用户名: 密码: 验证码:
长沙城郊农田土壤铅镉的空间变异、影响因素与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城郊区在来自工业、农业、交通以及城市生活多重环境压力下,农田土壤重金属污染等环境质量恶化问题尤为复杂和严峻。城郊区农田土壤重金属的空间变异特征、影响因素、现状评价与风险评价研究是防控该区域农田土壤重金属污染生态风险的必要途径。本文以长沙城郊农田土壤重金属Pb、Cd为例开展相关研究。
     根据长沙市流域的分布情况,采集长沙城郊区近郊、中郊、远郊18个乡镇513个农田土壤样点,测定了农田土壤重金属Pb、Cd的含量及主要土壤理化性状指标(pH值、有机质、碱解氮、有效磷、速效钾、缓效钾);以长沙市土地利用现状图为基础,在GIS平台下获取了土壤采样点的区位特征数据(土壤采样点离城镇的距离、离工矿建设用地的距离、离河流的距离、离农村居民点的距离)。采用ArcGIS缓冲分析、空间自相关分析和地统计分析模型等研究了长沙城郊农田土壤Pb、Cd的空间变异特征。采用传统回归模型(Ordinary least squares OLS)和地理加权回归模型(Geographically weighted regression GWR)分析比较了土壤Pb, Cd含量与影响因素(土壤理化特性、土壤区位特征)间的相关关系。运用单因子污染指数法对土壤Pb、Cd的质量状况进行了现状评价;采用Hakanson潜在生态危害指数法对农田土壤Pb、Cd进行了潜在生态风险评价;运用模糊综合评价法和层次分析法从农田土壤重金属Pb、Cd的含量、土壤理化特性、土壤区位特征三个方面选取评价指标,建立农田土壤重金属Pb、Cd的生态风险评价模型,对长沙城郊农田土壤Pb、Cd的生态风险进行分级和分区。
     长沙城郊农田土壤Pb、Cd含量大部分处于Ⅰ级水平(背景状况),但两种元素均存在不同程度的累积,尤其是Cd的累积程度更为突出。土壤Pb、Cd的平均含量在20km以内、20-40km、40-60km的缓冲区由近至远均呈下降趋势,表明城市人类活动在一定空间距离内对城郊区农田土壤Pb、Cd含量有较大影响;土壤Pb、Cd在较大范围内存在空间相关性,Pb和Cd的空间变异是由结构性因素和随机性因素共同作用引起的。
     土壤Pb、Cd的OLS模型和GWR模型估计结果表明,土壤Pb与Cd含量呈极显著正相关;土壤pH值、有机质、氮磷含量与土壤Pb、Cd含量的相关性显著;离城镇、河流、工矿建设用地的距离对于城郊农田土壤Pb、Cd含量也有一定影响,Pb、Cd的GWR模型拟合度较OLS模型高,残差不存在空间自相关,GWR模型在每个不同空间位置的采样点都有一组局部的参数估计来反映各影响因子与土壤Pb、Cd含量的相关程度,能更好地解释土壤Pb、Cd与影响因素变量的空间异质性。
     Pb、Cd的单项累积指数和潜在生态危害系数均呈现出近郊>远郊>中郊的趋势,各区域土壤Cd的潜在生态危害趋势较土壤Pb更明显,城市近郊南北方向区域及远郊局部工矿聚集区是农田土壤Pb、Cd的累积程度和污染风险较高的区域。运用模糊综合评价法建立农田土壤Pb、Cd的生态风险评价模型,根据生态风险指数值(ERI)将生态风险等级划分为四级(Ⅰ级ERI>0.70、Ⅱ级0.6     该研究可为定量分析区域土壤重金属含量的空间结构与影响因素提供参考,为长沙城郊农田土壤重金属污染生态风险的防控提供理论依据。土壤Pb、Cd的“高-高”集聚区(土壤Pb或Cd含量高的区域被Pb或Cd含量高的其他区域所包围,区域土壤Pb或Cd含量水平较高,且空间差异程度较小)和离城镇、河流、工矿建设用地较近的农田是Pb、Cd污染风险防控的重点区域。农田土壤重金属的生态风险评价与分级、分区是建立农田土壤重金属生态风险防控体系的必要手段,可为农田土壤的科学合理利用提供技术支撑。
The agricultural soil contamination with heavy metals in the suburb area draws great attention because of its potential threat to food safety and detrimental effects on the ecosystem.The research about spatial distribution characteristics, the origins, and the status and ecological risk assessment of soil heavy metals have important significance for farmland ecological risk prevention and controlling in the region.
