用户名: 密码: 验证码:
典型多溴联苯醚在土壤中的吸附及对其生物降解性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多溴联苯醚(Polybrominated diphenyl ethers, PBDEs)是斯德哥尔摩公约中新增的受控物质,在PBDEs作为阻燃剂长期使用的过程当中,其原料生产、产品添加和后处理过程都可能造成相关场地土壤介质的污染,而产生严重的环境风险。本研究系统地考察了PBDEs典型单体在土壤中的吸附作用,分析了该吸附过程对其后续生物可降解性的影响,研究结果对于准确评价PBDEs的环境风险和相关场地采取相应的管理手段有重要的意义。
     选择典型单体2,2',4,4'-四溴联苯醚(2,2',4,4'-tetrabromodiphenyl ether, BDE-47)为研究对象,以土壤、典型矿物以及胡敏酸(humic acid, HA)和黑碳(black carbon,BC)组分为吸附剂,在对其表面/结构特性表征的基础上,开展了静态吸附/解吸试验,结合其吸附性能的差异,识别了土壤有机组分在影响BDE-47水土体系吸附行为中的关键作用,其中,BC组分体现出了更明显的吸附非线性和解吸滞后性特征,而不同样本的有机组分间都存在着有机碳归一化吸附系数的显著差异,说明有机组分的表面/结构特性会对其吸附能力产生影响。
     采用pp-LFER理论对BDE-47在20种模式有机组分上的三个浓度区间的单点吸附系数Koc进行了多参数线性回归,显著性分析的结果识别出基于芳香环结构的表面吸附和基于微孔结构的微孔填充是影响有机组分吸附BDE-47的关键因素,通过双模式模型,对其各自的贡献进行了定量解析,表明在吸附初始阶段,微孔填充占主导地位,吸附进程中,微孔点位逐渐饱和,优势地位逐渐被表面吸附替代。
     通过对照苯胺、苯酚、对羟基苯甲酸和环己醇、环己酮、1,5-己二烯-3-醇在模式有机组分上的吸附特性,排除了环状结构、氢键和不饱和双键作为核心作用位点的可能性,识别出芳香环结构是表面吸附的核心作用位点,采用紫外/红外光谱技术,解析了供电子基团(羟基)对于BDE-47与芳香环结构之间作用力强弱的影响,揭示了π-π电子供受体作用是影响有机组分吸附BDE-47的关键作用力。
     基于降解速率和潜在可降解性两个指标,考察了不同吸附作用对于吸附质在土壤体系的生物降解的影响,发现BDE-47从土壤有机组分上解吸过程是影响其降解速率的关键环节,选择生物表面活性剂提供优化的促解吸环境,发现解吸进行完全后,依托表面吸附的吸附质分子几乎能够全部从有机组分上解吸下来而得以降解,而微孔填充的吸附质分子无法从微孔位点释放,难以被微生物降解。
Polybrominated diphenyl ethers (PBDEs) are included as persistent organicpollutants (POPs) by Stockholm Convention. Heavy soil contamination has beentriggered by PBDEs production, utilization and post-treatment, which could induceserious environmental risks. In this study, the mechanism of interactions betweenPBDEs and soil organic matter fractions and its impact on the biodegradability ofPBDEs were studied, which would pave a better way for further risk assessment andmanagement of PBDEs contaminated sites.
     2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47), one typical PBDEs congener whichis included in persistent organic pollutants (POPs) list and frequently detected in naturalenvironment at high concentration level, is selected as the model PBDEs to explore itsinteraction with the tested sorbents: bulk soils, inorganic minerals, and the isolatedorganic fractions (humic acid and black carbon). Based on the characterization ofsurface and structural properties, sorption/desorption experiments were conducted toexplore the sorption characteristics of each sorbent. It was shown that compared tominerals, the major contribution to soil behaviors with BDE-47was attributed to soilorganic matter among which black carbon fraction displayed more pronouncednonlinear sorption isotherm and desorption hysteresis. Even for the different samples ofone same soil organic fraction, pronounced sorption affinity differences were observed.
