用户名: 密码: 验证码:
基于生物信息学与QSAR及分子对接的菜粕活性肽筛选及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Screening of Bioactive Peptides from Rapeseed by Bioinformatics, QSAR and Molecular Docking and Reaserch on Their Activity
  • 作者:邹平
  • 论文级别:博士
  • 学科专业名称:食品科学
  • 学位年度:2014
  • 导师:何国庆
  • 学科代码:083201
  • 学位授予单位:浙江大学
  • 论文提交日期:2014-01-01
  • 答辩委员会主席:钱俊青
摘要
高血压已成为最常见的严重的全球慢性病的健康问题之一,会同时引起或加重大脑、心血管、肾脏和肝脏的损害。另一方面,人体内的脂质氧化促进病变和衰老等问题,而且血压和脂质氧化有着密切的联系。因此,通过改变饮食习惯和添加天然食品中的功能性成分来辅助降血压、清除自由基,有着重要意义。
     菜粕是我国的主要农作物副产品之一,其蛋白含量高,氨基酸组成是比较平衡,易于消化吸收被机体利用,但目前应用方式还比较简单。本研究以菜籽蛋白为研究对象,结合生物信息学、QSAR和分子对接等方法,筛选了抗氧化肽和ACE抑制肽,并进行了活性和机理研究。
     本文分别用Thermolysin-Pepsin,Thermo lysin-Trypsin组合水解Napin和Cruciferin得到含有数百种菜籽蛋白肽的多肽库,而后建立了从菜籽蛋白水解液中快速鉴别抗氧化肽的方法。结合NANO-Q-TOF质谱技术确证了水解液中存在4条抗氧化肽,分别为HL, IR, RW和VY。通过源蛋白序列比对,获悉了这些多肽的酶切位点图,此方法高效快速准确。
     通过QSAR预测由计算机辅助水解菜籽蛋白得到多肽的IC50,并结合NANO-Q-TOF质谱技术找到了水解液中存在6条ACE抑制肽,再利用分子对接方法评价其活性,筛选获得了一条高活性的ACE抑制肽GRD,其预测活性为7.54gM,且目前尚未有文献报道,是一条新发现的ACE抑制肽,其来源蛋白是一种Napin蛋白(oleosin-like protein, NCBI中ID:ABD14345),可由Pepsin水解获得。利用CDOCKER方法对4-6肽进行了系统性筛选,结果表明,四肽IYKY、 IYRT和IRQQ;五肽QQEEP、IRQQL和IYDVR以及六肽VRGYKK、YKKILV和RDMHQK是最可能的高活性ACE抑制肽
     通过自发性高血压大鼠(SHR)模型,研究了多肽在体内的降血压作用,并揭示FL和VSV对ACE抑制的机理。多肽FL和VSV对SHR大鼠的SBP均有降低效果,其中VSV高剂组在4h时下降22.8mmHg,长期给药可降低23.6mmHgo这表明,VSV有望作为辅助剂降血压的功能性食品在未来的治疗中使用。分子对接结果显示:多肽-蛋白活性区域-水分子之间存在复杂的氢键、分子间作用力等作用,从而形成竞争性抑制。测定了SHR大鼠血清、肝脏和脑组织的SOD、CAT活性以及MDA、GSH含量,结果表明FL和VSV具有一定的抗氧化能力。
     本研究的结果为开发利用菜籽蛋白资源作为功能性食品原料,提高菜籽附加值提高了研究依据,且建立了快速筛选生物活性肽的方法,为生物活性肽研究提供了新的思路。
Hypertension has become one of the most common serious worldwide chronic health problems and it will also cause or aggravate brain, cardiovascular, kidney and liver damage. On the other hand, blood pressure and lipid oxidation are closely linked, and the lipid oxidation of human body promotes disease and aging issues. Therefore, reducing blood pressure and scavenging free radical by changing diet habits and adding of natural functional ingredients in foods are of great significance.
     Rapeseed meal is one of the major crop by-products,and it has high content of protein and balanced amino acid composition, what's more, it is easy to digest and absorpt by the body.However, the application of rapeseed meal is still relatively simple. In this research, antioxidant and ACE inhibitory peptides from rapeseed protein were screened by bioinformatics, QSAR and molecular docking method, at the same time, their activity and mechanism were also studied.
     In this paper, hundreds of peptides from Napin and Cruciferin were got by in-silico hydrolysis by combinat or respective use of Thermolysin-Pepsin or Thermolysin-Trypsin, and then we established an approach for rapid identification of antioxidant peptides from rapeseed protein hydrolyzate by combined use with NANO-Q-TOF mass spectrometry. Four peptides(HL, IR, RW and VY) were found in hydrolyzate, finally the cleavage sites map was built by sequence alignment. This method was fast, efficient and accurate.
     The IC50of peptides obtained by in-silico hydrolysisfrom rapeseed protein was predicted by QSARmodel.Then six ACE inhibitory peptides were found in hydrolyzate by NANO-Q-TOF mass spectrometry.A peptide (sequenced GRD) with high ACE inhibitory activity was screened by molecular docking method and its predicted IC50was7.54μM. GRD has not been reported in the literature, so it is a newly discovered ACE inhibitory peptide. Its source protein is a kinf of Napin protein (oleosin-Iike protein, ID in NCBI:ABD14345), and it can be obtained by hydrolysis using Pepsin. CDOCKER method was used to screen peptide with4-6 amino acid residues, the results showed that tetrapeptide IYKY, IYRT and IRQQ; pentapeptide QQEEP, IRQQL and IYDVR and hexapeptide VRGYKK, YKKILV and RDMHQK are most likely highly active ACE inhibitory peptides.
