用户名: 密码: 验证码:
NiFe_2O_4基惰性阳极制备及金属/NiFe_2O_4润湿性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惰性阳极材料应用于铝电解工业是当前研究的热门课题,更是铝生产工业实现节能环保、减少排放与提高效率的重要发展方向。经过多年的研究,惰性阳极制备与性能研究已取得较大进展,但因金属/陶瓷间不润湿、金属析出等问题而很难达到现行铝电解工艺下的高电导率、耐腐蚀、高机械强度等要求,严重阻碍了铝电解用惰性阳极实现工业化进程。
     本论文通过球磨—煅烧—二次球磨—冷等静压(CIP)成型—烧结工艺路线制备NiFe2O4-NiO-Cu-Ni隋性阳极,主要解决NiFe2O4基惰性阳极中金属铜/陶瓷之间的润湿问题和金属析出的问题,提高了惰性阳极的抗热震性、抗腐蚀性等性能。论文系统地研究了粉体的球磨工艺参数、CIP成型工艺参数、金属/NiFe2O4间的润湿性,烧结制度等工艺过程,实现了金属/NiFe2O4之间的完全润湿,为金属陶瓷惰性阳极的制备奠定了更加全面的基础。本论文的主要研究内容和结论如下:
     (1)系统地研究了球磨工艺参数,采用离散元(DEM)理论分析了球磨工艺参数与球磨效率、颗粒粒度之间的关系,得出最佳球磨工艺参数为:填水率64.1%~85.47%;小大球个数比18;转速300.9rpm;填粉率10.88%;填球率20.53%~23.88%;球磨时间6h。通过对粉体进行XRD、SEM、BET和混匀度表征得出,球磨法可制备出平均粒度为200nm左右,粒度分布较宽的不规则片状粉体。球磨混合6h可得到混匀度大于96.80%的粉体。以此同时,使用声波测量仪研究了球磨效率与球磨噪声能消耗的关系得出,球磨效率与球磨噪声能消耗关系的经验公式,并发现球磨机的工作效率随着噪声能消耗的增大而降低,粉体的粒度随着噪声能消耗的减小而减小。
     (2)对CIP成型中的升压速率、成型压力、保压时间、泄压速率、压坯的长径比等因素进行了系统的研究,得出最佳成型工艺参数为:成型压力240MPa左右;升压速率1.0MPa·s-1;保压时间对小直径压坯的影响不大;最佳泄压速率不大于0.5MPa·s-1;最佳长径比8.00。对影响CIP成型的压力和长径比的关系模拟分析得出,压坯体积密度与成型压力成正相关关系,并且得到了压缩特性曲线方和相关参数值;对压坯的平均体积密度与长径比的关系分析得到了相关方程和对应的参数值。
     (3)对新型PVP+无水乙醇复合助磨剂、分散剂、成膜剂和黏结剂进行了研究。通过SEM、EDS和XRD表征表明,随着PVP的增加和球磨时间的延长,Cu粉在陶瓷基体中的分散性提高,粉体的粒度变细,当PVP掺杂量为2%,球磨时间为24h时,混合粉体的分散性最好,平均粒度最细为43.7nm,极大地提高了球磨法制备NiFe2O4-NiO-Cu-Ni超细粉体的质量。
     (4)测量了不同制备工艺所得NiFe2O4-NiO-Cu-Ni惰性阳极的润湿角,对润湿的机理进行了探讨。通过研究得出:普通方法制备的NiFe2O4-NiO-Cu-Ni惰性阳极中金属/陶瓷的润湿角为116.7°,金属/陶瓷之间的二面角为124.6°;以无水乙醇+PVP为新型助磨剂、分散剂、成膜剂和黏结剂制备的NiFe2O4-NiO-Cu-Ni超细粉体为原料,制备的惰性阳极中金属/陶瓷的润湿角为44.3°,金属/陶瓷之间的二面角为32.7~72.9°;以无水乙醇+PVP为新型助磨剂、分散剂、成膜剂和黏结剂,Ti粉取代TiO2添加剂,制备的NiFe2O4-NiO-Cu-Ni超细粉体为原料,制备的惰性阳极中金属/陶瓷的润湿角为0°,金属/陶瓷变为全润湿,形成铺展,解决了NiFe2O4-NiO-Cu-Ni惰性阳极中金属/陶瓷之间的润湿问题。
     (5)研究表明在Ar气氛下烧结,可制备得惰性阳极目标产物,不造成金属氧化。研究了多种不同的惰性阳极制备工艺,通过比较得出,球磨—煅烧—添加水乙醇及PVP—二次球磨—CIP成型—烧结工艺是全润湿型NiFe2O4-NiO-Cu-Ni惰性阳极的最佳制备工艺。
     (6)通过研究得出:NiFe2O4-NiO-Cu-Ni超细粉的最佳烧结温度为900℃;掺杂Ti可在金属陶瓷中形成固溶体和合金,并产生反应性润湿,使金属/陶瓷间形成完全润湿,促进烧结,使金属形成均匀的半连续、连续的立体网状结构分布,阻止了晶粒长大,降低了材料的气孔率,使材料的致密度由95%左右提高到了99%以上;掺杂Ti的全润湿型惰性阳极的抗热震性提高了185.71%;静态腐蚀率比一般方法制备的惰性阳极降低了10倍以上,最小为1.235mm·y-1;随着Ti掺量的增加,惰性阳极的静态腐蚀率降低,通过研究得出惰性阳极中Ti的最佳掺杂量为1%左右。
Inert anode is becoming a hot topic and has great applied value in electrolytic production of aluminium. Energy-saving, environmentally friendly, reducing emissions and increase of efficiency are the main developing trend in electrolytic production of aluminium. Inert anode preparation and performance investigation have made great progress after many years of research. Even so, the good performance of NiFe2O4based cermet still could not meet the requirement of the inert anode for aluminum electrolysis industry due to their non-wetting of metal/NiFe2O4, electrical conductivity, corrosion resistance and mechanical strength, etc. These problems have seriously hindered the development of industrialization of inert anode.