     Based on pp-LFER model, the single-point adsorption equilibrium constant (Koc) atthree C_elevels (C_e=0.001S_w,0.005S_w,0.05S_w) was correlated with four majorparameters (surface functionalities, microporosity, aromaticity and hydrophobicity)using multiple parameter linear analysis accompanied by significance test. The resultsindicated that at low concentration, surface microporosity representing pore fillingcontributed significantly to this relationship, while as concentration increased to higherlevels, functionality related to surface adsorption began to take the dominant role, whichwas further confirmed by results of Polanyi-based modeling. Given to above, a dualmode model based on Dubinin-Radushkevich (DR) and de Boer-Zwikker equations wasadopted to quantitatively assess the changes of significance of surface adsorption aswell as that of pore filling with sorption process developed. In addition, UV andinfrared spectra of four typical aromatic compounds which represented the key structural fragments of biochars before and after interactions with BDE-47wereanalyzed and proposed π-π electron-donor-acceptor interaction to contribute greatly tosurface adsorption.
     The effects of soil organic matter-BDE-47interactions on the biodegradability ofBDE-47by Pseudomonas putida TZ-1were examined. The presence of all tested modelsoil organic fractions decreased the biodegradation rate as the degradation of solid phaseBDE-47was slower than that of liquid phase BDE-47for the desorption hysteresis fromsoil organic fractions. In terms of potential biodegradability, the microporous soilorganic fractions contributed to a significant negative impact, while the effects ofnon-porous soil organic fractions were negligible, as BDE-47sorbed within deepmicropores would be resistant to rigorous chemical extraction and long-term desorption.
引文
[1] Wania F, Dugani C B. Assessing the long-range transport potential of polybrominated diphenylethers: A comparison of four multimedia models. Environ Toxicol Chem,2003,22:1252-1261.
    [2] Rahman F, Langford K H, Scrimshaw M D, et al. Polybrominated diphenyl ether (PBDE) flameretardants. Sci Total Environ,2001,275:1-17.
    [3] Ma J, Qiu X, Zhang J, et al. State of polybrominated diphenyl ethers in China: An overview.Chemosphere,2012,88:769-778.
    [4] Polder A, Gabrielsen G W, Odland J O, et al. Spatial and temporal changes of chlorinatedpesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breastmilk from Northern Russia. Sci Total Environ,2008,391:41-54.
    [5] Roosens L, D'Hollander W, Bervoets L, et al. Brominated flame retardants and perfluorinatedchemicals, two groups of persistent contaminants in Belgian human blood and milk. EnvironPollut,2010,158:2546-2552.
    [6] Tue N M, Sudaryanto A, Tu B M, et al. Accumulation of polychlorinated biphenyls andbrominated flame retardants in breast milk from women living in Vietnamese e-waste recyclingsites. Sci Total Environ,2010,408:2155-2162.
    [7] Hassanin A, Breivik K, Meijer S N, et al. PBDEs in European background soils: Levels andfactors controlling their distribution. Environ Sci Technol,2004,38:738-745.
    [8] Duan Y, Meng X, Yang C, et al. Polybrominated diphenyl ethers in background surface soilsfrom the Yangtze River Delta (YRD), China: occurrence, sources, and inventory. Environ SciPollut R,2010,17:948-956.
    [9] Meng X, Pan Z, Wu J, et al. Occurrence of polybrominated diphenyl ethers in soil from thecentral Loess Plateau, China: Role of regional range atmospheric transport. Chemosphere,2011,83:1391-1397.
    [10] Birnbaum L S, Staskal D F. Brominated flame retardants: Cause for concern? Environ HealthPersp,2004,112:9-17.
    [11] Darnerud P O, Eriksen G S, Johannesson T, et al. Polybrominated diphenyl ethers: Occurrence,dietary exposure, and toxicology. Environ Health Persp,2001,1091:49-68.