     Spontaneously hypertensive rats (SHR) model was used to study the blood pressure lowering effect of peptides in vivo, and to reveal the ACE inhibitory mechanism of VSV and on FL. FL and VSV both had were SBP-lowering effect in SHR rats, and SBP of VSV high-dose group decreased by22.8mmHg during4h after administration, and23.6mmHg in long-term administration experiment respectively. This indicated that VSV was expected as a functional food or hypotensive agent in future treatment. Docking results showed that:hydrogen bonds and the role of intermolecular forces were formed among peptide, protein active region and water molecules, thereby the peptides created a competitive inhibition. Both FL and VSV promote activity of antioxidant enzymes, SOD and CAT, with increasing MDA level in brain and decreasing reduced GSH level in SHRs to a different extent after long-term oral administration. This suggested that FL and VSV can be as added as antioxidant in functional food.
     The results of this study provided basis for the development and utilization of resources rapeseed proteins as functional food ingredients to improve the added value. And the establishment of a rapid method for bioactive peptides screening gave a new thinking of bioactive peptides research.
引文
1. Akalin, P. K. Introduction to bioinformatics. Molecular Nutrition& Food Research.2006,50(7):610-619.
    2. 孙啸,陆祖宏,谢建明(2005)生物信息学基础,清华大学出版社有限公司.
    3. 蒋彦(2003)基础生物信息学及应用,少年儿童出版社.
    4. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov,I. N., Bourne, P. E. The protein data bank. Nucleic Acids Research. 2000,28(1):235-242.
    5. Baker, D., Sali, A. Protein structure prediction and structural genomics. Science.2001,294(5540):93-96.
    6. Mohabatkar, H., Keyhanfar, M., Behbahani, M. Protein Bioinformatics Applied to Virology. Current Protein & Peptide Science.2012,13(6):547-559.
    7. Choong, Y. S., Tye, G. J., Lim, T. S. Minireview:Applied Structural Bioinformatics in Proteomics. Protein Journal.2013,32(7):505-511.
    8. Bulgakov, V. P., Tsitsiashvili, G. S. Bioinformatics analysis of protein interaction networks:Statistics, topologies, and meeting the standards of experimental biologists. Biochemistry-moscow.2013,78(10):1098-1103.
    9. Bellgard, M. I., Bellgard, S. E. A Bioinformatics Framework for plant pathologists to deliver global food security outcomes Keynote address from the 18th Australasian Plant Pathology Society Conference 2011. Australasian Plant Pathology.2012,41(2):113-124.
    10. Ophir, R. Bioinformatics Tools for Marker Discovery in Plant Breeding. Israel Journal of Chemistry.2013,53(3-4):173-179.
    11. Sharma, V., Sarkar,1. N. Bioinformatics opportunities for identification and study of medicinal plants. Briefings in Bioinformatics.2013,14(2):238-250.
    12. Herrero, M.. Simo, C., Garcia-Canas, V., Ibanez, E., Cifuentes, A. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews.2012,31(1):49-69.
    13. Malkaram, S. A., Hassan, Y. I., Zempleni, J. Online Tools for Bioinformatics Analyses in Nutrition Sciences. Advances in Nutrition.2012,3(5):654-665.
    14. 张太奎,刘峥,朱芳明,张汉尧.10种观赏植物查尔酮合成酶基因生物信息学分析.西部林业科学.2013,42(5):62-68.
    15. 刘大军,秦智伟,周秀艳,武涛,辛明.黄瓜基因组中抗霜霉病候选基因的生物信息学及其表达特异性.中国农业科学.2013,46(19):4066-4074.
    16. 袁广胜,杜娟,高健.玉米穗粒腐病差异表达基因的生物信息学分析.玉米科学.2013,21(5):46-51.
    17. Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto, M., Abe, T. Rice annotation project database (RAP-DB):an integrative and interactive database for rice genomics. Plant and Cell Physiology.2013,54(2):D741-D744
    18. Schaeffer, M. L., Harper, L. C., Gardiner, J. M., Andorf, C. M., Campbell, D. A., Cannon, E. K., Sen, T. Z., Lawrence, C. J. MaizeGDB:curation and outreach go hand-in-hand. Database:The Journal of Biological Databases And Curation.2011,2011 (22):1-1
    19. Carollo, V., Matthews, D. E., Lazo, G. R., Blake, T. K., Hummel, D. D., Lui, N., Hane, D. L., Anderson, O. D. GrainGenes 2.0. An improved resource for the small-grains community. Plant Physiology.2005,139(2):643-651.
    20. Grant, D., Nelson, R. T., Cannon, S. B., Shoemaker, R. C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research. 2010,38(suppl 1):D843-D846.
    21. Fei, Z., Joung, J.-G., Tang, X., Zheng, Y, Huang, M., Lee, J. M., McQuinn, R., Tieman, D. M., Alba, R., Klee, H. J. Tomato Functional Genomics Database:a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Research.2011,39(1):D1156-D1163.
    22. 邹泽红,何颖,阮林,孙宝清,陈惠芳,陈德,刘世明,杨晓光,陶爱林.85种转化基因的过敏原性生物信息学评价.科学通报.2012,57(16):1480-1488.
    23. 肖杰,吴序栎,王琳琳,徐宏.花生profilin蛋白的生物信息学分析.免疫学杂志.2011,27(2):158-161.
    24.夏立新,闫浩,汤慕瑾,朱海,刘志刚.花生过敏原Ara h2与Ara h6的生物信息学比较研究.深圳大学学报理工版.2010,27(2):241-245.
    25. 农业部市场与经济信息司(2012)2012中国农产品市场报告经济管理出版社.
    26. Aleksandra Szydlowska-Czerniak a, lwona Bartkowiak-Broda b, Igor Karlovic,Gyorgy Karlovits d, Edward Szlyk. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chemistry.2011,127:556-563.