     In this study, a survey in agricultural soils of the suburb area of Changsha was conducted. A total of513surface soil samples were collected, and the concentrations of Pb and Cd, the soil physicochemical properties of sampling points were analyzed. The location characteristics of soil points were obtained from land-use map under GIS platform.
     The spatial distribution Characteristics of soil Pb and Cd in suburb cropland of Changsha city were analyzed by using the buffer analysis, spatial autocorrelation analysis and geostatistical analysis methods. The average concentration of Pb and Cd in soils decreased with the distance from near to far in the buffer area at3ranges (i.e. less than20kilometer,20to40kilometer and40to60kilometer from urban area, respectively). It indicated that anthropic activity in urban has great influence on the concentrations of soil Pb and Cd in suburb cropland at certain spatial distance. The spatial autocorrelations for soil Pb and Cd was over a wide range. The spatial autocorrelation and random both contributed to the spatial structure of soil Pb and Cd.
     The origins of soil heavy metals in suburb interface are usually controlled by many factors, such as parent material, industry and agriculture activities, etc. To effectively decrease heavy metals pollution risks in suburb area and further establish reliable protection measures, it is quite necessary to understand their sources and spatial patterns. The conventional regression model (OLS) was usually used to analyze the relationship between soil heavy metals with their influential factors. However, OLS is only in a global or an average sense to estimate parameters, and it can not reflect spatial local variation or test spatial non-stationarity. Geographically weighted regression model (GWR) is a powerful tool for exploring spatial heterogeneity. The underlying idea of GWR is that parameters may be estimated anywhere in the study area given a dependent variable and a set of one or more independent variables which have been measured at places whose location is known. Not only can it test spatial non-stationafity, but also it can provide the corresponding solutions. As the local model, GWR model has been applied in researches about urban housing land prices and the spatial factors of economic development, but few to the origins and spatial structure of soil heavy metals. Typical influential factors of Pb and Cd were picked up from the points of soil property and location, such as soil pH, organic matter, alkali-hydro nitrogen, rapidly-available phosphorus, rapidly-available potassium, slowly available potassium, the distance from cropland to town, the distance from cropland to settlement, the distance from cropland to industrial construction land, and the distance form cropland to river. The conventional linear regression model(OLS) and spatial regression model(GWR) were applied to consider the relationship among the variables of influential factors and their spatial structure together. The results indicate that soil Pb was highly significantly positively related with Cd. The concentrations of soil pH, organic matter, alkali-hydro nitrogen and rapidly-available phosphorus were significantly positively related with the content of Pb and Cd. The distance from cropland to river, from cropland to town and from cropland to construction land also had some influence on the concentrations of Pb and Cd in agricultural soil of the suburb area of Changsha. The GWR models for Pb and Cd had a better goodness-of-fit than OLS models respectively as a result of GWR models indicated the same tendency of spatial correlation between the Pb and Cd measured values with their estimated values, and their residuals without spatial autocorrelation. GWR model indicated the dependency between soil Pb and Cd with their influence factor values by estimating local parameters of soil sampling point anywhere, and it can explain better their spatial heterogeneity.
     The quality status and potential ecological risk degree of Pb and Cd were evaluated by using single-factor assessment and Hakanson methods.. The results showed that the concentrations of Pb and Cd in largely sampling sites were at class I (below their average background values). There were some accumulations of Pb and Cd in soils, and the degree of accumulation of Cd was more serious than Pb. The results of single accumulation index and potential ecological hazard coefficient of soil Pb and Cd showed that the tendency which in near suburban area was more serious than middle suburban area and distant suburban area, while distant suburban area was more serious than middle suburban area. The potential ecological hazard tendency of heavy metal Cd was more serious than Pb in each area. The accumulation extent and pollution risk outstanding area was on South-North of near suburban and local industrial mining area of distant suburban.