     In the thesis, the NiFe2O4-NiO-Cu-Ni inert anode was synthesized by manufacturing route of planetary mill grinding, calcination, secondary planetary mill grinding, cold isostatic compaction (CIP) and sintering technology. The research aimed at resistances to thermal shock, corrosion resistances and wettability of metal/NiFe2O4in NiFe2O4-NiO-Cu-Ni Inert anode systems. The experimental operating parameters of mill grinding, experimental operating parameters of CIP, the wettability of metal/NiFe2O4in NiFe2O4-NiO-Cu-Ni Inert anode systems and sintering technology were studied systematically. Main contents and conclusions of this thesis are as follows:
     (1) The relations of grinding efficiency and noisy-power dissipation in NiO/Fe2O3wet grinding process have been studied. The experimental results show that the best grinding parameters are as follows:water-tilling ratio64.1%~85.47%, balls number ratio18, rotation-to-revolution speed300.9rpm, powder-filling ratio about10.88%, ball-filling ratio20.53%~23.88%, grinding time about6h. By the XRD, SEM and BET characterization, the results show that the particle size is about200nm, the appearance of particle is plate-shaped. The degree of mixedness of powder is>95%by mathematical analysis. Furthermore, the discrete element method (DEM) is employed to investigate and analyze the relations of noisy-power dissipation and efficiency. The empirical equation between noisy-power dissipation and ball-filling ratio was obtaind by fitting. It is interesting to find that the mean particle size of powder increase, the efficiency of planetary ball mill grinding and utilization of specific impact energy decrease with the noisy-power dissipation increases.
     (2) The lifting pressure rate, briquetting pressure, dwell time, pressure release rate and length diameter ratio are investigated on the CIP. The experimental results show that the best CIP parameters are as follows:lifting pressure rate1.0MPa·s-1, briquetting pressure~240MPa, dwell time has less influence on small-diameter pressed green compact, pressure release rate≤0.5MPa·s-1, length diameter ratio8.00. Based on the model analysis on the briquetting pressure and length diameter ratio, the results show that the bulk density of pressed compact is positively correlated with briquetting pressure. The empirical Equation between bulk density of pressed compac and briquetting pressure is as follows:ph=bpα, a=0.127and6=1.70. The empirical Equation between mean bulk density of pressed compac and length diameter ratio is as follows: ph=q(1+x)n, the p=-0.052and q=3.722.
     (3) The CH3CH2OH+PVP as novel grinding aid, dispersant agent, filmogen and binders is investigated. The results show that the disperstiveness of Cu in the NiFe2O4powder is improved and powder particle size is much smaller with increasing PVP and grinding time based on XRD, SEM and EDS characterization. The the disperstiveness of Cu in the NiFe2O4powder is great and grinded powder particle size is the smallest when the PVP=2%and grinding time=24h, and the NiFe2O4-NiO-Cu-Ni powder particle size is43.7nm. The high disperstiveness NiFe2O4-NiO-Cu-Ni nano-powder are prepared by mill grinding at first time.
     (4) The wetting angles of Cu-Ni/NiFe2O4-NiO are measured about NiFe2O4-NiO-Cu-Ni inert anodes by different preparation methods at first time. The wetting mechanism is discussed. The results show that the wetting angles of Cu-Ni/NiFe2O4-NiO is116.7°about NiFe2O4-NiO-Cu-Ni inert anodes by common preparation methods, and the dihedral angle of Cu-Ni/NiFe2O4-NiO is124.6°. The wetting angles of Cu-Ni/NiFe2O4-NiO is44.3°about NiFe2O4-NiO-Cu-Ni inert anodes by the novel preparation methods which NiFe2O4-NiO-Cu-Ni nano-powder is raw material and CH3CH2OH+PVP as novel grinding aid, dispersant agent, filmogen and binders. And the dihedral angle of Cu-Ni/NiFe2O4-NiO is32.7~72.9°. The wetting angles of Cu-Ni/NiFe2O4-NiO is0°when the Ti-doped in NiFe2O4-NiO-Cu-Ni inert anodes by the annovel preparation methods which NiFe2O4-NiO-Cu-Ni nano-powder is raw material and CH3CH2OH+PVP as novel grinding aid, dispersant agent, filmogen and binders. And the dihedral angle of Cu-Ni/NiFe2O4-NiO is0°.The problem of Cu-Ni/NiFe2O4-NiO wetting is fixed at first time.
     (5) The research results show that NiFe2O4-NiO-Cu-Ni inert anode can be obtained by sintering with Ar atmospheres. Six preparation methods for NiFe2O4-NiO-Cu-Ni inert anode preparation are studied. By analysis and comparison, it is the best manufacturing route that CH3CH2OH+PVP is novel grinding aid, dispersant agent, filmogen and binders planetary mill grinding, Ti-doped, cold CIP and sintering technology.
     (6) The research results show that the best sintering temperature is900℃. The small amount of Cu(Ti) solid solution and Cu4Ti alloy is formed by Ti-doped in NiFe2O4-NiO-Cu-Ni inert anode. And the nterfacial reaction wetting may be formed on the grain boundary due to reactive metal Ti-doped. And this makes the sprawl of Cu-Ni/NiFe2O4-NiO, acceleration of sintering, refine the grain and second phase particles, improvement of cermet inert anode density. The resistances to thermal shock is improved to185.71%and static corrosion is smaller than2.046mm·y-1by Ti-doped in NiFe2O4-NiO-Cu-Ni inert anode. Research result shows that the static corrosion decreases with the Ti-doped increases in NiFe2O4-NiO-Cu-Ni inert anode. The best Ti-doped amount is about1%in NiFe2O4-NiO-Cu-Ni inert anode.
引文
[1]华一新.有色冶金概论[M].北京:冶金工业出版社:冶金工业出版社,2007.
    [2]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社,2008.
    [3]Hall C M; Process of reducing aluminum by electrolysis[P]. US patent 400766. 1886-07-09.
    [4]Hall C M; Process of reducing aluminum from its fluoride salts by electrolysis[P]. US patent 400664.1886-07-09.
    [5]邱竹贤.21世纪伊始铝电解工业的新进展[J].中国工程科学,2003,5(4):41-46.
    [6]中铝网.原铝产量报靠.http://market.cnal.com/aluminum/.
    [7]杨宝刚.金属陶瓷基惰性阳极材料与铝基碱土金属母合金的研制[D]:东北大学2000.
    [8]丁海洋,卢世刚,阚素荣等.铝电解用金属惰性阳极的研究进展[J].稀有金属,2009,33(3):420-425.
    [9]Li W, Zhang G, Li J, et al. NiFe2O4-based cermet inert anodes for aluminum electrolysis[J]. JOM,2009,61(5):39-43.
    [10]张丽鹏,于先进,高芝媛.铝电解用金属基惰性阳极材料的研究进展[J].硅酸盐通报,2008,27(1):105-110,114.