    27. Bell, J., Keith, M. A survey of variation in the chemical composition of commercial canola meal produced in western Canadian crushing plants. Canadian Journal of Animal Science.1991,71(2):469-480.
    28. Salmon, R. Rapeseed gum in poultry diets. Canadian Journal of Animal Science.1970,50:211-212.
    29. Bell, J. Factors affecting the nutritional value of canola meal:a review. Canadian Journal of Animal Science.1993,73(4):689-697.
    30. Sharma, H., Ingalls, J., Devlin, T. Apparent digestibility of Tower and Candle rapeseed meals by Holstein bull calves. Canadian Journal of Animal Science. 1980,60(4):915-918.
    31. 兰时乐,毛小伟,肖调义,王红权,邓元元,谭斌.菜籽粕混合菌固体发酵脱毒条件的响应面优化研究.动物营养学报.2013,25(3):617-627.
    32. 孙宏.微生物发酵法对菜粕脱毒及蛋白品质改良的研究[D].武汉:华中农业大学.2009.
    33. Damgaard, B. M., Weisbjerg, M. R., Larsen, T. Priming the cow for lactation by rapeseed supplementation in the dry period. Journal of Dairy Science.2013, 96(6):3652-3661.
    34. 王雅君,陈力力,廖杰琼,范琳,尹丽敏.发酵菜籽粕高产纳豆激酶菌株的选育研究.安徽农业科学.2012,40(34):16567-16569.
    35. 郑华,熊晶,石俊雄.施用菜籽粕对烤烟根际微生物数量及种群的影响.中国农学通报.2012,28(1):142-147.
    36. 顾斌,马海乐,刘斌,何荣海,骆琳.混菌发酵菜籽粕制备多肽技术的研究.食品工业科技.2011,5:036.
    37. 张恒,刘立鹤,贺国龙,刘军,黄峰.凡纳滨对虾饲料中菜籽粕替代鱼粉适宜比例的研究.水产科学.2011,30(10):591-596.
    38. 赵妍嫣,胡林林,赵宏伟,姜绍通.酶解冷榨菜籽蛋白制备肉味香精的工艺研究.中国调味品.2011,36(1):93-96.
    39. Pihlanto, A., Johansson, T., Makinen, S. Inhibition of angiotensin I-converting enzyme and lipid peroxidation by fermented rapeseed and flaxseed meal. Engineering in Life Sciences.2012,12(4):450-456.
    40. Makinen, S., Johannson, T., Gerd, E. V., Pihlava, J. M., Pihlanto, A. Angiotensin I-converting enzyme inhibitory and antioxidant properties of rapeseed hydrolysates. Journal of Functional Foods.2012,4(3):575-583.
    41. He, R., Ju, X., Yuan, J., Wang, L., Girgih, A. T., Aluko, R. E. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research International.2012,49(1):432-438.
    42. Zhang, S. B., Wang, Z., Xu, S. Y. Antioxidant and antithrombotic activities of rapeseed peptides. Journal of The American Oil Chemists Society.2008,85(6): 521-527.
    43. Wu, J., Aluko, R. E., Muir, A. D. Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chemistry.2008,111(4):942-950.
    44. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., Marc, I. Hydrolysis of rapeseed protein isolates:Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry.2007,42:1419-1428.
    45. He, R., Girgih, A. T., Malomo, S. A., Ju, X., Aluko, R. E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods.2013,5(1):219-227.
    46. He, R,, Alashi, A., Malomo, S. A., Girgih, A. T., Chao, D., Ju, X., Aluko, R. E. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry.2013,141(1):153-159.
    47. He, R., Malomo, S. A., Alashi, A., Girgih, A. T., Ju, X., Alulzo, R. E. Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods.2013,5(2):781-789.
    48. He, R., Malomo, S. A., Girgih, A. T., Ju, X., Auko, R. E. Glycinyl-Histidinyl-Serine (GHS), a Novel Rapeseed Protein-Derived Peptide Has Blood Pressure-Lowering Effect in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry.2013,61(35):8396-8402.
    49. Yuko Yamada, K. O., Andrzej W. Lipkowski, Masaaki Yoshikawa. Rapakinin, Arg-Ile-Tyr, derived from rapeseed napin, shows anti-opioid activity via the prostaglandin IP receptor followed by the cholecystokinin CCK2 receptor in mice. Peptides.2011,32:281-285.
    50. Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M, Darewicz, M. BIOPEP database and other programs for processing bioactive peptide sequences. Journal of Aoac International.2008,91(4):965-980.
    51. Henschen, A., Lottspeich, F., Brantl, V., Teschemacher, H. Novel opioid peptides derived from casein (beta-casomorphins).Ⅱ. Structure of active components from bovine casein peptone. Hoppe-Seyler's Zeitschrift fur physiologische Chemie.1979,360(9):1217.
    52. Tsuge, Y., Shimoyamada, M., Watanabe, K. Structural features of Newcastle disease virus-and anti-ovomucin antibody-binding glycopeptides from pronase-treated ovomucin. Journal of Agricultural and Food Chemistry.1997, 45(7):2393-2398.
    53. Fujita, H., Usui, H., Kurahashi, K., Yoshikawa, M. Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin. Peptides.1995,16(5):785-790.
    54. Gill, I., Lopez-Fandino. R., Jorba, X., Vulfson, E. N. Biologically active peptides and enzymatic approaches to their production. Hnzyme and Microbial Technology,1996,18(3):162-183.
    55. Perez Espitia, P. J., Ferreira Soares, N. d. F., dos Reis Coimbra, J. S., de Andrade. N. J., Cruz, R. S., Alves Medeiros, E. A. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Comprehensive Reviews in Food Science and Food Safety.2012,11(2): 187-204.