    [12] Lilienthal H, Hack A, Roth-Harer A, et al. Effects of developmental exposure to2,2',4,4',5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexuallydimorphic behavior in rats. Environ Health Persp,2006,114:194-201.
    [13] Birchmeier K L, Smith K A, Passino-Reader D R, et al. Effects of selected polybrominateddiphenyl ether flame retardants on lake trout (Salvelinus namaycush) thymocyte viability,apoptosis, and necrosis. Environ Toxicol Chem,2005,24:1518-1522.
    [14] Kociba R J, Leong B, Jersey G C, et al. Induction of esthesioneuroepitheliomas in rats exposedto bis(chloromethyl)ether. Lab Invest,1975,32:428.
    [15] Hardell L, Lindstrom G, van Bavel B, et al. Do flame retardants increase the risk ofnon-Hodgkin lymphoma? The levels of polybrominated diphenyl ethers are increasing in theenvironment. Lakartidningen,1998,95:5890-5893.
    [16] Riu A, Cravedi J, Debrauwer L, et al. Disposition and metabolic profiling of
    [C-14]-decabromodiphenyl ether in pregnant Wistar rats. Environ Int,2008,34:318-329.
    [17] Palm A, Cousins I T, Mackay D, et al. Assessing the environmental fate of chemicals ofemerging concern: a case study of the polybrominated diphenyl ethers. Environ Pollut,2002,117:195-213.
    [18] Hassanin A, Breivik K, Meijer S N, et al. PBDEs in European background soils: Levels andfactors controlling their distribution. Environ Sci Technol,2004,38:738-745.
    [19] Ricklund N, Kierkegaard A, Mclachlan M S, et al. Mass balance of decabromodiphenyl ethaneand decabromodiphenyl ether in a WWTP. Chemosphere,2009,74:389-394.
    [20] Ejarrat E, Marsh G, Labandeira A, et al. Effect of sewage sludges contaminated withpolybrominated diphenylethers on agricultural soils. Chemosphere,2008,71:1079-1086.
    [21] Kupper T, de Alencastro L F, Gatsigazi R, et al. Concentrations and specific loads ofbrominated flame retardants in sewage sludge. Chemosphere,2008,71:1173-1180.
    [22] Toms L L, Mortimer M, Symons R K, et al. Polybrominated diphenyl ethers (PBDEs) insediment by salinity and land-use type from Australia. Environ Int,2008,34:58-66.
    [23] Eljarrat E, Labandeira A, Marsh G, et al. Decabrominated diphenyl ether in river fish andsediment samples collected downstream an industrial park. Chemosphere,2007,69:1278-1286.
    [24] Moon H, Kannan K, Choi M, et al. Polybrominated diphenyl ethers (PBDEs) in marinesediments from industrialized bays of Korea. Mar Pollut Bull,2007,54:1402-1412.
    [25] Minh N H, Isobe T, Ueno D, et al. Spatial distribution and vertical profile of polybrominateddiphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan.Environ Pollut,2007,148:409-417.
    [26] Jin J, Wang Y, Liu W, et al. Polybrominated diphenyl ethers in atmosphere and soil of aproduction area in China: Levels and partitioning. Journal of Environmental Sciences-China,2011,23:427-433.
    [27] Xu J, Gao Z, Xian Q, et al. Levels and distribution of polybrominated diphenyl ethers (PBDEs)in the freshwater environment surrounding a PBDE manufacturing plant in China. EnvironPollut,2009,157:1911-1916.
    [28] Li K, Fu S, Yang Z Z, et al. Polybrominated diphenyl ethers in the soil of typical industrial city.B Environ Contam Tox,2009,83:926-930.
    [29] Zhang X, Luo X, Chen S, et al. Spatial distribution and vertical profile of polybrominateddiphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment froman industrialized region of South China. Environ Pollut,2009,157:1917-1923.
    [30]秦佩恒,倪宏刚,刘阳生,等.深圳市表层土壤中PBDEs空间分布特征及蓄积量估算.北京大学学报(自然科学版),2011,1:127-132.