    [11]张淑婷.纤维增强NiFe2O4基阳极材料的制备及性能研究[D]:东北大学2006.
    [12]张雷.铝电解用NiFe2O4/M型金属陶瓷惰性阳极材料制备与性能研究[D]:中南大学2006.
    [13]席锦会.两步烧结制备铝电解惰性阳极材料的研究[D]:东北大学2006.
    [14]石忠宁.铝电解惰性金属阳极和金属-氧化铝阳极的研制与测试[D]:东北大学2004.
    [15]刘宜汉.镍铁尖晶石基惰性阳极制品的研究[D]:东北大学2004.
    [16]周新林.电解铝用阳极研究进展综述[J].青海科技,2003:25-27.
    [17]秦庆伟,赖延清,张刚等.铝电解惰性阳极用Ni-Zn铁氧体的固态合成[J].中国有色金属学报,2003,13(3):769-773.
    [18]陈喜平,刘凤琴.铝电解惰性阳极的研究现状[J].有色金属(冶炼部分),2002,(4):23-26.
    [19]邱竹贤.中国铝工业应用新型电极材料的研究与展望[J].中国工程科学,2001,3(5):50-54.
    [20]刘业翔.阳极与可湿润性阴极的研究与开发进展[J].轻金属,2001,(5):4.
    [21]Kvande H, Haupin W. Inert anodes for Al smelters:Energy balances and environmental impact[J]. JOM,2001,53(5):29-33.
    [22]Tabereaux A T. Anode effects, PFCs, global warming, and the aluminum industry[J]. JOM,1994,46(11):30-1,33-4.
    [23]Keniry J. The economics of inert anodes and wettable cathodes for aluminum reduction cells[J]. JOM,2001,53(5):43-47.
    [24]Edwards L, Kvande H. Inert anodes and other technology changes in the aluminum industry-the benefits, challenges, and impact on present technology[J]. JOM,2001, 53(5):28.
    [25]Feng L C, Shao W Z, Zhen L, et al. Cu2O/Cu cermet as a candidate inert anode for Al production[J]. Int. J. Appl. Ceram. Technol.,2007,4(5):453-462.
    [26]Li J, Wang Z G, Lai Y, et al. Effect of structural parameters on the thermal stress of a NiFe2O4-based cermet inert anode in aluminum electrolysis[J]. Acta Metallurgica Sinica (English Letters),2007,20(2):139-147.
    [27]Pawlek R P. Inert anodes:an update. Light Metals. Seattle:The Minerals, Metal and Material Society; 2002. p 44-45.
    [28]王志刚,黄蔚,赖延清.铝电解惰性阳极材料研究新进展[J].轻金属,2007,(2):27-30,34.
    [29]Altdorfer J. DOE follows Roadmap to Al Technologies of the future[J]. JOM,2000, 52(11):19-25.
    [30]Ray S P. Effect of cell operating parameters on performance of inert anodes in Hall-Heroult cells. Light Met. (Warrendale, Pa.). Denver:The Mnerals, Metals and Materials Society; 1987. p 367-380.
    [31]田忠良.铝电解NiFe2O4基金属陶瓷惰性阳极及其相关工程技术研究[D]:中南大学2006.
    [32]Zhao-wen W, Xian-wei H, Tao L, et al. Study on spinel-based inert anode for aluminium electrolysis[J].广东有色金属学报,2005,15(2):93-101.
    [33]王兆文,罗涛,高炳亮等.NiAl2O4基惰性阳极的制备及电解腐蚀研究[J].矿冶工程,2004,24(5):61-66.
    [34]Shi Z, Xu J. Qui Z. ct al. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis[J]. JOM,2003,55(11):63-65.
    [35]Duruz J J, De Nora V, Crotlaz O; Nickel-iron alloy-based anodes for aluminium electrowinning cells[P]. US patent 6521115.2003.
    [36]Tian Z-1, Lai Y-q, Li J, et al. Effect of Ni content on corrosion behavior of Ni/(10NiO-90NiFe2O4) cermet inert anode[J]. Transactions of Nonferrous Metals Society of China,2008,18(2):361-365.
    [37]Xi J-h, Xie Y-j, Yao G-c, et al. Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes[J]. Transactions of Nonferrous Metals Society of China,2008, 18(2):356-360.
    [38]Lai Y, ZHang Y, Tain Z-l, et al. Effect of adding methods of metallic phase on microstructure and thermal shock resistance of Ni/(90NiFe2O4-10NiO) cermets[J]. Transactions of Nonferrous Metals Society of China,2007,17:681-685.
    [39]Vecchio-Sadus A M, Constable D C, Dorin R, et al. Tin dioxide-based ceramics as inert anodes for aluminum smelting. A laboratory study [J]. Light Met. (Warrendale, Pa.), 1996:259-65.
    [40]白丁.未来美国铝电解工业的发展趋势[J].世界有色金属,2005,(02):53-54+58.
    [41]Gregg J S, Frederick M S, King H L, et al. Testing of cerium oxide coated cermet anodes in a laboratory cell[J]. Light Met. (Warrendale, Pa.),1993:455-64.
    [42]Alcorn T R, Tabereaux A T, Richards N E, et al. Operational results of pilot cell test with cermet "inert" anodes[J]. Light Met. (Warrendale, Pa.),1993:433-43.
    [43]Gregg J S, Frederick M S, Shingler M J, et al. Pilot demonstration of cerium oxide coated anodes:final report, April 1990-October 1992[R]:ELTECH Res. Corp.; 1992.216 pp. p.
    [44]Benedyk J C. Status report on inert anode technology for primary aluminum[J]. Light Met. Age,2001,59(1,2):36-37.
    [45]De Nora V. Inert anodes are knocking at the door of aluminum producers[C].2001 2001-06-26; London. V. de Nora//London.
    [46]Sadoway D R. Inert anodes for the Hall-Heroult cell:The ultimate materials challenge[J]. JOM,2001,53(5):34-35.
    [47]Belyaev A I, Studentsov A. Electrolysis of alumina with non-combustible (metallic) anodes[J]. Legkie Metally,1937,6(3):17-22.
    [48]Belyaev A I. Electrolysis of alumina using ferrite anodes[J]. Legkic Metally,1938, 7(3):7-20.
    [49]Billehaug K, Oye H. Inert Anodes for Aluminum Electrolysis in Hall-- Heroult Cells. Pt. Ⅰ[J]. Aluminium,1981,57(2):146-150.