    56. Maruyama, S., Ohmori, T., Nakagami, T. Prolylendopeptidase inhibitory activity of a glial fibrillary acidic protein fragment and other proline-rich peptides. Bioscience Biotechnology and Biochemistry,1996,60(2):358-359.
    57. Nogata. Y., Nagamine. T., Yanaka, M., Ohta,H. Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry,2009,57(15):6618-6622.
    58. Dewar,D., Pereira, S. P., Ciclitira, P. J. The pathogenesis of coeliac disease. The international journal of biochemistry & cell biology,2004,36(1):17-24.
    59. Lopez-Hxposito, I., Minervini. F., Amigo, I., Recio. I. Identification of antibacterial peptides from bovine kappa-casein. Journal of Food Protection. 2006.69(12):2992-2997.
    60. Fukudome. S.-i., Yoshikawa. M. Opioid peptides derived from wheat gluten: their isolation and characterization. Febs Letters.1992.296(1):107-111.
    61. Ringseis. R., Matthes. B., Lehmann. V., Becker. K., Schops, R., Ulbrich-Hofmann, R., Hder, K. Peptides and hydrolysates from casein and soy protein modulate the release ol-vasoactive substances from human aortic endothelial cells. Biochimica et Biophysica Acta (BBA)-General Subjects. 2005,1721(1):89-97.
    62. Morifuji, M., Koga. J., Kawanaka. K., Higuchi, M. Branched-chain amino acid-containing dipeptides. identified from whey protein hydrolysates. stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. Journal of Nutritional Science and Vitaminology,2009,55(1):81-86.
    63. Huang, W.-Y., Majumder, K., Wu, J. Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals. Food Chemistry.2010,123(3):635-641.
    64. Bella Jr, A. M., Erickson, R. H., Kim, Y. S. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV:kinetic properties and substrate specificities of the purified enzyme. Archives of Biochemistry and Biophysics. 1982,218(1):156-162.
    65. Li, H., Aluko, R. E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. Journal of Agricultural and Food Chemistry.2010,58(21):11471-11476.
    66. Ashmarin, I., Karazeeva, E., Lyapina. L., Samonina, G. The simplest proline-containing peptides PG, GP, PGP, and GPGG:regulatory activity and possible sources of biosynthesis. Biochemistry. Biokhimiia.1998,63(2):119.
    67. Sleigh, S. H., Tame, J. R., Dodson, E. J., Wilkinson, A. J. Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine. Biochemistry.1997, 36(32):9747-9758.
    68. Lee, H.-J., Wang, N. X., Shao, Y., Zheng, J. J. Identification of tripeptides recognized by the PDZ domain of Dishevelled. Bioorganic & Medicinal Chemistry.2009,17(4):1701-1708.
    69. Chambers, B. J., Klein, N. W., Conrad, S. H., Ruppenthal, G. C., Sackett, G. P., Weeks, B. S., Kleinman, H. K, Reproduction and sera embryotoxicity after immunization of monkeys with the laminin peptides YIGSR, RGD, and IKVAV. Proceedings of the National Academy of Sciences.1995,92(15): 6818-6822.
    70. Suetsuna, K. Separation and identification of angiotensin I-converting enzyme inhibitory peptides from peptic digest of Hizikia fusiformis protein. Nippon Suisan Gakkaishi.1998,64(5):862-866.
    71. Suetsuna, K., Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame(Undaria pinnatijida). The Journal of nutritional biochemistry,2000,11(9):450-454.
    72. Sato, M., Oba. T., Yamaguchi, T., Nakano, T., Kahara, T.. Funayama, K., Kobayashi, A. Antihypertensive effects of hydrolysates of wakame (Undaria pinnatifida) and their angiotensin-I-converting enzyme inhibitory activity. Annals of Nutrition and Metabolism.2002,46(6):259-267.
    73. Suetsuna, K., Maekawa. K., Chen, J.-R. Antihypertensive effects of Undaria pinnatijida (wakame) peptide on blood pressure in spontaneously hypertensive rats. The Journal of nutritional biochemistry.2004.15(5):267-272.
    74. Minoru, S., Takashi, O., Takao, H., Toshiyasu, Y., Toshiki, N., Tadao, S., Koji, M., Takashi, K., Katsura. F., Akio. K. Production of the blood pressure lowing peptides from brown alga (Undaria pinnatifida). Journal of Ocean University of China.2005,4(3):209-213.
    75. 唐彩华,毛江森,陈勇.合成多肽疫苗的免疫原性.国际流行病学传染病学杂志ISTIC.2007,34(3).
    76. 阳泰.王红宁,汪雪,高荣,唐俊妮,李玉玲,郭自城.抗禽传染性支气管炎病毒多肽疫苗EpiA免疫原性研究.中国生物工程杂志.2009,29(3):20-24.
    77. Meisel, H., Bockelmann, W. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek.1999.76(1-4):207-215.
    78. Meisel. U. Biochemical properties of peptides encrypted in bovine milk proteins. Current Medicinal Chemistry.2005.12(16):1905-1919.
    79. Silva, S. V., Malcata, F. X. Caseins as source of bioactive peptides. International Dairy Journal.2005,15(1):1-15.
    80. (iobbetti, M.. Minervini, F., Rizzello, C. G. Angiotensin I-converting enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology,2004,57(23):173-188.
    81. Ryhanen, E.-L., Pihlanto-Leppala, A., Pahkala, E. A new type of ripened, low-fat cheese with bioactive properties. International Dairy Journal.2001, 11(4):441-447.
    82. FitzGerald, R. J., Murray, B. A., Walsh, D. J. Hypotensive peptides from milk proteins. The Journal of Nutrition.2004,134(4):980S-988S.
    83. Tidona, F., Criscione, A., Guastella, A. M., Zuccaro, A., Bordonaro, S., Marletta, D. Bioactive peptides in dairy products. Italian Journal of Animal Science.2009,8(3):315-340.
