Y, HE Z J. Multiwavelet denoising with improved neighboring coeffocoentsfor application on rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2011,25:285-304.
    [127] XIONG H, SWANY M N S, AHMAND M O. Optimizing the kernel in the empirical featurespace [J]. IEEE Transactions on Neural Networks,2005,16(2):460-474.
    [128] CHEN B, LIU H, BAO Z. Optimizing the data-dependent kernel under a unified kernel optimi-zation framework [J]. Pattern Recognition,2008,41(6):2107-2119.
    [129]谢磊,刘雪芹,张建明等.基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报,2009,35(1):107-111.
    [130]赵武.基于振动测试的矿井提升机故障诊断[J].制造业自动化,2011,33(3上):49-52.
    [131] BACH F R, JORDAN M I. Kernel Independent Component Analysis [J]. Journal of MachineLearning Research,2002,3:1-48.
    [132]沈路,周晓军,刘莉等.形态小波降噪方法在齿轮故障特征提取中的应用[J].农业机械学报,2010,41(4):217-220.
    [133] Chuan Li,Ming Liang,Yi Zhang,Shumin Hou..Multi-scale autocorrelation via morphologicalwavelet slices for rolling element bearing fault diagnosis [J]. Mechanical systems and signalprocessing,2012,31:428-446.
    [134]王广斌.基于流形学习的旋转机械故障诊断方法研究[D].广东:中南大学,2010.
    [135] Li Bing, Pei-lin Zhang, Shuang-shan Mi, Ren-xi Hu etc. An adaptive morphological gradientlifting wavelet for detecting defects [J]. Mechanical systems and signal processing,2012,29:415-427.
    [136] Yi. Lu, Jiong Tang, Huangeng Luo. Wind turbine gearbox fault detection using multiple sensorswith features level data fusion [J]. Journal of Engineering for Gas Turbines and Power,2012,134:1-8.
    [137] M. Lokesha1, Manik Chandra Majumde2, K. P. Ramachandran etc. Fault diagnosis in gear us-ing wavelet envelope power spectrum [J]. International Journal of Engineering, Science andTechnology,2011,3(8):156-167.
    [138] Xianfeng Fan1and Ming J Zuo. Machine fault feature extraction based on intrinsic mode func-tions [J]. Measurement Science and Technology,2008,19:451-461.
    [139] T. Y. Ji, Z. Lu, Q. H. Wu. Detection of power disturbances using morphological gradient wave-let [J]. Signal processing,2008,88:255-267.
    [140] Mohammad E. Salem, Azah Mohamed, Salina Abdul Samad. Rule based system for powerquality disturbance classification incorporating S-transform features [J]. Expert Systems withApplications,2010,37:3229-3235.
    [141] Wang Lin, Meng Xiaofeng. An adaptive Generalized S-transform for instantaneous frequencyestimation [J]. Signal Processing,2011,91:1876–1886.
    [142] Henk J. A, M. Heijmans, John Goutsias. Nonlinear multiresolution signal decompositionschemes partII: Morphological wavelets [J]. IEEE transaction on Image processing,2000,9(11):1897-1914.
    [143] Nantian Huang, Dianguo Xu, Xiaosheng Liu etc. Power quality disturbances classificationbased on S-transform and probabilistic neural network [J]. Neurocomputing,2012,98(3):12-23.
    [144]杨先勇,周晓军,张文斌等.基于形态小波和S变换的滚动轴承故障特征提取[J].浙江大学学报(工学版),2010,44(11):2088-2093.
    [145] S. Mishra, C.N. Bhende, B.K. Panigrahi, Detection and classification of power quality disturb-ances using S-transform and probabilistic neural network [J], IEEE Trans. Power Delivery,2008,23(1):280-287.
    [146] Yaguo lei, Jing Lin, Zhengjia He, Yangyang Zi. Application of an improved kurtogram methodfor fault diagnosis of rolling element bearings [J]. Mechanical systems and signal processing,2011,25:1738-1749.
    [147] Yaguo Lei, Zhengjia He, Yangyanhg Zi. EEMD method and WNN for fault diagnosis of loco-motive roller bearings [J]. Expert systems with applications,2011,38:7334-7341.
