用户名: 密码: 验证码:
咪唑类离子液体对生物质中木质纤维素选择性提取及分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步,人民生活水平的提高,人类对环境的要求越来越高。然而伴随着农作物产量的提高,城市绿化面积的增加,以秸秆、麦草、园林绿化垃圾为代表的木质纤维素类生物质固废的处理成为当前的棘手问题。当前对于生物质固废的处理主要是焚烧、堆置、填埋等。然而这些处理方式均对环境产生一定影响。例如长期堆置的生物质固废在雨水冲刷下,污染物会进入地表水和地下水,污染水体;生物质被填埋后随时间的推移而发酵产生渗滤液污染地下水同时还产生沼气严重威胁周围群众的人身财产安全;当前对生物质固废的焚烧主要是分散露天焚烧,造成严重的空气污染,尤其是冬季焚烧,是造成冬季雾霾的主要因素,此外焚烧秸秆产生的浓烟严重影响交通安全同时易引发火灾,严重威胁人身财产安全。生物质固废中的主要成分为纤维素、半纤维素和木质素,其中纤维素被半纤维素和木质素所包裹,并与半纤维素和木质素共同形成一种三维网状结构,从而使得其难于溶解于水和常规有机溶剂中。然而纤维素具有可再生性、热稳定性、易生物降解、环境友好等优点而被广泛应用。离子液体作为一种新型绿色有机溶剂于2002年被引入到纤维素领域。由于其具有极低的蒸汽压、良好的热稳定性、不燃烧、易于回收、结构性质可调等优点迅速引起学者们的关注。由于离子液体能够很好的溶解纤维素,并使纤维素易于从离子液体体系中再生出来,从而成为纤维素的一个全新方向。本论文以纤维素和北方广泛分布的结缕草为原料,针对纤维素的特性开发新型离子液体,研究离子液体对纤维素的溶解情况,在上述研究的基础上分析探讨了离子液体对纤维素的溶解机制,进而将其应用于结缕草并进行纤维素的提取、再生研究。主要研究结果如下:
     (1)根据纤维素特性设计离子液体的结构特征,并合成了对纤维素有较强溶解能力的1-烯丙基-3-甲基咪唑氯盐([AMIM]C1)和1-烯丙基-3-甲基咪唑醋酸盐([AMIM][OAc])离子液体,并利用NMR、13CNMR以及FT-IR技术对合成产物进行结构分析并确认为所要获得的离子液体。对合成的两种离子液体应用TG-DTG技术,其热分解温度均在200。C以上,具有很好的热稳定性。在20℃至70oC的温度范围内测定了上述离子液体的密度(ρ)、粘度(η)和电导率(σ)数据。测定结果表明,随着温度的增加,离子液体的密度略有降低,粘度明显降低,电导率增大。在相同温度下,阴离子体积的增大将会使离子液体的密度升高、粘度和电导率下降。离子液体[AMIM]C1和[AMIM][OAc]的密度随温度的变化可采用Tait方程进行描述;其粘度随温度的变化可采用Arrhenius方程进行描述;离子液体[AMIM]C1和[AMIM][OAc]的电导率随温度的变化无法用一种方程进行很好的拟合,即氯盐离子液体更适合用VFT方程描述而醋酸盐离子液体更适合于Arrhenius方程。
     (2)利用所合成的两种离子液体进行微晶纤维素及滤纸纤维素的溶解研究。利用POM技术测定了纤维素在离子液体([AMIM]C1和[AMIM][OAc])中的溶解度。试验表明,醋酸根具有很强的给电子能力从而导致在相同的阳离子条件下,其与纤维素形成氢键的能力强于氯离子;针对同一种阴离子,咪唑类阳离子的侧链得电子能力越强,其越容易与纤维素的羟基结合形成氢键。氢键的不稳定性决定了随着温度的升高,纤维素在离子液体中的溶解度增大。
     (3)利用1H NMR、13C NMR、FT-IR以及TG-DTG技术分析确认了再生离子液体的结构及热稳定性,试验证实再生后的离子液体保持原有性质,并未因再生而发生变化,通过研究离子液体的再生产率表明离子液体是一种优良的可再生溶剂,在某种程度上降低了其应用成本,具有广阔的应用前景。
     (4)利用FT-IR、固体超导13C NMR及XRD技术分析再生前后的纤维素变化情况,证实了离子液体是纤维素的直接溶剂,溶解在离子液体中的纤维素不发生衍生化反应。然而在溶解过程中,离子液体破坏了纤维素原有结构,造成再生纤维素结晶度降低。通过XRD分析表明,经过溶解再生的纤维素,晶型结构发生明显变化,但是通过TG-DTG分析表明,这一变化并未影响再生纤维素的热化学性质,仍具有很好的热稳定性。
     (5)根据试验研究结果以及当前研究进展分析探讨了离子液体对纤维素的溶解机理,阴阳离子对纤维素溶解的作用以及纤维素在离子液体中的再生机理。离子液体与纤维素通过氢键的溶解机制可由经典EDA理论进行解释。离子液体中的阴离子具有较强的电负性,对羟基氢的吸引力强,从而成为破坏纤维素分子内和分子间氢键的主要因素,直接决定了离子液体溶解纤维素的能力;阳离子基团的离域π键使得阳离子基团的H(2)质子化明显,从而使其成为电子受体,能够接受来自羟基氧的孤对电子,因此促进纤维素的溶解。纤维素在再生过程中自身氢键重新组合是随机的,主要依据O-H…O之间的距离,因此其再生过程是无序的,也就无法形成原生纤维素晶型,由此解释了经过再生的纤维素晶型由纤维素I向着纤维素II方向转变,而从分子势能角度可认为,纤维素II是纤维素I的稳定形态。
     (6)利用离子液体溶解再生结缕草中纤维素的研究。通过对结缕草应用不同的预处理技术(高温高压水预处理、高温高压氨水预处理和NaOH溶液预处理),研究预处理前后结缕草中纤维素在离子液体[AMIM]C1和[AMIM][OAc]中的溶解及提取情况。利用SEM技术证实预处理能够明显破坏木质纤维素的三维结构,提高离子液体对纤维素的提取能力;而碱性的增强能够提高离子液体对结缕草中纤维素的溶解效率。利用FT-IR、固体超导13C NMR及XRD等技术,分析研究了经离子液体提取的再生纤维素,经拟合表明再生纤维素结晶度下降且从纤维素I转变为纤维素II,在此过程中未发生衍生化反应。随着预处理碱性的增强,再生纤维素的结晶度降低。利用TG-DTG技术表明了经离子液体再生的纤维素其热稳定性与原生纤维素相同,保持较高水平。
With the development of technology and the improvement of living standards of the people, people are paying more attention to environmental problems. Along with the improvement of crop yields, however, the increase in the area of urban greening, the treatment of lignocellulosic biomass solid waste such as straw, wheat straw, corn stover, landscaping, has become thorny problems. Commonly, biomass solid waste processing mainly composed of incineration, piling and landfill. However, there are some negative impacts for the treatments of biomass solid waste to the environment. Such as when long-term piled up biomass solid waste was washed by rain, the pollutants would make surface water and groundwater pollution; the leachate and biogas