    [50]Billehaug K, Oye H. Inert Anodes for Aluminum Electrolysis in Hall--Heroult Cells. Pt. Ⅱ [J]. Aluminium,1981,57(3):228-231.
    [51]Pawlek R P. Inert anodes for the primary aluminium industry:An update[J]. Light metals 1996,1996:243-248.
    [52]Pawlek R P. Recent developments of inert anodes for the primary aluminum industry. Part 1[J]. Aluminium (Isernhagen, Ger.),1995,71(2):202-6.
    [53]Pawlek R P. Recent developments of inert anodes for the primary aluminum industry. Part Ⅱ[J]. Aluminium (Isernhagen, Ger.),1995,71(3):340-2.
    [54]Pawlek R P. Development of anodes for aluminum electrolysis[J]. Aluminium (Duesseldorf),1989,65(12):1252-8.
    [55]赵群,邱竹贤,王兆文.铝电解惰性阳极的材料设计[J].轻金属,2001,(11):42-44.
    [56]Nicholls J R. Designing oxidation-resistant coatings[J]. JOM,2000,52(l):28-35.
    [57]Thonstad J. Anodic overvoltage on platinum in cryolite-alumina melts[J]. Electrochimica Acta,1968,13(3):449-456.
    [58]Subramanian V, Lakshmikantha M G, Sekhar J A. Modeling of sequential reactions during micropyretic synthesis[J]. Metall. Mater. Trans. A,1996,27A(4):961-72.
    [59]Hryn J N, Sadoway D R. Cell testing of metal anodes for the aluminium electrolysis.// DAS S K. Light Metals 1993. Colorado:TMS; 1993. p 475-483.
    [60]Hryn J N, Pellin M J. A dynamic inert metal anode[J]. Light Met. (Warrendale, Pa.), 1999:377-381.
    [61]Yang J, Hryn J N, Krumdick G K. Aluminum electrolysis tests with inert anodes in KF-AlF3-based electrolytes[J]. Light Met. (Warrendale, PA, U. S.),2006:421-424.
    [62]A. S J, Liu J J, Duruz J J; Stable anodes for aluminium production cells[P]. US patent 5510008.1996.
    [63]Sekhar J A, Liu J, Deng H, et al. Graded non-consumable anode materials[J]. Light Met. (Warrendale, Pa.),1998:597-603.
    [64]Duruz J-J, De N V, Crottaz O; Moltech Invent S.A., Luxembourg. assignee. Cells for the electrowinning of aluminum having dimensionally stable metal-based anodes[P] patent WO2000006802A 1.2000.
    [65]Duruz J-J, De N V, Crottaz O; Moltech Invent S.A., Luxembourg. assignee. Nickel-iron alloy-based anodes for aluminum electrowinning cells[P] patent WO2000006803A1. 2000.
    [66]于先进.铝冶金进展[M].沈阳:东北大学出版社,2001.
    [67]曹中秋,牛焱,吴维口等.晶粒尺寸对Cu-60Ni合金高温氧化行为的影响[J].腐蚀科学与防护技术,2001,(02):63-65.
    [68]赵泽良,牛焱.Cu-15Ni-15Ag合金在600~700℃空气中的氧化[J].腐蚀科学与防护技术,2001,13(4):187-191.
    [69]Beck T R, Withers J C, Loutfy R O. Composite-anode aluminum reduction technology[J]. Light Met. (Warrendale, Pa.),1986,2:261-6.
    [70]Beck T R. Production of aluminum with low temperature fluoride melts[J]. Light Met. (Warrendale, Pa.),1994:417-23.
    [71]Beck T R. A non-consumable metal anode for production of aluminum with low-temperature fluoride melts[J]. Light Met. (Warrendale, Pa.),1995:355-60.
    [72]石忠宁,徐君莉,邱竹贤等Ni-Fe-Cu隋性金属阳极的抗氧化和耐蚀性能[J].中国有色金属学报,2004,14(4):591-595.
    [73]Haugsrud R. On the influence of nonprotective CuO on high-temperature oxidation of Cu-rich Cu-Ni alloys[J]. Oxid. Met.,1999,52(5/6):427-445.
    [74]Singleton V, Welch B J, Skyllas-Kazacos M. Influence of cobalt addition on electrochemical behaviour of Ni-Fe based anodes for aluminum electrowinning[J]. Light Met. (Hoboken, NJ, U. S.),2011:1123-1128.
    [75]Sekhar J A, Deng H, Liu J, et al. Micropyretically synthesized porous non-consumable anodes in the Ni-Al-Cu-Fe-X system[J]. Light Met. (Warrendale, Pa.),1997:347-354.
    [76]Ma X X, He Y D, Wang D R. Inert anode composed of Ni-Cr alloy substrate[J]. Corrosion Science,2011,53:1009-1017.
    [77]Grjotheim K, Thonstad J, Matiasovsky K, et al. Energy efficiency and bath composition in aluminum electrolysis[J]. Aluminium (Duesseldort),1973,49(12):803-7.
    [78]Thonstad J, Fellner P, Haarberg G M, et al. Aluminium electrolysis:Fundamentals of the Hall-Heroult process[M]:Aluminium-Verlag Dusseldorf,2001.
    179] Alder H; Swiss Aluminium A.-G., Switz.. assignee. Molten salt electrolysis with nonconsumable bipolar electrodes[P] patent DE2438891A1.1975.
    [80]Alder H; Swiss Aluminium Ltd.. assignee. Melt electrolysis with nonconsumable anodes[P] patent DE2425136A1.1974.
    [81]Klein H J; Swiss Aluminium Ltd.. assignee. Anodes for aluminum fusion electrolysis[P] patent DE2059866.1971.
    [82]薛济来,邱竹贤.铝电解用SnO2基惰性阳极的制备及其性能[J].东北工学院学报,1984,(02):107-115+162-163.
    [83]王化章,刘业翔,肖海明.铝电解用SnO2基惰性阳极的研究[J].中南矿冶学院学报,1988,(06):636-642.
    [84]Yang J-h, Liu Y-x, Wang H-z. The behaviour and improvement of SnO2-based inert anodes in aluminium electrolysis.//DASSK. Light Metals. Colorado:TMS; 1993. p 493-495.
    [85]Liu Y X, Thonstad J. Oxygen overvoltage on tin dioxide-based anodes in sodium fluoride-aluminum fluoride-alumina melts. Electrocatalytic effects of doping agents[J]. Electrochim. Acta,1983,28(1):113-16.