    84. Hartmann, R., Meisel, H. Food-derived peptides with biological activity:from research to food applications. Current Opinion In Biotechnology.2007,18(2): 163-169.
    85. Fitzgerald, R. J., Murray, B. A. Bioactive peptides and lactic fermentations. International Journal of Dairy Technology.2006,59(2):118-125.
    86. Qian, Z.-J., Jung, W.-K., Byun, H.-G., Kim, S.-K. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, (Crassostrea gigas) against free radical induced DNA damage. Bioresource Technology.2008,99(9):3365-3371.
    87. Mendis, E., Rajapakse, N., Byun, H.-G., Kim, S.-K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences.2005,77(17):2166-2178.
    88. Mendis, E., Rajapakse, N., Kim, S.-K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry.2005,53(3): 581-587.
    89. Sheih, I., Wu, T.-K., Fang, T. J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology.2009,100(13):3419-3425.
    90. Jung, W.-K., Rajapakse, N., Kim, S.-K. Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis. European Food Research and Technology.2005,220(5-6): 535-539.
    91. Byun, H.-G., Lee, J. K., Park, H. G., Jeon, J.-K., Kim, S.-K. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry.2009,44(8):842-846.
    92. Je, J.-Y., Qian, Z.-J., Byun, H.-G., Kim, S.-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry.2007,42(5):840-846.
    93. Ranathunga, S., Rajapakse, N., Kim, S.-K. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). European Food Research and Technology.2006,222(3-4):310-315.
    94. Jun, S.-Y., Park, P.-J., Jung, W.-K., Kim, S.-K. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology.2004,219(1):20-26.
    95. 肖凯军,曾庆孝.大豆分离蛋白的酶法改性:大豆多肽的制备及其在老年人奶粉中的应用.食品科学.1995,16(9):30-34.
    96. 高艳江,张勇.多肽类饲料添加剂——恩拉霉素.饲料博览.2010,(004):32-35.
    97. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C, Kakuda, Y., Xue, S. J. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry.2008,108(2):727-736.
    98. Wu, H.-C., Chen, H.-M., Shiau, C.-Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International.2003,36(9):949-957.
    99. Guo, H., Kouzuma, Y., Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry.2009, 113(1):238-245.
    100.石丽梅,唐学燕,何志勇,熊幼翎,陈洁,黄小林.玉米抗氧化肽对于中式香肠的氧化稳定性的影响.食品科技.2008,10:135-139.
    101.李晓密,李新民.氧自由基的特点及抗氧化自由基药物在停搏液中的应用.沈阳部队医药.2009,22(5):252-254.
    102. 郑鸿雁.玉米肽抗疲劳作用的实验研究.中国粮油学报.2005,20(1):33-35.
    103. 樊金娟,付岩松,宗立立,张心昱,罗霞,朱延姝.米糠抗氧化肽的抗衰老作用.食品科学.2010,31(23):40-43.
    104. Shapiro, R., Holmquist, B., Riordan, J. F. Anion activation of angiotensin converting enzyme:dependence on nature of substrate. Biochemistry.1983, 22(16):3850-3857.
    105. El-Dorry, H., Bull, H. G, Iwata, K., Thornberry, N. A., Cordes, E. H., Soffer, R. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. Journal of Biological Chemistry.1982,257(23): 14128-14133.
    106. Naftilan, A. J., Pratt, R. E., Dzau, V. J. Induction of Platelet-Derived Growth Factor-A-Chain And C-Myc Gene Expressions By Angiotensin-li In Cultured Rat Vascular Smooth-Muscle Cells. Journal of Clinical Investigation.1989, 83(4):1419-1424.
    107. Natesh, R., Schwager, S. L. U., Sturrock, E. D., Acharya, K. R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature.2003,421(6922):551-554.
    108. Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S., Itoh, M. Peptide inhibitors for angiotensin 1-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science.2001,57(3):319-324.
    109. Nakashima, Y., Arihara, K., Sasaki, A., Mio, H., Ishikawa, S., Itoh, M. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. Journal of Food Science.2002, 67(1):434-437.
    110. Katayama, K., Tomatsu, M., Kawahara, S., Yamauchi, K., Fuchu, H., Kodama, Y., Kawamura, Y., Muguruma, M. Inhibitory profile of nonapeptide derived from porcine troponin C against angiotensin I-converting enzyme. Journal of Agricultural and Food Chemistry.2004,52(4):771-775.
    111. Katayama, K., Tomatsu, M., Fuchu, H., Sugiyama, M., Kawahara, S., Yamauchi, K., Kawamura, Y, Muguruma, M. Purification and characterization of an angiotensin I-converting enzyme inhibitory peptide derived from porcine troponin C. Animal Science Journal.2003,74(1):53-58.
    112. Muguruma, M., Ahhmed, A. M., Katayama, K., Kawahara, S., Maruyama, M., Nakamura, T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B:Evaluation of its antihypertensive effects in vivo. Food Chemistry.2009,114(2):516-522.
    113. Katayama, K., Anggraeni, H. E., Mori, T., Ahhmed, A. M., Kawahara, S., Sugiyama, M., Nakayama, T., Maruyama, M., Muguruma, M. Porcine skeletal muscle troponin is a good source of peptides with angiotensin-Ⅰ converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry.2007,56(2): 355-360.
    114. Escudero, E., Sentandreu, M. A., Arihara, K., Toldra, F. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. Journal of Agricultural and Food Chemistry.2010,58(5):2895-2901.
    115. Iroyukifujita, H., Eiichiyokoyama, K., Yoshikawa, M. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins. Journal of Food Science.2000,65(4): 564-569.
    116. Saiga, A., Okumura, T., Makihara, T., Katsuda, S.-I., Morimatsu, F., Nishimura, T. Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. Journal of Agricultural and Food Chemistry.2006,54(3):942-945.