produced by landfilled biomass solid waste fermentation made serious contamination to the groundwater and threatened people's lives and property; biomass solid waste incineration largely decentralized open-air burning, which is causing serious air pollution, especially the main factor causing the winter haze. Additionally, the smoke from burning straw seriously impact traffic safety, and could lead to fire which threatened people's lives and property. The main component in the solid waste of biomass is cellulose, hemicelluloses and lignin. Hemicelluloses and lignin wherein the cellulose are wrapped, and together form a three-dimensional structure, which makes biomass difficult to dissolve in water and conventional organic solvents. However, the cellulose has some advantages such as renewable, thermal-stable, easily biodegradable, environmental friendly, etc. These make cellulose widely applied. Ionic liquids as a green organic solvent were introduced into cellulose field in2002. Because of the advantages of very low vapor pressure, good thermal stability, no burning, easily recovery, and structural properties adjustable, ionic liquids were quick aroused concern of scholars. Because of the dissolution and regeneration of cellulose by ionic liquids, a new field was provided for cellulose research. This thesis was mainly focused on cellulose and Zoysia japonica. The ionic liquids were designed according to the characteristics of cellulose. Then we focused on cellulose dissolution by ionic liquids, and then the mechanism of cellulose dissolution by ionic liquid was investigated. Furthermore cellulose in Zoysia japonica was extracted and regenerated. The primary contents and results are described as follows:
     i.1-Allyl-3-methylimidazolium chloride ([AMIM]C1) and1-allyl-3-methylimidazolium acetate ([AMIM][OAc]) ionic liquid which had a strong ability to dissolve cellulose were designed and synthesized according to the characteristics of cellulose. Meanwhile [AMIM]C1and [AMIM][OAc] ionic liquid were characterized by1H NMR,13C NMR and FT-IR. The synthetic product was subjected to structural analysis, and was recognized as the ionic liquid to be obtained. The ionic liquids synthesized were under TG-DTG analysis, all of them had a thermal decomposition temperature above200℃which showed good thermal stability. The density (ρ), viscosity (η) and conductivity (σ) of the ionic liquids were investigated from20℃to70℃. The results showed that the density was a little decreased, the viscosity was decreased obviously and the conductivity was increased when the temperature increased. Under the same temperature, the density was increased and the viscosity and conductivity were decreased as the volume of anion increased. The variation of density with temperature of ionic liquid [AMIM]C1and [AMIM][OAc] could be described by Tait equation; the variation of viscosity with temperature of ionic liquid [AMIM]C1and [AMIM][OAc] could be described by Arrhenius equation; the variation of conductivity with temperature of ionic liquid [AMIM]C1and [AMIM][OAc] could not be described by an equation to fit. In our research the chloride salt ionic liquid was more suitable for VFT equation and the acetate ionic liquid was more suitable for the Arrhenius equation.