     Fuzzy comprehensive evaluation and analytic hierarchy process were applied to establish ecological risk assessment models of Pb and Cd contamination, and evaluation indies (ERI) were set up based on Pb and Cd concentrations, soil physicochemical properties and soil location characteristics. The indies of soil physicochemical properties were soil pH, organic matter, alkali-hydro nitrogen and available phosphorus, while the indies of soil location characteristics were the distance from cropland to town, industrial construction site, river, and settlement. The ecological risk grade was divided to four ranks according to the values of ecological risk index, ERI>0.70,0.6     The research could provide reference for the quantitative analysis of spatial structure and influence factors of soil heavy metals in the region. It played an important role in ecological risk prevention and controlling of soil heavy metals pollution. The high-high spatial cluster districts with high concentrations of Pb and Cd and the regions near town, river, and build where were the important regions for controlling pollution risk of Pb and Cd in agricultural soil of the suburb area of Changsha. Ecological risk assessment,classification and regionalization of heavy metals in agricultural soil had important significance for farmland ecological risk prevention and controlling system construction and soil utilization scientifically.
引文
[1]Anselin.The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Fischer, Scholten, Unwin(eds), spatial analytical perspectives on GIS. London:Taylor and Francis,1996.
    [2]Anselin. Local indicators of spatial association-LISA[J]. Geographical Analysis,1995,27: 93-115.
    [3]Bai J H,Cui B S, Chen B, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China[J]. Ecological Modelling,2011(222):301-306.
    [4]Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted regression:A method for exploring spatial nonstationarity[J]. Geographical Analysis,1996,28(4):281-298.
    [5]Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted regression-modeling spatial non-stationary[J]. The Statistician,1998,47(3):431-443.
    [6]Cambardella C A, Moorman T B, Novak Jhi, et al. Field-scale variability of soil properties in central Iowa soils[J]. Soit Sci Soc Am J,1994,58:1501-1511.
    [7]Castrignano A,Buttafuoco G. Geostatistical stochastic simulation of soil water content in a forested area of south Italy[J]. Biosyst Eng,2004,87(2):257-266.
    [8]Caruso T, Migliorini M, Bucci C, et al. Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants:The example of oribatid mites in an abandoned mining and smelting area[J]. Enviromental Pollution,2009,157(11):2939-2948.
    [9]Cattle J A, Mcbratney A B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[J]. Environ Qual,2002,31:1576-1588.
    [10]Chen J, Hopmans J W, Fogg G E. Sampling design for soil moisture measurements in large field trials[J]. Soil Science,1995,159(3):155-161.
    [11]Delgado J.Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments(SW Iberian Peninsula) based on GIS-mapping techniques[J].Estuarine Coastal and Shelf Science,2010,88:71-83.
    [12]Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and gis-based approach to identify heavy metal sources in soils[J]. Environmental Pollution,2001,114:313-324.
    [13]Foster A S, Gorr W L.An adaptive filter for estimating spatially varying parameters: Application to modeling police hours spent in response to calls for service[J]. Management Science,1986,32(7):878-889.
    [14]Fotheringham A S. Trends in quantitative methods Ⅰ:Stressing the local[J]. Progress in Human Geographically,1997,21(1):88-96.
    [15]Francis D, Hellenc R, Christelle P, et al. Impact of a smelter close down on metal contents of wheat cultivated in the neighborhood[J]. Env Sci Pollut Res,2008,15(2):162-169.
    [16]Goovaerts P. Geostatistical modeling of uncertainty in soil science[J]. Geoderma,2001,103: 3-26.
    [17]Goovaerts P,Webster R,Dubois J PAssessing the risk of soil contamination in the Swiss Jura using indicator geostatistics[J].Environmental and Ecological Statistics,1997,4:31-48.