    117. Saiga, A., Okumura, T., Makihara, T., Katsuta, S., Shimizu, T., Yamada, R., Nishimura, T. Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. Journal of Agricultural and Food Chemistry.2003,51(6):1741-1745.
    118. Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T., Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry.2008,56(20):9586-9591.
    119. Jang, A., Lee, M. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science.2005,69(4): 653-661.
    120. Jang, A., Cho, Y., Lee, J., Shin, J., Lee, M., Kim, I. The effect of beef peptide on blood pressure and serum lipid concentration of spontaneously hypertensive rat (SHR). Journal of Animal Science and Technology.2004,46.
    121. Jang, A., Jo, C., Kang, K.-S., Lee, M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry.2008,107(1):327-336.
    122. Kim, S.-K., Byun, H.-G., Park, P.-J., Shahidi, F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry.2001,49(6):2992-2997.
    123. Yokoyama, K., Chiba, H., Yoshikawa, M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Bioscience, biotechnology, and biochemistry.1992,56(10):1541.
    124. Fujita, H., Yoshikawa, M. LKPNM:a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology.1999,44(1):123-127.
    125. Ono, S., Hosokawa, M., Miyashita, K., Takahashi, K. Isolation of Peptides with Angiotensin I-converting Enzyme Inhibitory Effect Derived from Hydrolysate of Upstream Chum Salmon Muscle. Journal of Food Science. 2003,68(5):1611-1614.
    126. Matsufuji, H., Matsui, T., Seki, E., Osajima, K., Nakashima, M., Osajima, Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Bioscience, biotechnology, and biochemistry.1994,58(12):2244-2245.
    127. Yamamoto, N., Ejiri, M., Mizuno, S. Biogenic peptides and their potential use. Current Pharmaceutical Design.2003,9(16):1345-1355.
    128. Hellberg, S., Sjoestroem, M., Skagerberg, B., Wold, S. Peptide quantitative structure-activity relationships, a multivariate approach. Journal of Medicinal Chemistry.1987,30(7):1126-1135.
    129. Collantes, E. R., Dunn III, W. J. Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogs. Journal of Medicinal Chemistry.1995,38(14):2705-2713.
    130. Zaliani, A., Gancia, E. MS-WHIM scores for amino acids:a new 3D-description for peptide QSAR and QSPR studies. Journal of Chemical Information and Computer Sciences.1999,39(3):525-533.
    131. Cocchi, M., Johansson, E. Amino acids characterization by GRID and multivariate data analysis. Quantitative Structure-Activity Relationships.1993, 12(1):1-8.
    132. Liu, S., Yin, C., Cai, S., Li, Z. A novel MHDV descriptor for dipeptide QSAR studies. Journal of Chinese Chemical Society TAIPEI.2001,48(2):253-260.
    133. 丁俊杰,丁晓琴,赵立峰,陈冀胜.新型三维氨基酸结构描述符的研究及其在多肽QSAR中的应用.药学学报.2005,40(4):340-346.
    134. 梅虎,周原,孙立力,李志良.一种新的氨基酸描述子及其在肽QSAR中的应用.物理化学学报.2004,20(8):821-825.
    135. Cantelmo, A. R., Cammarota, R., Noonan, D. M., Focaccetti, C, Comoglio, P. M., Prat, M., Albini, A. Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene.2010,29(38):5286-5298.
    136. Dong, M., Lam, P. C. H., Gao, F., Hosohata, K., Pinon, D. I., Sexton, P. M., Abagyan, R., Miller, L. J. Molecular approximations between residues 21 and 23 of secretin and its receptor:Development of a model for peptide docking with the amino terminus of the secretin receptor. Molecular Pharmacology. 2007,72(2):280-290.
    137. Fengler, A., Mrestani-Klaus, C., Reinhold, D., Wrenger, S.. Ansorge. S., Faust, J., Neubert, K., Brandt, W. Determination of the solution conformation of HIV-1 Tat(1-9) peptides by means of molecular dynamics simulations considering NMR data and docking studies into an active site model of DP IV. Journal of Molecular Modeling.1998,4(6):200-210.
    138. Gao, J., Cheng, Y., Cui, W., Chen, Q., Zhang, F., Du, Y., Ji, M.3D-QSAR and molecular docking studies of hydroxamic acids as peptide deformylase inhibitors. Medicinal Chemistry Research.2012,21(8):1597-1610.
    139. Gao, J., Cheng, Y., Cui, W., Zhang, F., Zhang, H., Du, Y., Ji, M. Prediction of the binding modes between macrolactin N and peptide deformylase from Staphylococcus aureus by molecular docking and molecular dynamics simulations. Medicinal Chemistry Research.2013,22(6):2889-2901.
    140. Gao, S. J., Chen, J., Brodsky, S. V., Huang, H., Adler, S., Lee, J. H., Dhadwal, N., Cohen-Gould, L., Gross, S. S., Goligorsky, M. S. Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane-A pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K-cleavable peptide on the cytoplasmic face of mitochondria. Journal of Biological Chemistry.2004,279(16):15968-15974.
    141. Gutierrez, L. M., Viniegra, S., Rueda, J., FerrerMontiel, A. V., Canaves, J. M., Montal, M. A peptide that mimics the C-terminal sequence of SNAP-25 inhibits secretory vesicle docking in chromaffin cells. Journal of Biological Chemistry.1997,272(5):2634-2639.
    142. Wu, J. P., Aluko, R. E., Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides:Quantitative structure-activity relationship study of di-and tripeptides. Journal of Agricultural and Food Chemistry.2006,54(3):732-738.