    [31] Cai Z, Jiang G. Determination of polybrominated diphenyl ethers in soil from e-waste recyclingsite. Talanta,2006,70:88-90.
    [32] Leung A O W, Luksemburg W J, Wong A S, et al. Spatial distribution of polybrominateddiphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combustedresidue at Guiyu, an electronic waste recycling site in southeast China. Environ Sci Technol,2007,41:2730-2737.
    [33] Luo Y, Luo X, Lin Z, et al. Polybrominated diphenyl ethers in road and farmland soils from ane-waste recycling region in Southern China: Concentrations, source profiles, and potentialdispersion and deposition. Sci Total Environ,2009,407:1105-1113.
    [34] Zhao G, Wang Z, Dong M H, et al. PBBs, PBDEs, and PCBs levels in hair of residents arounde-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci TotalEnviron,2008,397:46-57.
    [35] Wang P, Zhang Q, Wang Y, et al. Altitude dependence of polychlorinated biphenyls (PCBs)and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China.Chemosphere,2009,76:1498-1504.
    [36] Jiang Y, Wang X, Zhu K, et al. Occurrence, compositional profiles and possible sources ofpolybrominated diphenyl ethers in urban soils of Shanghai, China. Chemosphere,2010,80:131-136.
    [37] Sun K, Zhao Y, Gao B, et al. Organochlorine pesticides and polybrominated diphenyl ethers inirrigated soils of Beijing, China: Levels, inventory and fate. Chemosphere,2009,77:1199-1205.
    [38] Duan Y, Meng X, Yang C, et al. Polybrominated diphenyl ethers in background surface soilsfrom the Yangtze River Delta (YRD), China: occurrence, sources, and inventory. Environ SciPollut R,2010,17:948-956.
    [39] Meng X, Pan Z, Wu J, et al. Occurrence of polybrominated diphenyl ethers in soil from thecentral Loess Plateau, China: Role of regional range atmospheric transport. Chemosphere,2011,83:1391-1397.
    [40]李维美.大连地区松针和土壤中多溴联苯醚的污染水平和分布规律研究[硕士学位论文].大连理工大学,2010.
    [41] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds toblack carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences fordistribution, bioaccumulation, and biodegradation. Environ Sci Technol,2005,39:6881-6895.
    [42]张履勤,章明奎.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响.土壤通报,2006,4:662-665.
    [43] Goldberg E D. Black carbon in the environment. Properties and distribution: Black carbon inthe environment. Properties and distribution.1985
    [44]邱敬,高人,杨玉盛,等.土壤黑碳的研究进展.亚热带资源与环境学报,2009,1:88-94.
    [45]何跃,张甘霖,杨金玲,等.城市化过程中黑碳的土壤记录及其环境指示意义.环境科学,2007,10:2369-2375.
    [46] Wang X S, Chen L F, Li F Y, et al. Removal of Cr (VI) with wheat-residue derived blackcarbon: Reaction mechanism and adsorption performance. J Hazard Mater,2010,175:816-822.
    [47] Uchimiya M, Wartelle L H, Klasson K T, et al. Influence of pyrolysis temperature on biocharproperty and function as a heavy metal sorbent in soil. J Agr Food Chem,2011,59:2501-2510.
    [48] Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure sourceon physicochemical characteristics of biochar. Bioresource Technol,2012,107:419-428.
    [49] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil.Biogeochemistry,2008,89:295-308.
    [50] Song J Z, Peng P A, Huang W L. Black carbon and kerogen in soils and sediments.1.Quantification and characterization. Environ Sci Technol,2002,36:3960-3967.
    [51] Ran Y, Sun K, Yang Y, et al. Strong sorption of phenanthrene by condensed organic matter insoils and sediments. Environ Sci Technol,2007,41:3952-3958.
    [52]章明奎,王浩,郑顺安.土壤中黑碳的表面化学性质及其变化研究.浙江大学学报(农业与生命科学版),2009,3:278-284.