     ii. The two ionic liquids synthesized were used to investigate the dissolution of microcrystalline cellulose and filter paper. The solubility of cellulose in ionic liquid ([AMIM]C1and [AMIM][OAc]) was determined by POM. The experiments show that the acetate has a strong electron donating ability, so under the same cation conditions, the ability of forming hydrogen bond with the cellulose was stronger than the chloride ion; to the same anion, the stronger of the electron acceptable capacity for the side chain, the easier to combine with the hydroxyl group of the cellulose to form hydrogen bonds. Instability of hydrogen bonds determined that as the temperature risen, the solubility of cellulose in ionic liquids was increased,
     iii. The structure and thermal-stability of regenerated ionic liquids were confirmed by1H NMR,13C NMR, FT-IR and TG-DTG analysis. The experiments showed the regenerated ionic liquids maintained the characteristics as the fresh. It seemed that ionic liquids could be regenerated and reused which illustrated that ionic liquid was an excellent renewable solvent. In this way the industrial cost would be reduced, so ionic liquids have broad application prospects.
     iv. The fresh and regenerated cellulose were studied by FT-IR, solid state13C NMR and XRD analysis. The results showed that ionic liquids were the direct solvent to cellulose and there was no derivatization reaction occurred during cellulose dissolution in ionic liquids. However, in the process of dissolution, ionic liquids destroyed the original structure of the cellulose, resulting in lower crystallinity degree of regenerated cellulose. XRD analysis showed that the cellulose structure was changed significantly during cellulose dissolution and regeneration process, but the TG-DTG analysis showed that this transformation did not affect the thermochemical properties of regenerated cellulose. Still, it had a good thermal-stability.
     v. According to the experiments, the mechanism of cellulose dissolution by ionic liquid was investigated. And the roles of anions and cations were also studied. The mechanisms of hydrogen bond between ionic liquid and cellulose could be explained by classic EDA theory. The anion in the ionic liquid had a strong electronegativity that the hydroxyl hydrogen would be attracted, thereby becoming a major factor in the destruction of inter-and intra-molecule hydrogen bonds in cellulose. The delocalized π bond in cationic group made H(2) protonated significantly, thereby this proton became to electron acceptor which can accept a lone pair of electrons. This was the reason why cellulose dissolution was improved. The re-combination of hydrogen bonds in cellulose during the regeneration process was random, and mainly determined by the distance between OH…O. Therefore the regeneration process was unordered, and would not be able to form the crystalline as the native cellulose that explained the regenerated cellulose polymorph was transformed from cellulose Ⅰ to cellulose Ⅱ. From the perspective of molecular potential energy, cellulose Ⅱ is the stable state of cellulose Ⅰ.
     vi. Cellulose was extracted and regenerated from Zoysia japonica by ionic liquid Different pretreatment technologies (high-temperature and high-pressure water pretreatment, high-temperature high-pressure ammonia pretreatment and aqueous NaOH pretreatment) were investigated to Zoysia japonica. The cellulose dissolution and regeneration from Zoysia japonica by ionic liquids ([AMIM]C1and [AMIM][OAc]) was study whether the pretreatments were used or not. It was confirmed that pretreatment could significantly undermine the three-dimensional structure of lignocellulose to improve the extraction capacity of ionic liquids by SEM; as alkaline enhanced, the efficiency of ionic liquids for cellulose dissolution from Zoysia japonica was improved. The regenerated cellulose was investigated by FT-IR, solid-state13C NMR and XRD. The fitting curves showed that the crystallinity of regenerated cellulose decreased and transformed from cellulose Ⅰ to cellulose Ⅱ. And there were no derivatizaition reaction occurred in this process. With alkaline enhancements during the pretreatments, the crystallinity of the regenerated cellulose was reduced. The thermal-stability of regenerated cellulose was maintained as the native cellulose with a high level.