    [86]张明杰,邱竹贤.铂阳极在冰晶石-氧化铝溶液中的过电压[J].东北工学院学报,1985,(01):71-79.
    [87]张晓顺.铝电解用SnO2基惰性阳极材料的研究[D]:东北大学2005.
    [88]Horinouchi K, Tachikawa N, Yamada K. DSA in aluminum reduction cells[C].1983. Molten Salt Comm. Electrochem. Soc. Jpn. p 65-8.
    [89]秦庆伟.铝电解惰性阳极及腐蚀率预测研究[D]:中南大学:2004.
    [90]Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M].清华大学新型陶瓷与精细工艺国家重点实验室,translator.北京:高等教出版社,2010.
    [91]张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006.
    [92]Olsen E, Thonstad J. Nickel ferrite as inert anodes in aluminum electrolysis:Part I material fabrication and preliminary testing[J]. J. Appl. Electrochem.,1999, 29(3):293-299.
    [93]Tao L, Wen W Z, Liang G B, et al. Preparation of a cermet inert anode based on ferrous nickel and its use in an electrolysis study [J]. Light Metals, TMS (The Minerals, Metals & Materials Society),2005:541-543.
    [94]Pawlek R P. Inert anodes:An update[J]. Light Met. (Warrendale, PA, U. S.), 2002:449-456.
    [95]Ray S P, Rapp R A; Aluminum Co. of America, USA. assignee. Composition suitable for inert electrode[P]. US patent US4455211 A.1984.
    [96]焦万丽.镍铁尖晶石基金属陶瓷惰性阳极的制备及性能研究[D].东北大学:2005.
    [97]焦万丽,张磊,姚广春.Mn02添加剂对镍铁尖晶石基惰性阳极耐腐蚀性的影响[J].过程工程学报,2005,5(3):309-312.
    [98]席锦会,姚广春,刘宜汉.预烧温度对掺杂TiO2、MnO2的镍铁尖晶石惰性阳极微观形貌和性能的影响[J].材料导报,2005,19(10):3.
    [99]焦万丽,张磊,姚广春等.铝电解惰性阳极基体材料的研究[J].轻金属,2004,(8):25-27,37.
    [100]焦万丽,姚广春,张磊等.镍铁尖晶石基惰性阳极材料腐蚀热力学分析[J].材料导报,2004,18(7):3.
    [101]赖延清,张勇,张刚等.CaO掺杂对10NiO-NiFe2O4复合陶瓷烧结致密化的影响[J].中国有色金属学报,2006,16(8):1355-1360.
    [102]赖延清,张刚,张勇等.CaO掺杂10NiO-NiFe2O4复合陶瓷的导电性能[J].中国有色金属学报,2006,16(9):1608-1614.
    [103]何汉兵NiFe2O4-10NiO基陶瓷的致密化、导电和腐蚀性能研究[D]:中南大学2009.
    [104]何汉兵,周科朝,李志友.NiFe2O4基金属陶瓷惰性阳极的腐蚀研究进展[J].腐蚀与防护,2008,29(7):359-364.
    [105]何汉兵,黄伯云,李志友等.BaO掺杂对10NiO-NiFe2O4复合陶瓷烧结致密化的影响[J].中国有色金属学报,2008,18(5):851-855.
    [106]Ray S P, Rapp R A; Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties[P]. US patent 4454015.1984 1984-06-12.
    [107]Ray S P; Inert electrode compositions[J]. US patent 4374050.1983 1983-02-15.
    [108]McLeod A D, Haggerty J S, Sadoway D R. Inert electrodes for aluminum electrolysis cells[C].1985. Metall. Soc. p 453-6.
    [109]Tarcy G P. Corrosion and Passivation of Cermet Inert Anodes in Cryolite-Type Electrolytes[J]. Essential Readings in Light Metals:Electrode Technology for Aluminum Production, Volume 4,1986:1082-1093.
    [110]Weyand J D. Manufacturing processes used for the production of inert anodes[J]. Light Met. (Warrendale, Pa.),1986,2:321-39.
    [111]Baker F W, Rolf R L. Hall cell operation with inert anodes[J]. Light Met. (Warrendale, Pa.),1986,2:275-86.
    [112]Windisch C F, Jr., Marschman S C. Electrochemical polarization studies on copper and copper-containing cermet anodes for the aluminum industry[J]. Light Met. (Warrendale, Pa.),1987:351-5.
    [113]Ray S P. Inert anodes for Hall cells[J]. Light Met. (Warrendale, Pa.),1986,2:287-98.
    [114]Gregg J S, Frederick M S, Vaccaro A J, et al. Pilot cell demonstration of cerium oxide coated anodes[J]. Light Met. (Warrendale, Pa.),1993:465-73.
    [115]Windisch C F, Jr., Strachan D M, Henager C H, Jr., et al. Materials characterization of cermet anodes tested in a pilot cell[J]. Light Met. (Warrendale, Pa.),1993:445-54.
    [116]Sekhar J A, Liu J J, Duruz J-J; Google Patents, assignee. Stable anodes for aluminium production cells[P]. US patent 5904828.1999 1999-5-18.
    [117]Olsen E, Thonstad J. Nickel ferrite as inert anodes in aluminum electrolysis:Part Ⅱ material performance and long-term testing[J]. J. Appl. Electrochem.,1999, 29(3):301-311.
    [118]Ray S P, Woods R W; Google Patents, assignee. Controlled atmosphere for fabrication of cermet electrodes[P]. US patent 5794112.1998 1998-8-11.
    [119]郭鉴镜.美铝惰性阳极试验受阻[J].轻合金加工技术,2002,(09):22.
    [120]赵群.铝电解金属陶瓷阳极的制备与性能测试[D]:东北大学:2003.
    [121]徐君莉.惰性阳极在低温铝电解中的应用研究[D]:东北大学:2004.
    [122]罗涛.铝电解金属陶瓷惰性阳极的热压制备及电解测试[D].东北大学:2005.
    [123]席锦会,姚广春,刘宜汉等.添加剂对Ag/NiFe2O4金属陶瓷惰性阳极性能的影响[J].功能材料,2006,37(2):216-218,221.
    [124]席锦会,姚广春,刘宜汉等.五氧化二钒对铁酸镍基金属陶瓷惰性阳极导电行为的影响[J].硅酸盐学报,2006,34(1):34-38.
    [125]席锦会,姚广春,刘宜汉等.掺杂MnO2对铁酸镍陶瓷惰性阳极性能的影响[J].过程工程学报,2006,6(3):495-498.