    [53] Chiou C T, Peters L J, Freed V H. Physical concept of soil-water equilibria for non-ionicorganic-compounds. Science,1979,206:831-832.
    [54] Nguyen T H, Cho H, Poster D L, et al. Evidence for a pore-filling mechanism in the adsorptionof aromatic hydrocarbons to a natural wood char. Environ Sci Technol,2007,41:1212-1217.
    [55]王宇宙,吴安心.芳环超分子体系中的π-π作用.有机化学,2008,6:997-1011.
    [56] Ji L, Wan Y, Zheng S, et al. Adsorption of tetracycline and sulfamethoxazole on cropresidue-derived ashes: implication for the relative importance of black carbon to soil sorption.Environ Sci Technol,2011,45:5580-5586.
    [57] Korili S A, Gil A. On the application of various methods to evaluate the microporous propertiesof activated carbons. Adsorption,2001,7:249-264.
    [58] Kapoor A, Ritter J A, Yang R T. On the dubinin radushkevich equation for adsorption inmicroporous solids in the henry law region. Langmuir,1989,5:1118-1121.
    [59]顾惕人.试论de Boer-Zwikker公式在溶液吸附中的应用.科学通报,1978,5:266-278.
    [60]刘永明,李桂芝.灭多威在黄河水体沉积物中的吸附特性研究.烟台大学学报(自然科学与工程版),2001,1:64-68.
    [61]徐凤琳,周代华,李学垣,等.用De Boer-Zwikker方程描述土壤吸附行为的初步探讨.华中农业大学学报,1995,1:58-63.
    [62] Weber W J, Huang W L. A distributed reactivity model for sorption by soils and sediments.4.Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions.Environ Sci Technol,1996,30:881-888.
    [63] Weber W J, Mcginley P M, Katz L E. A distributed reactivity model for sorption by soils andsediments.1. conceptual basis and equilibrium assessments. Environ Sci Technol,1992,26:1955-1962.
    [64] Xing B S, Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinylchloride) and soil organic matter. Environ Sci Technol,1997,31:792-799.
    [65] Xing B S. The effect of the quality of soil organic matter on sorption of naphthalene.Chemosphere,1997,35:633-642.
    [66] Droge S T J, Hermens J L M. Nonlinear sorption of three alcohol ethoxylates to marinesediment: A combined langmuir and linear sorption process? Environ Sci Technol,2007,41:3192-3198.
    [67] Nguyen T H, Ball W P. Absorption and adsorption of hydrophobic organic contaminants todiesel and hexane soot. Environ Sci Technol,2006,40:2958-2964.
    [68] Xiao B H, Yu Z Q, Huang W L, et al. Black carbon and kerogen in soils and sediments.2. Theirroles in equilibrium sorption of less-polar organic pollutants. Environ Sci Technol,2004,38:5842-5852.
    [69] Kang S H, Xing B S. Phenanthrene sorption to sequentially extracted soil humic acids andhumins. Environ Sci Technol,2005,39:134-140.
    [70] Wang X, Guo X, Yang Y, et al. Sorption mechanisms of phenanthrene, lindane, and atrazinewith various humic acid fractions from a single soil sample. Environ Sci Technol,2011,45:2124-2130.
    [71] Oen A, Cornelissen G, Breedveld G D. Relation between PAH and black carbon contents insize fractions of Norwegian harbor sediments. Environ Pollut,2006,141:370-380.
    [72] Yang Y N, Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter fromcrop residue burns. Environ Sci Technol,2003,37:3635-3639.
    [73] Bucheli T D, Gustafsson O. Quantification of the soot-water distribution coefficient of PAHsprovides mechanistic basis for enhanced sorption observations. Environ Sci Technol,2000,34:5144-5151.
    [74] Ghosh U, Gillette J S, Luthy R G, et al. Microscale location, characterization, and association ofpolycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol,2000,34:1729-1736.
    [75] Nguyen T H, Cho H, Poster D L, et al. Evidence for a pore-filling mechanism in the adsorptionof aromatic hydrocarbons to a natural wood char. Environ Sci Technol,2007,41:1212-1217.