引文
[1]ASTM International. ASTM E1705-11ASTM. Standard Terminology Relating to Biotechnology. Pennsylvania:ASTM International,2011
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年).中华人民共和国国务院公报,2006,(9):7-37
    [3]Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels,2007,108:41-65
    [4]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresour Technol,2002,83:1-11
    [5]Itoh H. Wada M, Honda Y, et al. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white-rot fungi. J Biotechnol,2003,103:273-280
    [6]Lee J. Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol,1997,56: 1-24
    [7]Hatakka AI, Varesa T, Lunn TK. Production of multiple lignin peroxidases by the whiterot fungus Phlebia ochraceofulva. Enzyme Microb Technol,1993,15:664-669
    [8]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation. FEMS Microbiol Rev,1994,13:125-135
    [9]Magnusson L, Islam R, Sparling R, et al. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy,2008,33: 5398-5403
    [10]付胜涛,于水利.厌氧消化工艺处理水果蔬菜废弃物的研究进展.中国沼气,2005,4:18-21
    [11]吴满昌,孙可伟,李如燕等.城市有机生活垃圾高温厌氧转化生物质能研究.能源工程,2005,6:44-46
    [12]余昆朋.城市生活垃圾厌氧消化技术进展.环境卫生工程,2003,1:16-20
    [13]邓良伟,陈子爱.欧洲沼气工程发展现状.中国沼气,2007,25(5):23-31
    [14]寇建平,田宜水,张玉华.美国生物质能的发展状况及对我国的启示.可再生能源,2007,25(6):112-115
    [15]封莉,刘俊峰,冯晓静,于慧春..秸秆生物质资源利用途径及相应技术.农机化研究,2004,6:193-195
    [16]韩光福,黄刚飙,杨翠萍等.城市固体废弃物一生活垃圾处理技术发展方向.东南大学学报(哲学社会科学版),2001,3(4A):119.-121
    [17]汪群慧,马鸿志,王旭明等.厨余垃圾的资源化技术.现代化工,2004,24(7):56-59
    [18]Swatloski R P, Spear S K, Holbrey J D et al. Ionic liquids:new solvents for nonderivitized cellulose dissolution. Abstr Pap Am Chem Soc,2002,224:622
    [19]Chandra R P, Bura R, Mabee W E, et al. Substrate pretreatment:the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol,2007,108:67-93
    [20]Mosier N, Wyman C E, Dale B E, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol,2005,96:673-86
    [21]Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol,2000,84-86:5-37
    [22]McMillan J D. Pretreatment of lignocellulosic Biomass. Enzymatic Conversion Biomass Fuels Prod,1994,566:292-324
    [23]Nguyen L M. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecol Eng,2000,16: 199-221
    [24]Torget R W, Werdene P, Grohmann K. Dilute acid pretreatment of two short-rotation herbaceous crops. Appl Biochem Biotechnol,1990,24/25:115-126
    [25]Sivers M V, Zacchi G. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol,1995,51:43-52
    [26]Palmowski L M, Muller J A. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol,2000,41 (3):155-162
    [27]Chang V S, Burr B, Holtzapple M T. Lime pretreatment of switchgrass. Appl Biochem Biotechnol,1997,63-65:3-19
    [28]Zhua J Y, Wang G S, Pan XJ, et al. Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci,2009,64:474-485
    [29]Cadoche L, L6pez G D. Assesment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biotechnol Wastes,1989,30:153-157
    [30]Zhu Y M, Lee Y Y, Elander R T. Optimization of dilute-acid pretreatment of com stover using high-solids percolation reactor. Appl Biochem Biotechnol,2005,121:325-327
    [31]Zhu J Y, Pan X J. Woody biomass pretreatment for cellulosic ethanol:technology and energy consumption evaluation. Bioresour Technol,2010,100:4992-5002
    [32]Takacs E, Wojnarovits L, Foldavary C, et al. Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat Phys Chem,2000,57:339-403
    [33]Zhu S D, Wu Y X, Chen Q M, et al. Dissolution of cellulose with ionic liquids and its application:a mini-review. Green Chem,2006,8:325-327
    [34]Zhu Z-G, Sathitsuksanoh N, Vinzant T, Shell D J, et al. Comparitive study of corn stover preteated by dilute acid and cellulose solvent-based lignocellulose fractionation:enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng,2009, 103:715-724
    [35]Saddler J N, Ramos L P, Breuil C. Steam pretreatment of lignocellulosic residues. In:Saddler JN, editor. Bioconversion of forest and agricultural plant residues. Oxford, UK:CAB International,1993.73-92
    [36]Mosier N, Wyman C E, Dale B E, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol,2005,96:673-86
    [37]Weil J R, Sariyaka A, Rau S L, et al. Pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol,1997,68:21-40
    [38]Wright J D. Ethanol from biomass by enzymatic hydrolysis. Chem Eng Prog,1998,84: 62-74
    [39]Mosier N, Hendrickson R, Brewer M, et al. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol, 2005,125:77-97
    [40]Avella R, Scoditti E. The Italian steam explosion program of ENEA. Biomass Bioenerg, 1998,14:289-293
    [41]Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flow through pretreatment on enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng,2004, 86:88-95