    [18]Gorr W L, Olligschlaeger A M. Weighted spatial adaptive filtering:Monte Carlo studies and application to illicit drug market modeling[J]. Geographical Analysis,1994,26:67-87.
    [19]Hakanson L. An ecological risk index for aquatic pollution control-Asedimentological approach[J]. Water Research,1980,14(8):975-1001.
    [20]Hu K L, Zhang F R, Li H, et al. Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing[J]. Pedosphere,2006,16(6):690-698.
    [21]Imperatio M, Adamo P, Naimao D, et al. Spatial distribution of heavy metals in urban soils of Naples city(Italy)[J]. Environmental pollution,2003,124:247-256.
    [22]Juang K W, Chen Y S, Lee D Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy metal contaminated soils[J]. Environ Pollut,2004,127(2): 229-238.
    [23]Korre A.Statistical and spatial assessment of soil heavy metal contamination in areas of poorly recorded,complex sources of pollution Part 2:Canonical correlation analysis and GIS for the assessment of contamination sources[J].Stochastic Environmental Research and Risk Assessment,1999,13:288-316.
    [24]Li Y, Li C K, Tao J J, et al. Study on spatial distribution of soil heavy metals in Huizhou City based on BP-ANN modeling and GIS[J]. Procedia Environmental Sciences,2011(10): 1953-1960.
    [25]Lin Y P, Chang T K. Simulated annealing and kriging method for identifying the spatial patterns and variability of soil heavy metal[J]. Environ SCi Health, Part A, Toxic/Hazard, 2000,35(7):1089-1115.
    [26]Lin Y P, Chang T K, Teng T P. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods[J]. Environ Geol, 2001,41(12):189-199.
    [27]Lu A X, Wang J H, Qin X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China[J]. Science of The Total Environment,2012,425(15):66-74.
    [28]Loska K, Wiechula D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment international,2004,30(2):159-165.
    [29]Luo W, Wang T Y, Lu Y L, et al. Landscape ecology of the Guanting Reservoir, Beijing, China:multivariate and geostatistical analyses of metal in soils[J]. Environmental Pallution,2007,146:567-576.
    [30]LUIS RODRIGUES LADO, TOMISLAV HENGL, HANNES IREUTER. Heavy metal in European soils:a geostatistical analysis of FOREGS geochemical database[J]. Geoderma, 2008,148:189-199.
    [31]Mcgrath D,Zhang C S,Carton O T.Geostatistical analyses and hazard assessment on soil lead in Silvermines area,Ireland[J].Environmental Pollution,2004,127:239-248.
    [32]Mico C, Recatala L, Peris M, et al. Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariable analysis[J]. Chemosphere,2006,65: 863-872.
    [33]Pierce F J,Sadler E J. (eds.) The State of Site Specific Management for Agriculture[J]. ASA Miscellaneous Publication. American Society of America, Madison, WI.1997.
    [34]Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences,2008,1(1):83-98.
    [35]Saby N, Arrouays D, Boulonne L, et al.Geostatistical assessment of Pb in soil around Paris, France[J].The Science of the Total Environment,2006,367(1):212-221.
    [36]Simonoff J S. Smoothing methods in statistics[M]. New York::Springer2 Verlang,1996.
    [37]Stark C H E, Condron L M, Stewart A. Small-scale spatial variability of selected soil biological properties[J]. Soil Biology& Biochemistry,2004,36:601-608.
    [38]Sun C, BiCJ, Chen Z L, et al. Assessment on environmental quality of heavy metals in agricultural soils of Chongming Island, Shanghai City[J].Journal of Geographical Sciences, 2010,1:135-147.
    [39]Sun Y B, Zhou Q, Xie X K, et al. Spatial sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang,China[J]. Journal of Hazardous Materials,2010(174):455-462.
    [40]US EPA(United States Environmental Protection Agency), EPA/540/1-89/002. Risk assessment guidance for superfund. Human Health Evaluation Manual(Part A). Interim Final, vol. I. Washington(DC)[S]:United States Environmental Protection Agency,1989.