    [76] Cornelissen G, Gustafsson O. Importance of unburned coal carbon, black carbon, andamorphous organic carbon to phenanthrene sorption in sediments. Environ Sci Technol,2005,39:764-769.
    [77] Mastral A M, Garcia T, Callen M S, et al. Three-ring PAH removal from waste hot gas bysorbents: Influence of the sorbent characteristics. Environ Sci Technol,2002,36:1821-1826.
    [78] Zhu D Q, Kwon S, Pignatello J J. Adsorption of single-ring organic compounds to woodcharcoals prepared under different thermochemical conditions. Environ Sci Technol,2005,39:3990-3998.
    [79] Ji L, Wan Y, Zheng S, et al. Adsorption of Tetracycline and Sulfamethoxazole on CropResidue-Derived Ashes: Implication for the Relative Importance of Black Carbon to SoilSorption. Environ Sci Technol,2011,45:5580-5586.
    [80] Zhu D Q, Pignatello J J. Characterization of aromatic compound sorptive interactions withblack carbon (charcoal) assisted by graphite as a model. Environ Sci Technol,2005,39:2033-2041.
    [81] Fomba K W, Galvosas P, Roland U, et al. Mobile aliphatic domains in humic substances andtheir impact on contaminant mobility within the matrix. Environ Sci Technol,2011,45:5164-5169.
    [82] Yang Y, Shu L, Wang X, et al. Effects of composition and domain arrangement of biopolymercomponents of soil organic matter on the bioavailability of phenanthrene. Environ Sci Technol,2010,44:3339-3344.
    [83] Johnson M D, Huang W L, Dang Z, et al. A distributed reactivity model for sorption by soilsand sediments.12. Effects of subcritical water extraction and alterations of soil organic matteron sorption equilibria. Environ Sci Technol,1999,33:1657-1663.
    [84] Chefetz B, Xing B. Relative role of aliphatic and aromatic moieties as sorption domains fororganic compounds: a review. Environ Sci Technol,2009,43:1680-1688.
    [85] Xin J, Liu X, Jiang L, et al. BDE-47sorption and desorption to soil matrix in single-andbinary-solute systems. Chemosphere,2012,87:477-482.
    [86]彭剑飞,饶俊文,沈咏美,等.天然土壤中典型多溴联苯醚解吸过程的初步研究.农业环境科学学报,2009,7:1404-1409.
    [87] Liu W, Li W, Hu J, et al. Sorption kinetic characteristics of polybrominated diphenyl ethers onnatural soils. Environ Pollut,2010,158:2815-2820.
    [88] Olshansky Y, Polubesova T, Vetter W, et al. Sorption-desorption behavior of polybrominateddiphenyl ethers in soils. Environ Pollut,2011,159:2375-2379.
    [89]梁贤伟,杨丽萍,祝凌燕. TENAX萃取表征土壤中多溴联苯醚(PBDEs)生物可利用性研究.农业环境科学学报,2010,9:1712-1717.
    [90]李晓军,李培军,蔺昕,等.土壤中有机污染物的老化概念探讨.应用生态学报,2007,8:1891-1896.
    [91] Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility ofcontaminated soil and sediment is complicated. Environ Sci Technol,2004,38:228A-231A.
    [92] Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil. EnvironPollut,2005,133:71-84.
    [93] Rodrigues A C, Wuertz S, Brito A G, et al. Three-dimensional distribution of GFP-labeledPseudomonas putida during biofilm formation on solid PAHs assessed by confocal laserscanning microscopy. Water Sci Technol,2003,47:139-142.
    [94] Wick L Y, Springael D, Harms H. Bacterial strategies to improve the bioavailability ofhydrophobic organic pollutants. Treatment of Contaminated Soil: Fundamentals, Analysis,Applications,2001:203-217.
    [95] Wick L Y, Wattiau P, Harms H. Influence of the growth substrate on the mycolic acid profilesof mycobacteria. Environ Microbiol,2002,4:612-616.