    [42]Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci, 1994,19:797-841
    [43]Wyman C E, Dale B E, Elander R T, et al. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol,2005,96:1959-1966
    [44]Antal Jr M J. Water:A Traditional Solvent Pregnant with New Application. In:white Jr Jr H J, editor. Proceedings of the 12th international conference on the properties of water and steam. New York:Begell House,1996.23-32
    [45]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates I:Inhibition and detoxification. Bioresour Technol,2000,74:17-24
    [46]Kohlmann K L, Sariyaka A, Westgate P J, et al. Enhance enzyme activities on hydrated lignocellulosic substrates. In:Saddler J N, Penner M H (Eds). Enzymatic degradation of insoluble carbohydrates, ACS publishing,1995.237-255
    [47]Lee Y Y, Iyer P V, Torget R W. Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol,1999,65:93-115
    [48]Kim S B, Yum D M, Park S C. Step-change variation of acid concentration in a percolation reactor for hydrolysis of hardwood hemicellulose. Bioresour Technol,2000,72:289-294
    [49]Torget R W, Himmel M, Grohmann K. Dilute acid pretreatment of two short-rotation herbaceous crops. Appl Biochem Biotechnol,1992,34/35:115-123
    [50]Esteghalian A, Hashimoto A G, Fenske J J, et al. Modelling and optimization of dilute-sulfuric-acid pretreatment of corn stove, poplar and switchgrass. Bioresour Technol, 1997,59:129-136
    [51]Nguyen Q A, Tucker M P, Keller F A, et al. Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol,2000,84-86:561-575
    [52]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates Ⅱ:Inhibitors and mechanisms of inhibition. Bioresour Technol,2000,74:25-33
    [53]Brink D L. Method of treating biomass material. US Patent,5221357,1993-6-22
    [54]Zeitsch K J. The chemistry and technology of furfural and its many by-products, sugar series. In:Zeitsch K J editor, Elsevier:New York,2000.92-98
    [55]Kim T H, Lee Y Y. Pretreatment and factionation of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol,2005,121:1119-1131
    [56]Alizadeh H, Teymouri F, Gilbert T I, et al. Pretreatment of switchgrass by ammonia fibre explosion (AFEX). Appl Biochem Biotechnol,2005,121-124:1133-1141
    [57]Foster B L, Dale B E, Peterson J B D. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol,2001,91-93:269-282
    [58]Holtzapple M T, Jun J H, Ashok G, et al. The ammonia freeze explosion (AFEX) process-a practical lignocellulose pretreatment. Appl Biochem Biotechnol,1991,28-29: 59-74
    [59]Kim S B, Lee Y Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresour Technol,2002,83:165-171
    [60]Vlasenko E Y, Ding H, Labavitch J M, et al. Enzymatic hydrolysis of pretreated rice straw. Bioresour Technol,1997,59:109-119
    [61]Dale B E. Moreira M J. A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp,1982,12:31-43
    [62]O'Sullivan A C. Cellulose:the structure slowly unravels. Blackie Acad Prof,1996,4: 173-207
    [63]Dale B E, Henk L L, Shiang M. Fermentation of lignocellulose materials treated my ammonia freeze-explosion. Dev Ind Microbiol,1984,26:223-233
    [64]Meshartree M, Dale B E, Craig W K. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Appl Microbiol Biotechnol,1988,29:462-468
    [65]Kim T H, Kim J S, Sunwoo C, et al. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol,2003,90:39-47
    [66]Yoon H H, WuZW, Lee Y Y. Ammonia-recycled percolation process for pretreatment of biomass feedstock. Appl Biochem Bi otechnol,1995,51-52:5-19
    [67]Kim D J, Lee D I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol,2006,97 (3):459-468
    [68]Iyer P V, WuZW, Kim S B, et al. Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol,1996,57-58:121-132
    [69]Kim T H, Lee Y Y. Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol,2005,121-124:1119-1132
    [70]Teymouri F, Laureano-Perez L, Alizadeh H, et al. Optimization of the ammonia fibre explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol,2005,96:2014-2018
    [71]Chang V S, Nagwani M, Holtzapple M T. Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol,1998,74:135-159
    [72]Chang V S, Nagwani M, Kim C H, et al. Oxidative lime pretreatment of high lignin biomass-poplar wood and newspaper. Appl Biochem Biotechnol,2001,94:1-28
    [73]Sharmas S K, Kalra K L, Grewal H S. Enzymatic saccharification of pretreated sun flower stalks. Biomass Bioenerg,2002,23:237-243
    [74]Chang V S, Kaar W E, Burr B, et al. Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett,2001,23:1327-1333