    [126]张丽鹏,于先进,董云会等Sm2O3掺杂金属陶瓷惰性阳极的制备及性能研究[J].中国稀土学报,2007,25(2):190-194.
    [127]席锦会,刘宜汉,姚广春.合成工艺对Ag-NiFe2O4惰性阳极性能的影响[J].材料科学与工艺,2008,16(1):41-43,48.
    [128]席锦会,谢英杰,葛世荣.铝电解用梯度网状惰性Ag/NiFe2O4阳极的制备及性能[J].硅酸盐学报,2010,(02):241-245+264.
    [129]华中胜,姚广春,龙秀丽等.铝电解NiFe2O4基惰性阳极材料纤维增强体的选择[J].中国有色金属学报,2013,(01):154-161.
    [130]华中胜,姚广春,龙秀丽等ZrO2(f)-NiFe2O4惰性阳极在冰晶石熔盐中的腐蚀行为[J].过程工程学报,2012,(01):166-171.
    [131]马俊飞-ZrO2(1)对铝电解惰性阳极增韧作用的研究[D]:东北大学:2011.
    [132]华中胜.纤维/NiFe2O4复合阳极材料的制备及性能研究[D]:东北大学:2011.
    [133]Li J, Lai y-q, Zhou K-c, et al. Preparation and preliminary testing of cermet inert anode for aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2003, 13(3):663-670.
    [134]张雷,周科朝,李志友等.气氛对NiFe2O4陶瓷烧结致密化的影响[J].中国有色金属学报,2004,14(6):1002-1006.
    [135]程迎军.铝电解槽阳极-熔体电热场及惰性阳极热应力的计算机仿真与优化[D].中南大学:2003.
    [136]田忠良,赖延清,李劫等.NiFe2O4基金属陶瓷的电导率[J].粉末冶金材料科学与工程,2005,10(2):110-115.
    [137]赖延清,张刚,李劼等.金属含量对Cu-Ni-NiFe2O4金属陶瓷导电性能的影响[J].中南大学学报(自然科学版),2004,35(6):880-884.
    [138]田忠良,赖延清,张刚等.铝电解用NiFe2O4-Cu金属陶瓷惰性阳极的制备[J].中国有色金属学报,2003,(06):1540-1545.
    [139]秦庆伟,张刚,赖延清,et al.铝电解用NiFe2O4-Cu金属陶瓷阳极的初步研究[J].过程工程学报,2006,6(增刊1):18-22.
    [140]刘建元,张雷,李志友等.金属陶瓷惰性阳极压坯的热脱脂工艺[J].中南大学学报(自然科学版),2008,39(5):980-986.
    [141]陶玉强,刘建元,李志友等Yb2O3或Y203掺杂Cu-(NiFe2O4-10NiO)隋性阳极的导电性和耐蚀性[J].中国有色金属学报,2011,(05):1137-1144.
    [142]何汉兵,肖汉宁Yb2O3掺杂对15(20Ni-Cu)/(NiFe2O4-10NiO)金属陶瓷性能的影响[J].中国有色金属学报,2011,(03):611-617.
    [143]王山峰,甘雪萍,周科朝等.金属颗粒初始状态对10NiO-NiFe2Od基金属陶瓷烧结及导电性能的影响[J].粉末冶金材料科学与工程,2011,16(2):296-302.
    [144]王宇栋.铝电解惰性阳极制备及其应用研究[D]:昆明理工大学2012.
    [145]江林涛.纳米金属陶瓷惰性阳极的制备与性能研究[D].贵州大学:2008.
    [146]贾贺峰.纳米NiO-Cu-NiFe2O4金属陶瓷惰性阳极的制备与研究[D].贵州大学:贵州大学材料学院,2007.
    [147]Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder?[J]. Phys. Lett. A,1984,102A(8):365-9.
    [148]Gleiter H. Effect of interfaces on the structure and stability of materials[J]. DVS Ber. 1990,129(Verbindungstech. Elektron.):86-92.
    [149]Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature[J]. Nature (London), 1987,330(6148):556-8.
    [150]Epperson J E, Siegel R W, White J W, et al. A small angle neutron scattering investigation of compacted nanophase titanium dioxide and palladium[J]. Mater. Res. Soc. Symp. Proc.,1990,166(Neutron Scattering Mater. Sci.):87-92.
    [151]Siegel R W, Eastman J A. Synthesis, characterization, and properties of nanophase ceramics[J]. Mater. Res. Soc. Symp. Proc.,1989,132(Multicompon. Ultrafine Microstruct.):3-14.
    [152]Nieman G W, Weertman J R, Siegel R W. Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[J]. Scr. Metall.,1989,23(12):2013-18.
    [153]Epperson J E, Siegel R W, White J W, et al. Sintering of nanophase titania at 550℃[J]. Mater. Res. Soc. Symp. Proc.,1989,132(Multicompon. Ultrafine Microstruct.):15-20.
    [154]Eastman J A, Liao Y X, Naravanasamy A, et al. Processing and properties of nanophase oxides[J]. Mater. Res. Soc. Symp. Proc.,1989,155(Process. Sci. Adv. Ceram.):255-66.
    [155]Siegel R W, Ramasamy S, Hahn H, et al. Synthesis, characterization, and properties of nanophase titanium dioxide[J]. J. Mater. Res.,1988,3(6):1367-72.
    [156]Siegel R W, Hahn H, Ramasamy S, et al. Structure and properties of nanophase titanium dioxide[J]. J. Phys., Colloq.,1988, (C5, Interface Sci. Eng.'87):C5-681/C5-686.
    [157]Zhang J, Shi J, Gong M. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process[J]. J. Solid State Chem.,2009, 182(8):2135-2140.
    [158]Alarifi A, Deraz N M, Shaban S. Structural, morphological and magnetic properties of NiFe2O4 nano-particles[J].J. Alloys Compd.,2009,486(1-2):501-506.
    [159]Rashad M M, Fouad O A. Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO[J]. Mater. Chem. Phys.,2005, 94(2-3):365-370.
    [160]Satyanarayana L, Reddy K M, Manorama S V. Nanosized spinel NiFe2O4:A novel material for the detection of liquefied petroleum gas in air[J]. Mater. Chem. Phys.,2003, 82(1):21-26.
    [161]Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, et al. Microwave behavior of ferrites prepared via sol-gel method[J]. J. Magn. Magn. Mater.,2002,246(3):360-365.