    [96] Bueno-Montes M, Springael D, Ortega-Calvo J. Effect of a nonionic surfactant onbiodegradation of slowly desorbing PAHs in contaminated soils. Environ Sci Technol,2011,45:3019-3026.
    [97] Xia X, Li Y, Zhou Z, et al. Bioavailability of adsorbed phenanthrene by black carbon andmulti-walled carbon nanotubes to Agrobacterium. Chemosphere,2010,78:1329-1336.
    [98] Zhang Y, Wang F, Wang C, et al. Enhanced microbial degradation of humin-boundphenanthrene in a two-liquid-phase system. J Hazard Mater,2011,186:1830-1836.
    [99] Cai P, He X, Xue A, et al. Bioavailability of methyl parathion adsorbed on clay minerals andiron oxide. J Hazard Mater,2011,185:1032-1036.
    [100] Stumpe B, Marschner B. Factors controlling the biodegradation of17beta-estradiol, estroneand17alpha-ethinylestradiol in different natural soils. Chemosphere,2009,74:556-562.
    [101] Yang Y, Hunter W, Tao S, et al. Effect of activated carbon on microbial bioavailability ofphenanthrene in soils. Environ Toxicol Chem,2009,28:2283-2288.
    [102] Rhodes A H, Mcallister L E, Chen R, et al. Impact of activated charcoal on the mineralisationof C-14-phenanthrene in soils. Chemosphere,2010,79:463-469.
    [103] Lou L, Luo L, Wang W, et al. Impact of black carbon originated from fly ash and soot on thetoxicity of pentachlorophenol in sediment. J Hazard Mater,2011,190:474-479.
    [104] Gerecke A C, Hartmann P C, Heeb N V, et al. Anaerobic degradation of decabromodiphenylether. Environ Sci Technol,2005,39:1078-1083.
    [105] Rayne S, Ikonomou M G, Whale M D. Anaerobic microbial and photochemical degradation of4,4'-dibromodiphenyl ether. Water Res,2003,37:551-560.
    [106] Yen J H, Liao W C, Chen W C, et al. Interaction of polybrominated diphenyl ethers (PBDEs)with anaerobic mixed bacterial cultures isolated from river sediment. J Hazard Mater,2009,165:518-524.
    [107] Robrock K R, Coelhan M, Sedlak D L, et al. Aerobic Biotransformation of PolybrominatedDiphenyl Ethers (PBDEs) by Bacterial Isolates. Environ Sci Technol,2009,43:5705-5711.
    [108] Zhou J, Jiang W, Ding J, et al. Effect of Tween80and beta-cyclodextrin on degradation ofdecabromodiphenyl ether (BDE-209) by White Rot Fungi. Chemosphere,2007,70:172-177.
    [109] Deng D, Guo J, Sun G, et al. Aerobic debromination of deca-BDE: Isolation andcharacterization of an indigenous isolate from a PBDE contaminated sediment. Int BiodeterBiodegr,2011,65:465-469.
    [110] Ran Y, Sun K, Xing B, et al. Characterization of condensed organic matter in soils andsediments. Soil Sci Soc Am J,2009,73:351-359.
    [111]陈炳发,吴敏,张迪,等.土壤无机矿物对抗生素的吸附机理研究进展.化工进展,2012,1:193-200.
    [112] He Y, Xu J, Wang H, et al. Potential contributions of clay minerals and organic matter topentachlorophenol retention in soils. Chemosphere,2006,65:497-505.
    [113] Zhang D, Zhu D, Chen W. Sorption of nitroaromatics to soils: comparison of the importanceof soil organic matter versus clay. Environ Toxicol Chem,2009,28:1447-1454.
    [114] Meleshyn A, Tunega D. Adsorption of phenanthrene on Na-montmorillonite: A model study.Geoderma,2011,169:41-46.
    [115] He Y, Liu Z, Zhang J, et al. Can assessing for potential contribution of soil organic andinorganic components for butachlor sorption be improved? J Environ Qual,2011,40:1705-1713.