    [75]Hendricks A T, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol,2009,100:10-18
    [76]Thring R W, Chornet E, Overend R. Recovery of a solvolytic lignin:effects of spent liquor/acid volume ratio, acid concentrated and temperature. Biomass,1990,23:289-305
    [77]Zhao X, Cheng K, Liu D H. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol,2009,82:815-827
    [78]McDonough T J. The chemistry of organosolv delignifi cation. Tappi J,1993,76:186-193
    [79]Duff S J B, Murray W D. Bioconversion of forest products industry waste to fuel ethanol. Bioresour Technol,1996,55:1-33
    [80]Curvelo A A S, Pereira R. Kinetics of ethanol-water of sugar cane bagasse. In:Proceedings of the 8th International Symposium on Wood and Pulping Chemistry Proc, Helsinki, Finland.1995.2:473-438
    [81]Zhang Y H P. Reviving the carbohydrate economy via multi product lignocellulose biorefineries. J Ind Microbiol Biotechnol,2008,35:367-375
    [82]Chen H Z, Liu L Y. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol,2007,98:666-676
    [83]Rughani J, McGinnis G D. Combine rapid-steam hydrolysis and organosolv pretreatment of mixed southern hardwoods. Biotechnol Bioeng,1989,33:681-686
    [84]Kim H K, Hong J. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol,2001,77:139-144
    [85]Zheng Y Z, Lin H M, Tsao G T. Supercritical carbon-dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett,1995,17:845-850
    [86]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalyst. Angew Chem Int Ed,2000,39:3773-3789
    [87]Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol,2009,100:2580-2587
    [88]Zhang Y H P, Lynd L R. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng,2006,94:888-898
    [89]Moulthrop J S, Swatloski R P, Moyna G, et al. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun,2005,1557-1559
    [90]茹雷鸣,李胜,张燕雯.垃圾填埋场生态恢复中的植被重建研究.安徽农业科学,2008,36(6):2504-2505
    [91]黄晓文,吴三达.填埋气体的综合利用.环境卫生工程,2006,14(7):9-11
    [92]Li W Z, Ju M T, Liu L, et al. The Effects of Biomass Solid Waste Resources Technology in Economic Development. Energy Procedia,2011,5:2455-2460
    [93]March K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilibr,2004,219:93-98
    [94]Graenacher C. Cellulose Solution. US patent 1943176,1943-01-09
    [95]Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem, 2006,8:301-306
    [96]Hirao M, Sugimoto H, Ohno H. Preparation of Novel Room-Temperature Molten Salts by Neutralization of Amines. J. Electrochem. Soc,2000,147 (11):4168-4172
    [97]李汝熊.绿色有机溶剂—离子液体的合成与应用[M].化学工业出版社.2003
    [98]王媛媛.新型离子液体的制备、表征及其在有机合成反应中的拓展研究:[博士学位论文].上海:华东师范大学,2008
    [99]许建勋.咪唑类离子液体合成及其应用研究[J].化工技术与开发,2004,33(4):15-21
    [100]Mantz R A, Trulove P C. Ionic Liquids in Synthesis, in:PWasserscheid, TWelton (Eds). Weinheim, Germany:WILEY-VCH Verlag GmbH & Co. KGaA,2007.95-111
    [101]Mokhtarani B, Sharifi A. Mortaheb H R, et al. Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J Chem Thermodyn,2009,41:323-329
    [102]Sanchez L G, Espel J R, Onink F, et al. Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids. J. Chem. Eng. Data,2009,54:2803-2812
    [103]Vigo T L. Interaction of cellulose with other polymers:retrospective and prospective. Polym Advan Technol,1998,9 (9):539-548
    [104]Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci,2001,26(9):1341-1417
    [105]Salmon S, Hudson S M. Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J Macromol Sci-Pol R,1997,37(2):199-276
    [106]Philipp B. Organic solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. J Macromol Sci Pure,1993,30(9-10):703-714
    [107]Doganand H, Hilmioglu N D. Dissolution of cellulose with NMMO by microwave heating. Carbohyd Polym,2009,75 (1):90-94
    [108]Nattakan S, Takashi N, Ton P. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A-Appl S,2009,40(4):321-328
    [109]Zhang H, Wu J, Zhang J, et al.1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005,38 (20):8272-8277
    [110]Song Y B, Zhang J, Gan W P, et al. Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution. Ind Eng Chem Res, 2010,49 (3):1242-1246
    [111]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids. J Am Chem Soc,2002,124 (18):4974-4975
    [112]Laus G, Bentivoglio G, Schottenberger H, et al. Ionic liquids:current developments, potential and drawbacks for industrial applications. Lenzinger Berichte,2005,84:71-85
    [113]王美玲,臧洪俊,蔡白雪,等纤维素在离子液体AMMorCl/[AMIM]Cl混合溶剂中的溶解性能.高等学校化学学报,2009,30(7):1469-1472
    [114]Carere C R, Sparling R, Cicek N, et al. Third generation biofuels via direct cellulose fermentation. Int J Mol Sci,2008,9:1342-1360