    [148] Jianbo Yu. Semiconductor manufacturing process monitoring using Gaussian mixture modeland Bayesian method with local and nonlocal information [J]. IEEE Transactions on Semicon-ductor Manufacturing,2012,25(3):480-492.
    [149]陈彬强,张周锁,何正嘉.双密度双树复小波变换及其在机械故障微弱特征提取的应用[J].机械工程学报,2012,48(9):56-61.
    [150]刘小平,徐桂云,任世锦等.形态梯度小波降噪与S变换的齿轮故障特征抽取算法[J].电子设计与工程,2012,20(22):79-82.
    [151] Yaguo Lei, Jing Lin, Zhengjia He, Yangyang Zi. Application of an improved kurtogram methodfor fault diagnosis of rolling element bearings [J]. Mechanical systems and signals processing,2011,25:1738-1749.
    [152] Henk J. A, M. Heijmans, John Goutsias. Nonlinear multiresolution signal decompositionschemes-partII: Morphological wavelets [J]. IEEE transaction on Image processing,2000,9(11):1897-1914.
    [153] Li Bing, Pei-lin Zhang, Shuang-shan Mi, Ren-xi Hu etc. An adaptive morphological gradientlifting wavelet for detecting defects [J]. Mechanical systems and signal processing,2012,29:415-427.
    [154]李兵,张培林,刘东升等.基于形态提升小波变换的滚动轴承故障特征提取[J].振动、测试与诊断,2011,32(1):36-40.
    [155] J. Ryu, H. Sato, K. Kurakata. Use of autocorrelation analysis to characterize audibility oflow-frequency tonal signals [J]. Sound Vib,2011:5210-5222.
    [156]张培林,李兵,张英堂等.基于最大提升格形态小波变换的齿轮故障特征提取[J].仪器仪表学报,2010,31(12):2736-3743.
    [157]程承,潘泉,王申龙等.基于压缩感知理论的MEMS陀螺仪信号降噪研究[J].仪器仪表学报,2012,33(4):769-773.
    [158]彭富强,于德介,罗洁思,武春燕.基于稀疏信号分解的自适应时变滤波器及其在齿轮故障诊断中的应用[J].机械工程学报,2010,46(24):46-53.
    [159] Shibin Wang, Weiguo Huang, Z.K. Zhu. Transient modeling and parameter identification basedon wavelet and correlation filtering for rotating machine fault diagnosis [J]. Mechanical systemsand signal processing,2011,25:1299-1320.
    [160] Mehdi Khashei, Mehdi Bijari, Gholam Ali Raissi Ardali. Hybridizaton of aytogressive integrat-ed moving average (ARIMA) with probabilistic neural networks (PNNs)[J]. Computer&In-dustrial engineering,2012,63:37-45.
    [161]胡学发,王姝,王福利等.基于MICA-FDA的水压试验机故障诊断方法研究[J].仪器仪表学报,2008,29(8);1593-1597.
    [162] Yaguo Lei, Zhengjia He, Yanyang Zi. EEMD method and WNN for fault diagnosis of locomo-tive roller bearings [J]. Expert systems with applications,2011,38:7334-7341.
    [163] Qiang Qin, Zhi-nong Jiang, Jun Feng, Wei He. A novel scheme for fault detection of reciproca-tion compressor valves based on basis pursuit, wave matching and support vector machine [J].Measurement,2012,45:897-908.
    [164] Behnaz Ghoraani, Sridhar Krishnan. Time-frequency matrix feature extraction and classifica-tion of environmental audio signals [J]. IEEE Transactions on Audio, speeh and language pro-cessing,2011,19(7):2197-2210.
    [165] Bing Li, Pei-lin Zhang, Dong-sheng Liu etc. Feature extraction for rolling element bearing faultdiagnosis ultilizing generalized S transform and two-dimensional nonnegative matrix factoriza-tion [J]. Journal of Sound and vibration,2011,330:2388-2399.
    [166] Haining Liu,Chengliang Liu, Yixiang Huang. Adaptive feature extraction using sparse codingfor machinery fault diagnosis [J]. Mechanical Systems and Signal Processing,2011,25(2):558–574.