    [41]Von S B, Webster R, Schulin R,et al.Mapping heavy metals in polluted soil by disjunctive kriging[J]. Environmental pollution,1996,94(2):205-215.
    [42]Wang M P, Jones M C. Kernel smoothing [M]. New York:Chapman and Hall,1995.
    [43]Wu C H, WuJP, Luo Y M, et al. Statistical and geostatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units[J]. Geoderma,2008,144:171-179.
    [44]Zhang X Y,Liu F F, Jiang Y G, et al. Assessing soil Cu content and anthropogenic in fluences using decision tree analysis[J]. Environmental Pollution,2008,156(3):1260-1267.
    [45]GB15618-1995.土壤环境质量标准[S].国家环境保护局,1995.
    [46]HJ332-2006.食用农产品产地环境质量评价标准[S].北京:中国环境科学出版社,2006.
    [47]包丹丹,李恋卿,潘根兴,等.苏南某冶炼厂周边农田土壤重金属分布及风险评价[J].农业环境科学学报,2011,30(8):1546-1552.
    [48]蔡立梅,马瑾,周永章,等.东莞市农业土壤重金属的空间分布特征及来源解析[J].环境科学,2008,29(12):3496-3502.
    [49]曹伟,周生路,王国梁,等.长江三角洲典型区工业发展影响下土壤重金属空间变异特征[J].地理科学,2010,2:283-289.
    [50]柴世伟,温琰茂,张亚雷,等.地积累指数法在土壤重金属污染评价中的应用[J].同济大学学报(自然科学版),2006,34(12):1657-1661.
    [51]长沙市统计局.长沙市统计年鉴2009[M].北京:中国统计出版社,2008-2012.
    [52]长沙市人民政府.长沙市城市总体规划(2003~2020)[EB/OL].http://61.187.135.149/gs2011/
    [53]长沙市人民政府.长沙市土地利用总体规划(2006-2020年)大纲说明[EB/OL]. http://wenku.baidu.com/view/3ebe300490c69ec3d5bb7500.html.
    [54]长沙市人民政府.长沙市土地利用总体规划2006-2020图册[EB/OL].http://xiazai.dichan.com/show-618247.html.
    [55]长沙市人民政府-行政区划[EB/OL].http://www.changsha.gov.cn/zjcs/kncs/xzqh/
    [56]长沙市人民政府.长沙市国民经济和社会发展统计公报(2012)[EB/OL].http://changsha.mofcom.gov.cn/article/dongtai/201303/20130300059234.shtml
    [57]陈秀玲,张文开,李明辉,等.中国土壤重金属污染研究简述[J].云南地理环境研究,2009,21(6):8-13,39.
    [58]陈华林,周江敏,金煜彬,等.温州城市土壤Cu, Zn,Pb含量及其形态研究[J].水土保持学报,2007,21(6):75-78.
    [59]陈峰,蒋新,唐访良,等.层次分析法与地理信息系统在农田土壤重金属污染评价中的应用[J].环境污染与防治,2012,34(7):6-8,14.
    [60]陈怀满著.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [61]陈涛,施加春,刘杏梅,等.杭州市城乡结合带蔬菜地土壤铅铜含量的时空变异研究[J].土壤学报,2008,45(4):608-615.
    [62]董来启,韩春建,吴克宁,等.郑州市土壤重金属空间分布特征及其影响因素定量研究[J].河南农业科学,2010,8:64-68.
    [63]窦磊,周永章,王旭日,等.针对土壤重金属污染评价的模糊数学模型的改进及应用[J].土壤通报,2007,38(1):101-105.
    [64]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315
    [65]冯锦霞.基于GIS与地统计学的土壤重金属元素空间变异分析[D].长沙,中南大学信息物理工程学院,2007:40.
    [66]高瑞英.土壤重金属污染环境风险评价方法研究进展[J].科技管理研究,2012,32(8):45-50.
    [67]管东生,陈玉娟,阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J].中山大学学报:自然科学版,2001,40(4):94-101.