    [115]Fengel D, Wegener G. Wood:Chemistry, Ultrastructure, Reactions. New York:De Gruyter, 1989
    [116]Desvaux M. Clostridium cellulolyticum:model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev,2005,29:741-64
    [117]Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass:characterization of pretreated corn stover. Appl Biochem Biotechnol,2005,121-124:1081-99
    [118]Sana B C. Hemicellulose byconversion. J Ind Microbiol Biotechnol,2003,30(5):279-291
    [119]Balaban M, Ucar G. The effect of the duration of alkali pretreatment on the solubility of polyoses. Turk J Agric For,1999,23:667-71
    [120]LeVan S L, Ross R J, Winandy J E. Effects of fire retardant chemicals on bending properties of wood at elevated temperatures. US government printing office,1990,1-24
    [121]Avgerinos G C, Wang D I C. Selective delignification for fermentation of enhancement. Biotechnol Bioeng,1983,25:67-83
    [122]Brownell H H, Saddler J N. Steam pretreatment of lignocellulose materials for enhanced enzymatic hydrolysis. Biotechnol Bioeng,1987,29:228-235
    [123]Converse A O. Substrate factors limiting enzymatic hydrolysis. In:Saddler JN, editor. Byconversion of forest and agricultural plant residues. Wallinfod, Conn:CAB International; 1993. p.93-106
    [124]Lynd L R, Weimer P J, van Zyl W H, et al. Microbial Cellulose Utilization:Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev,2002,66 (3):506-577
    [125]Sanchez C. Lignocellulosic residues:Biodegradation and bioconversion by fungi. Biotechnol Adv,2009,27 (2):185-194
    [126]Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment,2002,10 (1),19-26
    [127]辛玮,作物秸秆的微生物降解与转化利用[D],山东大学,2005
    [128]Finkenstadt V L, Millane R P. Crystal structure of valonia cellulose 1β. Macromolecules, 1998,31:7776-7783
    [129]Airong Xu, Jianji Wang, Huiyong Wang. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green chem,2010, 12:268-275
    [130]Oehlke A. Hofmann K, Spange S. New aspects on polarity of 1-alkyl-3-methylimidazolium salts as measured by solvatochromic probes. New J Chem,2006,30:533-536
    [131]Chiappe C, Pieraccini D. Ionic liquids:solvent properties and organic reactivity. J Phys Org Chem,2005,18 (4):275-297
    [132]Huddlestone J G, Broker G A, Willauer H D, et al. Free-Energy Relationships and Solvatochromatic Properties of 1-Alkyl-3-methylimidazolium Ionic Liquids. In:Rogers R D, Seddon K R (eds). ACS Symposium Series. America:American Chemical Society, 2002.270-288
    [133]Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules,2006,7: 3295-3297
    [134]Fukaya Y, Hayashi K, Wadab M, et al. Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions. Green Chem,2008,10:44-46
    [135]卢芸,孙庆丰,于海鹏等.离子液体中的纤维素溶解、再生及材料制备研究进展.有机化学,2010,30(10):1593-1602
    [136]Remsing R C, Swatloski R P, Rogers R D, et al. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:a 13C and 35/37C1 NMR relaxation study on model systems. Chem Commun,2006,1271-1273
    [137]Dadi A P, Varanasi S, Schall C A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng,2006,95 (5):904-910
    [138]Dadi A P, Schall C A, Varanasi S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotech,2007,137-140 (1-12): 407-421
    [139]Feng L, Chen Z L. Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq,2008,142 (1-3):1-5
    [140]Ebner G, Schiehser S, Potthast A, et al. Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett,2008,49 (51): 7322-7324
    [141]Dong K, Zhang S J, Wang D X, et al. Hydrogen Bonds in Imidazolium Ionic Liquids. J Phys Chem A,2006,110(31):9775-9782
    [142]Derecskei B, Derecskei-Kovacs A. Molecular dynamic studies of the compatibility of some cellulose derivatives with selected ionic liquids. Mol Simulat,2006,32 (2),109-115
    [143]Youngs T G, Hardacre C, Holbrey J D. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride:a simulation study. J Phys Chem B,2007,111 (49): 13765-13774
    [144]Fumino K, Wulf A, Ludwig R. Spectroscopic Evidence for an Enhanced Anion-Cation Interaction from Hydrogen Bonding in Pure Imidazolium Ionic Liquids. Angew Chem Internat Edit,2010,49 (2):449-453
    [145]Fumino K, Wulf A, Ludwig R. The Cation-Anion Interaction in Ionic Liquids Probed by Far-Infrared Spectroscopy. Angew Chem Internat Edit,2008,47:3830-3834
    [146]Fumino K, Wulf A, Ludwig R. Hydrogen Bonding in Protic Ionic Liquids:Reminiscent of Water. Angew Chem Internat Edit,2009,48:3184-3186
    [147]Mele A, Tran C D, De Paoli Lacerda S H. The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water:The Role of C-H-O and C-H--F Interactions in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate. Angew Chem Internat Edit,2003,42:4364-4366