    [167] Karim Salahshoor, Majid Soleimani Khoshro, Mojtaba Kordestani. Fault detection and diagno-sis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy infer-ence systems [J]. Siimulation modeling practice and theory,2011,19:1280-1293.
    [168]李志农,郝伟,韩捷等.基于非线性时序模型盲辨识的因子隐Markov模型识别方法[J].机械工程学报,2007,43(1):196-201.
    [169]胡海峰,安茂春,秦国军等.基于隐半Markov模型的故障诊断和故障预测方法研究[J].兵工学报,2009,30(1):69-75.
    [170] Dongxiao Jiang, Chao Liu. Machine condition classification using deterioration feature extrac-tion and anomaly determination [J]. IEEE Transactions on Reliability,2011,60(1):41-48.
    [171] Lei Liu,Wangmeng Zuo, David Zhang, etc. Combination of heterogeneous features for wristpulse blood flow signal diagnosis via multiple kernel learning [J]. IEEE Transactions on Infor-mation technology in Biomedicine,2012,16(4):598-606.
    [172] Zhe Wang, Songcan Chen, Tingkai Sun. MultiK-MHKS: A novel multiple kernel learning algo-rithm [J]. IEEE Transactions on Pattern analysis and Machine intelligence,2008,30(2):348-353.
    [173]刘小明.数据降维及分类中的流形学习研究[D].广州:中南大学,2007.
    [174] Quansheng Jiang, Minping Jia,Jianzhong Hu et al. Machinery fault diagnosis using super-vised manifold learning [J]. Mechanical Systems and Signal Processing,2009,23(7):2059-2394.
    [175] Benwei Li, Yun Zhang. Supervised locally linear embedding projection (SLLEP) for machin-ery fault diagnosis [J]. Mechanical Systems and Signal Processing,2011,25(8):3125-3134.
    [176] Guangbin Wang, Xuejun Li, Kuangfang He. Kernel Local Fuzzy Clustering Margin Fisher Dis-criminant Method Faced on Fault Diagnosis [J], Journal of Software,2011,6(10):1993-2000.
    [177] Jianbo Yu. Bearing performance degradation assessment using locally preserving projectionsand Gaussian mixture models [J]. Mechanical systems and signal processing,2011,25:2573-2588.
    [178] Tingkai Sun, Songcan Chen. Locality preserving CCA with applications to data visualizationand pose estimation [J]. Image and Vision Computing,2007,25:531-543.
    [179] Jun-Bao Li, Jeng-ShyangPan, Shyi-MingChen. Kernel self-optimized Locality Preserving Dis-criminant Analysis for feature extraction and recognition [J], Neurocomputing,2011,74:3019–3027.
    [180] Zhen Lei, Zhiwei Zhang, Stan Z. Li. Feature space locality constrain for kernel based nonlineardiscriminant analysis [J]. Pattern Recognition,2012,45:2733-2742.
    [181]许仙珍,谢磊,王叔青.基于PCA混合模型的多工况过程监控[J].化工学报,2011,62(3):743-747.
    [182] Xiang Xie, Hongbo Shi. Dynamic Multimode Process Modeling and Monitoring Using Adap-tive Gaussian Mixture Models [J]. Industry Engineering Chemical Research,2012,51(15):5497–5505.
    [183] Jie Yu, S. Joe Qin. Multimode process monitoring with Bayesian inference-based finite Gaussi-an mixture models [J]. AIChE Journal,2008,54(7):1811-1829.
    [184] Tao Chen, Jie Zhang. On-line multivariate statistical monitoring of batch processes usingGaussian mixture model [J]. Computers&Chemical Engineering,2010,34(4):500–507.
    [185] Yélamos I,Graells M,Puigjaner L,Escudero G. Simultaneous fault diagnosis in chemical plantsusing a multilabel approach. AIChE J.2007,53:2871–2884.
    [186] Jie Yu. A nonlinear kernel Gaussian mixture model based inferential monitoring approach forfault detection and diagnosis of chemical process [J]. Chemical engineering science.2012,68:506-519.
    [187] Jie Yu, Kuilin Chen, Mudassir M. Rashid, A Bayesian model averaging based multi-kernelGaussian process regression framework for nonlinear state estimation and quality prediction ofmultiphase batch processes with transient dynamics and uncertainty [J]. Chemical EngineeringScience,2013,93:96.