    143. Cai, J., Han, C., Hu, T., Zhang, J., Wu, D., Wang, F., Liu, Y., Ding, J., Chen, K., Yue, J., Shen, X., Jiang, H. Peptide deformylase is a potential target for anti-Helicobacter pylori drugs:Reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Science.2006,15(9):2071-2081.
    144. Chen, P.-C., Kuyucak, S. Developing a Comparative Docking Protocol for the Prediction of Peptide Selectivity Profiles:Investigation of Potassium Channel Toxins. Toxins.2012,4(2):110-138.
    145. 侯生珍,吕凯,赵宗鹏.双低菜籽粕饲喂生长肥育猪的效果研究.安徽农业科学.2011,2:1034-1035.
    146. Committee, F. W. A. H. E. (1973) Energy and protein requirements, In FAO nutrition meeting report series, pp 40-73.
    147. Alsmeyer, R., Cunningham, A., Happich, M. Equations predict PER from amino acid analysis. Food Technology.1974.
    148. Morup, I., Olesen, E. New method for prediction of protein value from essential amino acid pattern [Biological value of foods, nitrogen balance]. Nutrition Reports International.1976,13.
    149. Wu, J., Aluko, R. E., Nakai, S. Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides:Quantitative Structure-Activity Relationship Modeling of Peptides Containing 4-10 Amino Acid Residues. QSAR & Combinatorial Science.2006,25(10):873-880.
    150. 陈艳君.2012年我国油菜籽及菜籽油市场分析暨2013年展望.粮食与油脂.2013,1:44-48.
    151. Murphy, D. J., Cummins, I., Kang, A. S. Synthesis of The Major Oil-Body Membrane-Protein in Developing Rapeseed (Brassica Napus) Embryos-Integration With Storage-Lipid And Storage-Protein Synthesis And Implications for The Mechanism Of Oil-Body Formation. Biochemical Journal.1989,258(1):285-293.
    152. 胡永娜,王之盛,李爱科.固态发酵菜籽粕对肉仔鸡生长性能、免疫功能及消化酶活性的影响.动物营养学报.2012,7:1293-1301.
    153. 金素雅,叶元土,蔡春芳,肖顺应,李宾,殷永风,姚仕彬.4种菜籽饼粕对草鱼生长性能的影响.动物营养学报.2011,23(2):349-356.
    154. Coda, R., Rizzello, C. G., Pinto, D., Gobbetti, M. Selected Lactic Acid Bacteria Synthesize Antioxidant Peptides during Sourdough Fermentation of Cereal Flours. Applied and Environmental Microbiology.2012,78(4): 1087-1096.
    155. Yu, X., Wu, X., Dong, D., Zhu, D. Purification and Antioxidant Activity Determination of Soybean Peptide Fermented from Soy Film By-Products by Aspergillus oryzae. Journal of the Chinese Cereals and Oils Association.2012, 27(3):20-23.
    156. Niu, L.-Y., Jiang, S.-T., Pan, L.-J. Preparation and evaluation of antioxidant activities of peptides obtained from defatted wheat germ by fermentation. Journal of Food Science and Technology-mysore.2013,50(1):53-61.
    157. Power, O., Jakeman, P., FitzGerald, R. J. Antioxidative peptides:enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids.2013,44(3):797-820.
    158. Maria del Mar Yust, Justo Pedroche, Cristina Megias, Julio Giron-Calle, Manuel Alaiz, Francisco Millan, Vioque, J. Rapeseed protein hydrolysates:a source of HIV protease peptide inhibitors. Food Chemistry.2004,87:6.
    159. Chen, H. M., Muramoto, K., Yamauchi, F., Nokihara, K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry.1996,44(9): 2619-2623.
    160. Cheng, Y., Chen, J., Xiong, Y. L. Chromatographic Separation and Tandem MS Identification of Active Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry.2010,58(15):8825-8832.
    161. Liu, L., Liu, L., Lu, B., Xia, D., Zhang, Y. Evaluation of Antihypertensive and Antihyperlipidemic Effects of Bamboo Shoot Angiotensin Converting Enzyme Inhibitory Peptide in Vivo. Journal of Agricultural and Food Chemistry.2012, 60(45):11351-11358.
    162. Ming, L., Yi, S., Chi, L., Zheng, H., Li, Z., Deng, Y., Huang, J., Li, L., Fang, H. Long-Term Antihypertensive Effect of Angiotensin-Converting Enzyme Inhibitory Peptide LAP. Kidney & Blood Pressure Research.2011,34(5): 358-364.
    163. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. Avogadro:an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics.2012,4(1): 1-17.
    164. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. AutoDock4 and Auto Dock Tools4:Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry.2009, 30(16):2785-2791.
    165. Laskowski, R. A., Swindells, M. B. LigPlot+:Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling.2011,51 (10):2778-2786.
    166. Wu, G. S., Robertson, D. H., Brooks, C. L., Vieth, M. Detailed analysis of grid-based molecular docking:A case study of CDOCKER-A CHARMm-based MD docking algorithm. Journal of Computational Chemistry. 2003,24(13):1549-1562.
    167. Wang, Z.-L., Zhang, S.-S., Wang, W., Feng, F.-Q., Shan, W.-G. A novel angiotensin i converting enzyme inhibitory peptide from the milk casein: virtual screening and docking studies. Agricultural Sciences in China.2011, 10(3):463-467.
    168. Wang, Y., Mi, J., Shan, X. y., Wang, Q. J., Ge, K. y. Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. International Journal of Obesity.2007,31(1):177-188.
    169. Liang, Y.-J., Xi, B., Hu, Y.-H., Wang, C., Liu, J.-T., Yan, Y.-K., Xu, T., Wang, R.-Q. Trends in blood pressure and hypertension among Chinese children and adolescents:China Health and Nutrition Surveys 1991-2004. Blood Pressure. 2011,20(1):45-53.