    [68]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998,129-160.
    [69]胡大伟,卞新民,李思米,等.基于神经网络的农田土壤重金属空间分布分析[J].农业环境科学学报,2007,26(1):216-223.
    [70]胡克林,张风荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468.
    [71]黄彩霞,张江山,李小梅.宽域灰色聚类法在土壤环境质量评价中的应用[J].环境科学导刊,2009,28(004):61-64.
    [72]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料,2002,1:8-14.
    [73]黄治平,徐斌,张克强.猪场废水污灌土壤的Cr和Ni空间变异及积累分析[J].生态环境,2007,16(6):1694-169.
    [74]黄治平,徐斌.规模化猪场废水污灌农田的土壤Zn和Cu空间变异分析[J].农业环境科学学报,2008,27(1):0126-0132.
    [75]黄治平,徐斌,涂德浴,等.规模化猪场废水灌溉农田土壤Pb,Cd和As空间变异及影响因子分析[J].农业工程学报,2008,24(2):77-83.
    [76]霍霄妮,李红,孙丹峰,等.北京耕地土壤重金属空间自回归模型及影响因素农业工程学报[J].农业工程学报,2010,5:78-82.
    [77]霍霄妮,李红,孙丹峰,等.北京耕作土壤重金属含量的空间自相关分析[J].环境科学学报,2009(6):1339-1344.
    [78]霍霄妮,李红,张微微,等.北京耕作土壤重金属多尺度空间结构[J].农业工程学报,2009,25(3):223-229.
    [79]贾琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.
    [80]雷鸣,秦普丰,铁柏清.湖南湘江流域重金属污染的现状与分析[J].农业环境与发展,2010,27(2):62-65.
    [81]李明德,汤海涛,汤睿,等.长沙市郊蔬菜土壤和蔬菜重金属污染状况调查及评价[J],湖南农业科学,2005,3:34-36.
    [82]李梦红,张晓君,卢杰.模糊综合评价在农田重金属污染评价中的应用[J].西南农业学报,2010,23(5):1581-1585.
    [83]李晓秀,陆安祥,王纪华,等.北京地区基本农田土壤环境质量分析与评价[J].农业工程学报,2006,22(2):60-63.
    [84]李雪梅,王祖伟,汤显强,等.重金属污染因子权重的确定及其在土壤环境质量评价中的应用[J].农业环境科学学报,2008,26(6):2281-2286
    [85]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182.
    [86]李忠义,张超兰,邓超冰,等.铅锌矿区农田土壤重金属有效态空间分布及其影响因子分析[J].生态环境学报,2009,18(5):1772-1776.
    [87]李志,周生路,张红富,等.基于GWR模型的南京市住宅地价影响因素及其边际价格作用研究[J].中国土地科学,2009,23(10):20-25.
    [88]刘云霞,陈爽,彭立华,等.基于格网的太湖生态环境质量空间评价[J].长江流域资源与环境,2007.16(4):494-498.
    [89]刘世梁,崔保山,温敏霞,等.路域土壤重金属含量空间变异的影响因子[J].环境科学学报,2008,28(2):253-260.
    [90]刘庆,杜志勇,史衍玺,等.基于GIS的山东寿光蔬菜产地土壤重金属空间分布特征[J].农业工程学报,2009,25(10):258-263.
    [91]鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社,1999,305-336.
    [92]廖敏,黄昌勇,谢正苗.pH对镉在水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    [93]龙永珍,戴塔根,邹海洋,等.长沙、株洲、湘潭地区土壤重金属污染现状及评价[J].地球与环境,2008,36(3):231-236.
    [94]罗罡辉.基于GWR模型的城市住宅地价空间结构研究[D].杭州,浙江大学公共管理学院,2007:54-61.
    [95]马溪平,李法云,肖鹏飞,等.典型工业区周围土壤重金属污染评价及空间分布[J].哈尔滨工业大学学报,2007,39(2):326-329.
    [96]孟涛,周非,聂庆华,等.污灌条件下农田土壤重金属的空间变异与模拟[J].农业环境科学学报,2008,27(3):867-872.