    [116] Wang W, Delgado-Moreno L, Ye Q, et al. Improved measurements of partition coefficients forpolybrominated diphenyl ethers. Environ Sci Technol,2011,45:1521-1527.
    [117] Tang J, Petersen E, Jr. Weber W J. Development of engineered natural organic sorbents forenvironmental applications.4. Effects on biodegradation and distribution of pyrene in soils.Environ Sci Technol,2008,42:1283-1289.
    [118]何盈盈.腐殖酸与多环芳烃的非共价结合机制研究[博士学位论文].西安建筑科技大学,2010.
    [119] Dubinin M M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents-characteristics of their adsorption properties and microporous structures. Pure Appl Chem,1989,61:1841-1843.
    [120]方霞.纳米尺度微孔物理吸附的分子动力学模拟[硕士学位论文].中国科学院研究生院(工程热物理研究所),2002.
    [121]纳米微孔高压现象.中国北京:2007.
    [122]王震宇,于晓冬,许颖,等.土壤微孔对有机物吸附/解吸的影响及其表征.生态学报,2009,4:2087-2096.
    [123] Tang J, Petersen E, Jr. Weber W J. Development of engineered natural organic sorbents forenvironmental applications.4. Effects on biodegradation and distribution of pyrene in soils.Environ Sci Technol,2008,42:1283-1289.
    [124] Wang X, Cook R, Tao S, et al. Sorption of organic contaminants by biopolymers: Role ofpolarity, structure and domain spatial arrangement. Chemosphere,2007,66:1476-1484.
    [125] Wang X, Tao S, Xing B. Sorption and competition of aromatic compounds and humic acid onmultiwalled carbon nanotubes. Environ Sci Technol,2009,43:6214-6219.
    [126] Hou J, Pan B, Niu X, et al. Sulfamethoxazole sorption by sediment fractions in comparison topyrene and bisphenol A. Environ Pollut,2010,158:2826-2832.
    [127]阮秀秀.有机膨润土的构—效关系及其分子作用机制[博士学位论文].浙江大学,2008.
    [128]净原法藏,牛淑敏,王玉香,等.恶臭假单胞菌萘质粒ⅠNL基因的克隆及酶切图谱.南开大学学报(自然科学版),1995,4:39-46.
    [129]杨林,薛罡,刘亚男.卡马西平降解菌的筛选分离及其降解机理.环境工程学报,2012,5:1559-1564.
    [130]李轶,胡洪营,于茵,等.硝基苯污染底质的微生物强化修复研究.环境科学,2008,6:1632-1637.
    [131] Xiao L, Qu X, Zhu D. Biosorption of nonpolar hydrophobic organic compounds to Escherichiacoli facilitated by metal and proton surface binding. Environ Sci Technol,2007,41:2750-2755.
    [132] Park J H, Feng Y C, Ji P S, et al. Assessment of bioavailability of soil-sorbed atrazine. ApplEnviron Microb,2003,69:3288-3298.
    [133] Chen J, Huang P T, Zhang K Y, et al. Isolation of biosurfactant producers, optimization andproperties of biosurfactant produced by Acinetobacter sp from petroleum-contaminated soil. JAppl Microbiol,2012,112:660-671.
    [134] Saikia R R, Deka S, Deka M, et al. Isolation of biosurfactant-producing Pseudomonasaeruginosa RS29from oil-contaminated soil and evaluation of different nitrogen sources inbiosurfactant production. Ann Microbiol,2012,62:753-763.
    [135] Pemmaraju S C, Sharma D, Singh N, et al. Production of microbial surfactants from oilysludge-contaminated soil by Bacillus subtilis DSVP23. Appl Biochem Biotech,2012,167:1119-1131.
    [136] Occulti F, Roda G C, Berselli S, et al. Sustainable decontamination of an actual-site agedPCB-polluted soil through a biosurfactant-based washing followed by a photocatalytictreatment. Biotechnol Bioeng,2008,99:1525-1534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700