    170. Hermansen, K. Diet, blood pressure and hypertension. British Journal of Nutrition.2000,83:S113-S119.
    171. Zeng, Y.-w., Du, J., Pu, X.-y., Yang, S.-m., Yang, T., Jia, P. Strategies of functional food for hypertension prevention in China. Journal of Medicinal Plants Research.2011,5(24):5671-5676.
    172. Majima, M., Hayashi, I., Fujita, T., Ito, H., Nakajima, S., Katori, M. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention. Immunopharmacology.1999, 44(1-2):145-152.
    173. Curtiss, C., Cohn, J. N., Vrobel, T., Franciosa, J. A. ROLE OF RENIN-ANGIOTENSITM SYSTEM IN SYSTEMIC VASOCONSTRICTION OF CHRONIC CONGESTIVE HEART-FAILURE. Circulation.1978,58(5): 763-770.
    174. Cushman, D. W., Cheung, H. S. SPECTROPHOTOMETRIC ASSAY AND PROPERTIES OF ANGIOTENSIN-CONVERTING ENZYME OF RABBIT LUNG. Biochemical Pharmacology.1971,20(7):1637-1648.
    175. Toyoshima, H., Takahashi, K., Akera, T. The impact of side effects on hypertension management:A Japanese survey. Clinical Therapeutics.1997, 19(6):1458-1469.
    176. Turkkan, J. S. Behavioral Performance Effects of Antihypertensive Drugs-Human and Animal Studies. Neuroscience and Biobehavioral Reviews.1988, 12(2):111-122.
    177. Wijesekara, I., Qian, Z. J., Ryu, B., Ngo, D. H., Kim, S. K. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Research International.2011, 44(3):703-707.
    178. Li, Y., Zhou, J., Huang, K., Sun, Y., Zeng, X. Purification of a Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide with an Antihypertensive Effect from Loach(Misgurnus anguillicaudatus). Journal of Agricultural and Food Chemistry.2012,60(5):1320-1325.
    179. Ko, S.-C., Kang, N., Kim, E.-A., Kang, M. C., Lee, S.-H., Kang, S.-M., Lee, J.-B., Jeon, B.-T., Kim, S.-K., Park, S.-J., Park, P.-J., Jung, W.-K., Kim, D., Jeon, Y.-J. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochemistry.2012,47(12): 2005-2011.
    180. Majumder, K., Panahi, S., Kaufman, S., Wu, J. Fried egg digest decreases blood pressure in spontaneous hypertensive rats. Journal of Functional Foods. 2013,5(1):187-194.
    181. Zhuang, Y., Sun, L., Zhang, Y, Liu, G. Antihypertensive Effect of Long-Term Oral Administration of Jellyfish (Rhopilema esculentum) Collagen Peptides on Renovascular Hypertension. Marine Drugs.2012,10(2):417-426.
    182. Wang, W., Wang, N., Zhou, Y., Zhang, Y, Xu, L. H., Xu, J. F., Feng, F. Q., He, G. Q. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. European Food Research and Technology.2011,232(1):29-38.
    183. FitzGerald, R. J., Murray, B. A., Walsh, D. J. Hypotensive peptides from milk proteins. Journal of Nutrition.2004,134(4):980S-988S.
    184. Cao, W., Zhang, C., Hong, P., Ji, H., Hao, J. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats. International Journal of Food Science and Technology.2010,45(5):959-965.
    185. Ognibene, D. T., Carvalho, L. C. R. M., Costa, C. A., Rocha, A. P. M., de Moura, R. S., Resende, A. C. Role of Renin-Angiotensin System and Oxidative Status on the Maternal Cardiovascular Regulation in Spontaneously Hypertensive Rats. American Journal of Hypertension.2012,25(4):498-504.
    186. 王弓力,邵凌云,任雨笙,杨建萍,徐瑾.妊娠高血压综合征患者抗氧化能力及凝血,纤溶系统的变化.中华妇产科杂志.2001,36(5):308-309.
    187. 杜荣增,任雨笙,黄高忠,廖德宁,吴宗贵.茶色素对高血压病患者红细胞超氧化物歧化酶和血浆总抗氧化能力的影响.现代中西医结合杂志2004,13(1):13-15.
    188. Yamada, Y., Iwasaki, M., Usui, H., Ohinata, K., Marczak, E. D., Lipkowski, A. W., Yoshikawa, M. Rapakinin, an anti-hypertensive peptide derived from rapeseed protein, dilates mesenteric artery of spontaneously hypertensive rats via the prostaglandin IP receptor followed by CCK1 receptor. Peptides.2010, 31(5):909-914.
    189. Nazeer, R. A., Kumar, N. S. S., Ganesh, R. J. In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides.2012,35(2):261-268.
    190. Solin, A. V., Lyashev, Y. D. Effect of Opioid Peptides on the Content of LPO Products and Antioxidant Enzyme Activity in the Liver of Rats after Restraint Stress. Bulletin of Experimental Biology and Medicine.2012,153(6): 828-830.
    191. Tuncel, N., Korkmaz, O. T., Tekin, N., Sener, E., Akyuz, F., Inal, M. Antioxidant and Anti-Apoptotic Activity of Vasoactive Intestinal Peptide (VIP) Against 6-Hydroxy Dopamine Toxicity in the Rat Corpus Striatum. Journal of Molecular Neuroscience.2012,46(1):51-57.
    192. Ozcankaya, R., Delibas, N., Eren, I. Activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) and levels of malonildialdehyde (MDA) and reducted glutathione (GSH) in schizophrenia patients with negative or positive symptoms. Biomedical Research (Aligarh).2001,12(3):225-230.
    193. Choi, E.-Y., Jang, J.-Y., Cho, Y.-O. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats. Nutrition Research and Practice. 2010,4(4):283-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700