    [162]Wang J. Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties [J]. Mater. Sci. Eng., B,2006,127(1):81-84.
    [163]Zhou J, Ma J, Sun C, et al. Low-temperature synthesis of NiFe2O4 by a hydrothermal method[J]. J. Am. Ceram. Soc.,2005,88(12):3535-3537.
    [164]Cheng Y, Zheng Y, Wang Y, et al. Synthesis and magnetic properties of nickel ferrite nano-octahedra[J]. J. Solid State Chem.,2005,178(7):2394-2397.
    [165]Albuquerque A S, Ardisson J D, Macedo W A A, et al. Structure and magnetic properties of nanostructured Ni-ferrite[J]. J. Magn. Magn. Mater.,2001,226-230(Pt.2):1379-1381.
    [166]Ramankutty C G, Sugunan S. Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods[J]. Appl. Catal., A,2001, 218(1-2):39-51.
    [167]Rezlescu N, Iftimie N, Rezlescu E, et al. Semiconducting gas sensor for acetone based on the fine grained nickel ferrite[J]. Sens. Actuators, B,2006,114(1):427-432.
    [168]Costa A C F M, Lula R T, Kiminami R H G A, et al. Preparation of nanostructured NiFe2O4 catalysts by combustion reaction[J]. J. Mater. Sci.,2006,41(15):4871-4875.
    [169]Vivekanandhan S, Venkateswarlu M, Satyanarayana N. Effect of ethylene glycol on polyacrylic acid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4)[J]. Mater. Lett.,2004,58(22-23):2717-2720.
    [170]Heegn H, Trinkler M, Langbein H. Phase formation and solid state structure on calcination of a nickel ferrite acetate precursor[J]. Cryst. Res. Technol.,2000, 35(3):255-264.
    [171]Liu J H, Wang L, Li F S. Magnetic properties and Moessbauer studies of nanosized NiFe2O4 particles[J]. J. Mater. Sci.,2005,40(9/10):2573-2575.
    [172]Chakraverty S, Mandal K, Mitra S, et al. Magnetic properties of NiFe2O4 nanoparticles in SiO2 matrix[J]. Jpn. J. Appl. Phys., Part 1,2004,43(11A):7782-7787.
    [173]Silva M N B, Duque J G d S, Gouveia D X, et al. Novel route for the preparation of nanosized NiFe2O4powders[J]. Jpn. J. Appl. Phys., Part 1,2004,43(8A):5249-5252.
    [174]Komarneni S, D'Arrigo M C, Leionelli C, et al. Microwave-hydrothermal synthesis of nanophase ferrites[J]. J. Am. Ceram. Soc.,1998,81(11):3041-3043.
    [175]Li D, Herricks T, Xia Y. Magnetic nanofibers of nickel ferrite prepared by electrospinning[J]. Appl. Phys. Lett.,2003,83(22):4586-4588.
    [176]Kale A, Gubbala S, Misra R D K. Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique[J]. J. Magn. Magn. Mater.,2004, 277(3):350-358.
    [177]Fang J, Shama N, Tung L D, et al. Ultrafine NiFe2O4 powder fabricated from reverse microemulsion process[J]. J. Appl. Phys.,2003,93(10, Pt.2):7483-7485.
    [178]Marco M D, Wang X W, Snyder R L, et al. Moessbauer and magnetization studies of nickel ferrites[J]. J. Appl. Phys.,1993,73(10, Pt.2, Proceedings of the Thirty-Seventh Annual Conference on Magnetism and Magnetic Materials, 1992, Pt. B):6287-9.
    [179]Son S, Taheri M, Carpenter E, et al. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch[J]. J. Appl. Phys.,2002,91(10, Pt. 2):7589-7591.
    [180]Lee P Y, Ishizaka K, Suematsu H, et al. Magnetic and gas sensing property of nanosized NiFe2O4 powders synthesized by pulsed wire discharge[J]. J. Nanopart. Res.,2006, 8(1):29-35.
    [181]Shafi KVPM, Koltypin Y, Gedanken A, et al. Sonochemical Preparation of Nanosized Amorphous NiFe2O4 Particles[J]. J. Phys. Chem. B,1997,101(33):6409-6414.
    [182]Baranchikov A Y, Ivanov V K, Tretyakov Y D. Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment[J]. Ultrason Sonochem,2007, 14(2):131-4.
    [183]Pavlyukhin Y T, Medikov Y Y, Boldyrev V V. On the consequences of mechanical activation of zinc and nickel ferrites[J]. J. Solid State Chem.,1984,53(2):155-60.
    [184]Sepelak V, Baabe D, Becker K D. Mechanically induced cation redistribution and spin canting in nickel ferrite[J]. J. Mater. Synth. Process.,2000,8(5/6):333-337.
    [185]Chinnasamy C N, Narayanasamy A, Ponpandian N, et al. Mixed spinel structure in nanocrystalline NiFe2O4[J]. Phys. Rev. B:Condens. Matter Mater. Phys.,2001, 63(18):184108/1-184108/6.
    [186]Helgason O, Jiang J Z. High-Temperature Moessbauer Spectroscopy of Mechanically Milled NiFe2O4[J]. Hyperfine Interact.,2002,139/140(1-4/1-4):325-333.
    [187]Sepelak V, Baabe D, Mienert D, et al. Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite[J]. J. Magn. Magn. Mater.,2003,257(2-3):377-386.
    [188]吴文伟,侯生益,吴学航等.低热固相反应法合成反尖晶石型Zn(0.5)Ni(0.5)Fe2O4纳米晶[J].有色金属,2010,(04):18-21.
    [189]席锦会.镍铁尖晶石基惰性阳极材料的合成工艺研究[D]:东北大学2004.
    [190]张刚.铝电解用NiFe2O4-10NiO基金属陶瓷惰性阳极的致密化与强韧化[D]:中南大学2007.
    [191]Rhamdhani M A, Hayes P C, Jak E. Subsolidus Phase Equilibria of the Fe-Ni-O System[J]. Metallurgical and Materials Transactions B,2008,39(5):690-701.
    [1921安少华,张振忠,段志伟等.不同分散剂对纳米铜粉在乙醇中的分散性能研究[J].铸造技术,2007,28(11):1498-1501.
    [193]黄钧声,任山,蔡俊威.分散剂PVP对液相还原法制备纳米铜粉的影响[J].广东工业大学学报,2005,22(2):16-20.
    [194]周全法,蒋萍萍,朱雯等.抗氧化纳米铜粉的制备及表征[J].稀有金属材料与工程,2004,33(2):179-182.