    [188] Jianbo Yu. Semiconductor manufacturing process monitoring using gaussian mixture model andbayesian method with local and nonlocal Information [J]. IEEE Transactions on SemiconductorManufacturing,2012,25(3):480-493.
    [189] Ji Dong Shao, Gang Rong, Jong Min Lee. Learning a data-dependent kernel function forKPCA-based nonlinear process monitoring [J]. Chemical engineering research and design,2009,87:1471-1480.
    [190] Xiaofei He, Deng Cai, Yuanlong Shao etc. Laplacian regularized Gaussian mixture model fordata clustering [J]. IEEE Transactions Pattern analysis and machine intelligence,2009,23(9):1406-1418.
    [191]张沐光,宋执环. LPMVP算法及其故障检测中的应用[J].自动化学报,2009,35(6):766-771.
    [192] Guangxin Huang, Huafu Chen, Zhongli Zhou etc. Two-class support vector data description [J].Pattern Recognition,2011,44:320–329.
    [193] David M.J. Tax, Robert P.W. Duin. Support vector domain description [J]. Pattern RecognitionLetters,1999,20:1191-1199.
    [194] Issam Ben Khediri, Claus Weihsa, Mohamed Limam. Kernel k-means clustering based localsupport vector domain description fault detection of multimodal processes [J]. Expert Systemswith Applications,2012,39:2166–2171.
    [195] Sakla, W.; Chan, A.; Ji, J.; Sakla, A. An SVDD-Based Algorithm for Target Detection in Hy-perspectral Imagery [J]. IEEE Geoscience and Remote Sensing Letters,2011,8(2):384–388.
    [196] DAVID M.J. TAX,ROBERT P.W. DUIN. Support Vector Data Description [J]. Machine Learn-ing,2004,54,45-66.
    [197] S.M. Guo, L.C. Chen, J.S.H. Tsai. A boundary method for outlier detection based on supportvector domain description [J]. Pattern Recognition2009,42:77-83.
    [198]朱孝开,杨德贵.基于推广能力测度的多类SVDD模式识别方法[J].电子学报,2009,37(3):464-469.
    [199] Tingting Mu, Asoke K. Nandi. Multiclass classification based on extended support vector datadescription [J]. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics,2009,39(5):1206-1212.
    [200] Daewon Lee, Jaewook Lee. Domain described support vector classifier for multi-classificationproblems [J]. Pattern Recognition,2007,40:41-51.
    [201] Tao Q, Wu G, Wang J. A new maximum maegin algorithm for one–class problems and itsboosting implemention [J]. Pattern Recognition,2005,38(10):1071-1077.
    [202] Xunkai Wei, Johan L fberg, Yue Feng etc. Enclosing Machine Learning for Class Description[J]. Advance in neural networks (ISNN2007), Lecture Notes in Computer Science,2007,4491:424-433.
    [203] Dolia, A. N., C. J. Harris, J. S. Shawe-Taylor, D. M. Titterington.Kernel ellipsoidal trimming.Computational statist [J]. Data Analysis.2007,52(1):309-324.
    [204]冯爱民,薛晖,刘学军等.增强型单类支持向量机[J].计算机研究与发展,2008,45(11):1858-1864.
    [205] Lee K Y, Kim DW, Lee K H, et al. Density-induced support vector data description [J]. IEEETrans on Neural Networks,2007,18(1):284-289.
    [206]王万良,王震宇,郑建炜等.密度诱导型数据描述单类分类机[J].控制与决策,2011,26(11):1665-1669.
    [207]赵峰,张军英,刘敬.一种改善支撑向量域描述性能的核优化算法[J].自动化学报,2008,34(9):1122-1127.
    [208]缪志敏,胡谷雨,丁力等. SVDD在类别不平衡学习中的应用[J].应用科学学报,2008,26(1):79-84.
    [209] MICHIED J S, TAYLOR C C. Machine learning:neural and statistical classification. http://www. ncc. up. pt/liacc/ML/sta tlog/data. html,
    [210]郑恩辉,许宏,李平等.基于ν-2SVM的不平衡数据挖掘研究[J].浙江大学学报(工学版),2006,40(10):1682-1887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700