    [97]宁建凤,邹献中,杨少海,等.广东大中型水库底泥重金属含量特征及潜在生态风险评价[J].生态学报,2009,29(11):6059-6067.
    [98]祁志冲,孙强,杜斌等.污灌区农作物中重金属分布特征与成因分析—以太原市某灌区为例[J].安徽农业科学,2009,37(35):17609-17612.
    [99]覃文忠.地理加权回归模型基本理论与应用研究[D].上海,同济大学土木工程学院测量与国土信息工程系,2007:6-20.
    [100]邵学新,黄标,孙维侠,等.长江三角洲典型地区工业企业的分布对土壤重金属污染的影响[J].土壤学报,2006,6,43(3):397-404.
    [101]施加春,刘杏梅,于春兰,等.浙北环太湖平原耕地土壤重金属的空间变异特征及其风险评价研究[J].土壤学报,2007,44(5):824-830.
    [102]檀满枝,陈杰,徐方明,等.基于模糊集理论的土壤重金属污染空间预测[J].土壤学报,2006,43(3):389-396.
    [103]师利明,郭军庆,罗德春.对公路两侧土壤中铅积累模式的理论探讨[J].西安公路交通大学学报,1998,18(3):13-15.
    [104]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [105]汤国安,杨昕.ARCGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [106]王斌,蒙海涛,张震,等.天津近郊农田土壤重金属含量特征及潜在生态风险评价[J].环境研究与监测,2010,23(4):11-15.
    [107]王波,毛任钊,曹健,等.海河低平原区农田重金属含量的空间变异性—以河北省肥乡县为例[J].生态学报,2006,26(12):4082-4090.
    [108]王春红,阮进生,蒋超群,等.基于GIS和地统计学的土壤重金属污染评价研究进展[J].安徽农业科学,2012,40(20):10414-10418.
    [109]王芬,彭国照,蒋锦刚,等.基于双层神经网络与GIS可视化的土壤重金属污染评价[J].农业工程学报,2010,(4):162-168.
    [110]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603-608.
    [111]王远飞,何洪林.空间数据分析方法[M].北京:科学出版社,2003.
    [112]王纪华,沈涛,陆安祥,等.田块尺度上土壤重金属污染地统计分析及评价[J].农业工程学报,2008,24(11):226-229.
    [113]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [114]王再岚,何江,智颖,等.公路旁侧土壤—植物系统中的重金属分布特征[J].南京林业大学学报(自然科学版),2006,30(4):15-20.
    [115]王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.
    [116]王祖伟,张辉.天津污灌区土壤重金属污染环境质量与环境效应[J].生态环境,2005,14(2):211-213.
    [117]邬伦.地理信息系统-原理、方法和应用[M].北京:科学出版社,2004.
    [118]吴新民,潘根兴.城市不同功能区土壤重金属分布初探[J].土壤学报,2005,42(3):513-517.
    [119]吴玉鸣,李建霞.基于地理加权回归模型的省域工业全要素生产率分析[J].经济地理,2006,26(5):748-752.
    [120]息朝庄,戴塔根,黄丹艳.湖南长沙市土壤重金属污染调查与评价[J].地球与环境,2008,36(2):136-141.
    [121]玄海燕,黎锁平,刘树群.地理加权回归模型及其拟合[J].甘肃科学学报,2007,19(1):51-52
    [122]严连香,黄标,邵学新,等.不同工业企业周围土壤-作物系统重金属Pb、Cd的空间变异及其迁移规律[J].土壤学报,2009,46(1):52-62.
    [123]杨科壁.中国农田土壤重金属污染与其植物修复研究[J].世界农业,2007,8:58-61.
    [124]余涛,杨忠芳,钟坚,等.土壤中重金属元素Pb, Cd地球化学行为影响因素研究[J].地学前缘,2008,15(5):67-72.
    [125]于云江,胡林凯,杨彦,等.典型流域农田土壤重金属污染特征及生态风险评价[J].环境科学研究,2010,23(12):1523-1527.