    [195]毛凌波,张仁元,柯秀芳.纳米铜粉在太阳能集热器循环工质中的分散[J].有色金属,2010,62(1):22-26.
    [196]罗晓臣,罗江山,唐永建等.纳米铜粉在无水乙醇中的分散稳定性[J].中国分体技术,2010,16(3):54-57.
    [197]刘成雁,李在元,翟玉春等.纳米铜粉氧化反应动力学研究[J].分子科学学报,2007,23(1):22-27.
    [198]张伟儒,李勇.冷等静压成形技术及其在精细陶瓷生产中的应用[J].河北陶瓷,1995,(04):20-23.
    [199]De N V, Duruz J-J; Moltech Invent S.A., Luxembourg. assignee. Low temperature operating cell for the electrowinning of aluminum[P] patent WO2001031086A1.2001.
    [200]张健飞,朱佳,伍华等. NiFe2O4隋性阳极的制备及其电解腐蚀机理分析[J].哈尔滨师范大学自然科学学报,2011,(01):65-68.
    [201]Lai Y-q, Huang L-f, Tian Z-l, et al. Effect of CaO doping on corrosion resistance of Cu/(NiFe2O4-10NiO) cerment inert anode for aluminum electrolysis[J]. J. Cent. South Univ. Technol. (Engl. Ed.),2008,15(6):743-747.
    [202]Rosenkranz S, Breitung-Faes S, Kwade A. Experimental investigations and modelling of the ball motion in planetary ball mills[J]. Powder Technology,2011,212(1):224-230.
    [203]Mio H, Kano J, Saito F, et al. Optimum revolution and rotational directions and their speeds in planetary ball milling[J]. International Journal of Mineral Processing,2004, 74:S85-S92.
    [204]Mio H, Kano J, Saito F. Scale-up method of planetary ball mill[J]. Chemical Engineering Science,2004,59(24):5909-5916.
    [205]Ashrafizadeh H, Ashrafizaadeh M. Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method[J]. Advanced Powder Technology,2011.
    [206]Sato A, Kano J, Saito F. Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation[J]. Advanced Powder Technology,2010, 21(2):212-216.
    [207]Mori H, Mio H, Kano J, et al. Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate[J]. Powder Technology,2004,143-144:230-239.
    [208]Choi W S, Chung H Y, Yoon B R, et al. Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill[J]. Powder Technology,2001,115:209-214.
    [209]Oda M, Iwashita K. Study on couple stress and shear band development in granular media based on numerical simulation analysesOriginal Research Article[J]. International Journal of Engineering Science,2000,38:1713-1740.
    [210]Jiang M J, Yu H S, Harris D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics,2005,32(5):340-357.
    [211]Kano J, Miyazaki M, Saito F. Ball mill simulation and powder characteristics of ground talc in various types of mill[J]. Advanced Powder Technology,2000,11(3):333-342.
    [212]Iwashita K. Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology,2000,109:192-205.
    [213]Gudin D, Kano J, Saito F. Effect of the friction coefficient in the discrete element method simulation on media motion in a wet bead mill[J]. Advanced Powder Technol.,2007, 18(5):555-565.
    [214]孙楠,秦家峰,张锡兵.粉体混合原理及混合质量分析[J].机电信息,2012,(14):42-45.
    [215]赖延清,孙小刚,李劫等.Densification of Ni-NiFe2O4 cermets for aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2005, (03):666-670.
    [216]Li J, Zhang G, Ye S-1, et al. Effect of metallic content on mechanical property of Ni/(10NiO-NiFe2O4) cermets[J]. J. Cent. South Univ. Technol.,2006,13(4):347-352.
    [217]钱旭坤,朱春城,赫晓东. Co-Ni-xNiFe2O4隋性阳极的电导率及耐腐蚀性能[J].稀有金属材料与工程,2007,(11):1979-1982.
    [218]钱旭坤. Co-Ni-xNiFe2O4隋性阳极的制备与性能研究[D]:哈尔滨工业大学2006.
    [219]吴成义,张丽英.粉体成形力学原理[M]:冶金工业出版社,2003.
    [220]马福康.等静压技术[M]:冶金工业出版社,1992.
    [221]江崇经.湿袋法冷等静压成型工艺[J].电瓷避雷器,1995,(03):14-19.
    [222]李世波,张宝生,葛勇.特种陶瓷的成型与坯体密度的关系[J].哈尔滨建筑大学学报,1999,(02):67-70.
    [223]Henderson R, Moriarty B. Finite element modelling of decompression after isostatic pressing[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,216(2):215-224.
    [224]范尚武.反应烧结氮化硅冷等静压成型工艺优化[D]:西北工业大学2005.
    [225]罗琨琳.NiFe2O4纳米金属陶瓷的制备研究与力学性能分析[D].贵州大学2008.
    [226]吴贤熙,刘卫,贾贺峰等;电解铝用纳米金属陶瓷惰性阳极材料及其制备方法[P].中国.2007.
    [227]马佳.制备大尺寸耐火材料型铝电解惰性阳极的研究[D]:东北大学:2011.
    [228]张志刚,姚广春,马佳等.低温固相反应合成NiFe2O4尖晶石纳米粉[J].东北大学学报(自然科学版),2010,(06):868-872.
    [229]张志刚.镍铁尖晶石纳米粉制备与在惰性阳极中应用的研究[D]:东北大学:2009.
    [230]丁格尔波夫J R,克兰道尔W B.金属陶瓷[M].施今,translator:上海科学技术出版社,1964.
    [231]许启明,张磊,姚燕燕等.聚乙烯吡咯烷酮及钛酸酯对ITO浆料的分散稳定性考察[J].精细化工,2011,(01):29-33+38.
    [232]李国栋.纳米粉体表面结构与分散机理研究[J].襄樊学院学报,2002,(05):50-54.
    [233]刘景富,陈海洪,夏正斌等.纳米粒子的分散机理、方法及应用进展[J].合成材料老化与应用,2010,(02):36-40+60.
    [234]李菊,宫本奎,孙金胜.金属/陶瓷的润湿性[J].山东冶金,2007,29(6):5.
    [235]张雷,李志友,周科朝等.大尺寸NiFe2O4-10NiO-17Ni型金属陶瓷惰性阳极的制备[J].中国有色金属学报,2008,18(2):294-300.
    [236]张志刚.纳米增韧NiFe2O4基铝电解惰性阳极的研究[D].东北大学:2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700