    [148]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 1999,99:2071-2084
    [149]Dupont J, De Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev,2002,102:3667-3692
    [150]Brennecke J F, Maginn E J. Ionic liquids:innovative fluids for chemical processing. AIChE J,2001,47:2384-2389
    [151]Li W Z, Ju M T, Wang Y N, et al. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride. Carbohyd Polym,2013,92(1):228-235
    [152]Kilaru P, Baker G A, Scovazzo P. Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:data and correlations. J Chem Eng Data,2007,52:2306-2314
    [153]Huddlestion J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green chem,2001,3:156-164
    [154]Dylnond J H, Malhotra R. The Tait equation:100 years on. Int J Thermophys,1988,9 (6):941-951
    [155]Gardas R L, Costa H F, Freire M G, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, yrrolidinium-, and piperidinium-based ionic liquids. JChem Eng Data,2008,53 (3):805-811
    [156]刘振国.低熔点、低粘度离子液体的合成和表征:[硕士学位论文].武汉:华中科技大学,2009
    [157]田中华,华贲,王键吉等.室温离子液体物理化学性质研究进展.化学通报,2004,67: 1-10
    [158]Seddon K R, Stark A, Torres M. Influence of chloride water and organic solvents on the physical properties of ionic liquids. Pure Appl Chem,2000,72:2275-2287
    [159]Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis:Recent progress from knowledge to applications. Appl Catal A-Gen,2010,373:1-56
    [160]Gardner K H, Blackwell J. The structure of native cellulose. Biopolymers,1974,13: 1975-2001
    [161]Penga X W, Rena J L, Zhong L X, et al. Homogeneous synthesis of hemicellulosic succinates with high degree of substitution in ionic liquid. Carbohyd Polym,2011,86: 1768-1774
    [162]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering. Chem Rev,2006,106:4044-4098
    [163]Lucas M, Macdonald B A, Wagner G L, et al. Ionic liquid pretreatment of poplar wood at room temperature:swelling and incorporation of nanoparticles. Appl Mater Inter,2010, 2:2198-2205
    [164]Pinkert A, Kenneth N, Marsh S P, et al. Ionic liquids and their interaction with cellulose. Chem Rev,2009,109 (12):6712-6728
    [165]Carlin R T, Osteryoung R A, Wilkes J S, et al. Studies of titanium (Ⅳ) chloride in a strongly Lewis acidic molten salt:electrochemistry and titanium NMR and electronic spectroscopy. Inorg Chem,1990,29 (16):3003-3009
    [166]Kubisa P. Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci,2004,29 (1):3-12
    [167]Cao Y, Wu J, Zhang J, et al. A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J,2009,147:13-21
    [168]许爱荣.阴离子功能化离子液体对生物质原料组分的溶解及选择性分离:[博士学位论文].兰州:兰州大学,2010
    [169]Sun X F, Sun R C, Sun J X. Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J Agr Food Chem,2002,50(22): 6428-6433
    [170]Rana A K, Basak R K, Mitra B C, et al. Studies of acetylation of jute using simplified procedure and its characterization. J Appl Polym Sci,1997,64 (8):1517-1523
    [171]Gupta S, Madan R N, Bansal M C. Chemical composition of Pinus caribaea hemicellulose. Tappi J,1987,70 (8):113-114
    [172]Zhang H, WangZ. Zhang Z, et al. Regenerated-cellulose/multiwassed-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater,2007,19(5):698-704
    [173]Zhou S M, Tashiro K, Hongo T, et al. Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules,2001,34:1274-1280
    [174]Kataoka Y, Kondo T. FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell was formation. Macromolecules,1998,31:760-764
    [175]Wang X J, Li H Q, Cao Y, et al. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). Bioresour Technol,2011,102(17): 7959-7965
    [176]Maunu S, Liitia T, Kauliomaki S, et al. 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose,2000,7:147-159
    [177]Mansikkamaki P, Lahtinen M, Rissanen K. Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose,2005,12:233-242
    [178]李维英.蔗渣及其纤维素在离子液体中的溶解、改性及分离的研究:[博士学位论文].广州:华南理工大学,2011
    [179]Larsson P T, Wickholm K, Iversen T. A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohyd Res,1997,302:19-25
    [180]Gutowski K E, Broker G A, Willauer H D, et al. Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separation. J ACS,2003,125 (22): 6632-6633
    [181]Zhao H, Baker G A, Song Z, et al. Designing Enzyme-compatible Ionic Liquids that can Dissolve Carbohydrates. Green Chem,2008,10:696-705
    [182]Peng Y Y, Wu S B. Characteristics and kinetics of sugarcane bagasse hemicellulose pyrolysis by TG-FTIR. Chem Ind Eng Prog,2009,28 (8):1478-1484
    [183]张金明,吕玉霞,罗楠等.离子液体在纤维素化学中的应用研究新进展高分子通报,2011,10: 138-153
    [184]王许涛.生物纤维原料汽爆预处理技术与应用研究:[博士学位论文].郑州:河南农业大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700