    [126]袁峰,白晓宇,周涛发,等.元素空间分布插值方法的对比研究:以铜陵地区土壤中的重金属元素为例[J].地学前缘,2008,15(5):103-109.
    [127]曾杉,姚永慧,潘志强,等ArcGIS地统计分析实用指南[M].北京:ArcInfo中国技术咨询与培训中心中国中科永生数据科技有限公司,2002,11-43.
    [128]张朝生,章申.长江水系沉积物重金属含量空间分布特征研究—空间自相关与分形方法[J].地理学报,1998,53(1):87-96.
    [129]张甘霖,卢瑛,龚子同,等.南京城市土壤某些元素的富集特征及其对浅层地下水的影响[J].第四纪研究,2003,23(4):446-455.
    [130]张甘霖,赵玉国,杨金玲,等.城市土壤环境问题及其研究进展[J].土壤学报,2007,44(5):925-933.
    [131]张乃明,李保国等.太原污灌区土壤重金属和盐分含量的空间变异特征[J].环境科学学报,2001,21(3):349-353.
    [132]张乃明,陈建军.污灌区土壤重金属累积影响因素研究[J].土壤,2002,34(2):90-93.
    [133]张乃明,李保国,胡克林,等.污水灌区耕层土壤中铅、镉的空间变异特征[J].土壤学报,2003,40(1):151-154.
    [134]张庆利,史学正,黄标,等.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤学报,2007,37(1):41-47.
    [135]张孝飞,林玉锁,俞飞,等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512-515.
    [136]张祖圻,游国君.永和磷矿沉积环境与成矿机理[J].中南工业大学学报,1999,30(4):360-363.
    [137]赵彦锋,史学正,于东升,等.工业型城乡交错区农业土壤Cu、Zn、Pb和Cd的空间分布及影响因素研究[J].土壤学报,2007,44(2):227-234.
    [138]郑海龙,陈杰,邓文靖,等.城市边缘带土壤重金属空间变异及其污染评价[J],土壤学报,2006,43(1):39-45.
    [139]郑喜坤,鲁安怀,高翔.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [140]郑袁明,陈同斌,陈煌,等.北京市近郊区土壤镍的空间结构及分布特征[J].地理学报,2003,58(3):470-476.
    [141]卓文珊,唐建锋,管东生.广州市城区土壤重金属空间分布特征及其污染评价[J].中山大学学报(自然科学版),2009,48(4):47-51.
    [142]钟晓兰,周生路,李江涛,等.长江三角洲地区土壤重金属污染的空间变异特征—以江苏省太仓市为例[J].土壤学报,2007,44(1):33-40.
    [143]钟晓兰,周生路,李江涛,等.长江三角洲地区土壤盐酸可提取态重金属含量的空间变异特征[J].农业工程学报,2007,23(10):71-78.
    [144]钟晓兰,周生路,赵其国,等.长三角典型区土壤重金属有效态的协同区域化分析、空间相关分析与空间主成分分析[J]环境科学,2007,28(12):2758-2765.
    [145]钟晓兰,周生路,赵其国.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    [146]朱阿兴,李宝林,杨琳,等.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844-851.
    [147]朱建军,崔保山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金属空间分异特征[J]生态学报,2006,26(1):146-153.
    [148]朱宇恩,赵烨,李强,等.北京城郊污灌土壤-小麦(Triticum aestivum)体系重金属潜在健康风险评价[J].农业环境科学学报,2011,30(2):263-27.
    [149]邹玲,王翠红,李洪斌,等.长沙市边缘带菜园土壤重金属含量及污染现状评价[J].湖南农业大学学报:自然科学版,2009,35(1):107-110.
    [150]周脚根,宋变兰,尤冬梅.土壤重金属污染风险预测研究进展[J].安徽农业科学,2009,37(22):10617-10619,10622.
    [151]周生路,廖富强,吴绍华,等.基于分等样地的江苏典型区农用地土壤重金属污染研究[J].农业工程学报,2008,24(5):78-83,313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700