用户名: 密码: 验证码:
筒形件强力旋压动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筒形件强力旋压是一种综合了锻造、挤压、拉伸等工艺特点的先进加工工艺,已被广泛应用于国防军工和航空航天领域。随着旋压技术的发展和材料工业的进步,国内外对旋压制品的成型质量要求越来越高,同时也有越来越多的材料被应用于筒形件强力旋压中,因为每种材料的性能、尺寸均不相同,所以每次旋压一种新制品时,都需要重新设定旋压工艺参数。这些参数通常是科研人员凭借以往的加工经验,根据产品的设计要求来设定的。首先要设定若干组旋压工艺方案,并根据方案中的参数进行旋压工艺实验,依据实验结果对参数进行调整,如此反复方可最终确定工艺参数并进行相应的生产。这种工艺参数的设定方法不但造成了物质上的浪费,同时也耽误了生产时间。而且工艺实验会受到次数的限制,所以工艺实验所确定的参数往往并不是最佳的工艺参数。
     通过动力学仿真模拟,在计算机上设定工艺参数,并进行模拟仿真实验,可以大大缩短旋压工艺实验所消耗的时间,并且不受经济成本和实验次数限制,可以最大程度的详细分析每个工艺参数对旋压制品成型质量的影响。从而有效的指导旋压工艺参数的设定,提高旋压制品的生产效率和成型质量。
     尽管动力学仿真模拟具有很多优点,但在旋压前仍然需要设定一系列的工艺方案,而每组旋压方案中不同旋压工艺参数的设定,其主要依据是旋轮所受旋压力的大小,因此旋压力的准确求取成为能否合理设置旋压方案的关键。目前通常使用Thamasett算法对旋压力进行计算,但该算法与实测值偏差较大,本文在结合旋压工艺实验的基础上,针对Thamasett算法忽略旋轮前金属堆积而导致计算偏差的不足,根据其计算值和实测值所存在的偏差规律,修正了Thamasett算法,建立了新的旋压力模型。在应力方面,本文在运用胡克定律、圣维南原理等理论的同时,结合金属弹塑性成型理论,将筒形件的应力拆分成轴向、径向、切向三部分,并分别建立其平衡方程、变协调方程、边界条件方程和物性方程,从而建立了应力的数学模型。新的旋压力、应力数学模型可以将旋压工艺参数控制在一个更为合理的范围,为旋压工艺方案的合理确定提供了更为准确的依据。
     本文以金属塑性成型有限元法为基础,以旋压力、应力新算法为依托,根据成型过程中材料的变形特点,选择ANSYS/LS-DYNA软件作为筒形件强力旋压动力学仿真模型的分析平台,在进行相应假设的同时,分别对筒形件强力旋压几何模型的建立、网格的划分、摩擦模型的选择、连接和约束的建立、收敛准则的选择、迭代求解等关键问题进行了研究。并最终建立了筒形件强力旋压的动力学仿真模型。
     本文通过该动力学仿真模型研究了简形件在强力旋压过程中的变形情况,以及旋压力、应力、应变的变化情况,并以相同参数在旋压机上进行了旋压工艺实验。通过电测法获得了旋压成型过程中旋压力的变化规律,从工艺实验的角度验证了动力学仿真模型结果的可靠性。并针对不同方案旋制的旋压制品的缺陷进行了缺陷分析。并分析了主轴转速、旋轮进给量对旋压力的影响,进给量对应力、应变的影响,进给率对椭圆度、公称直径公差、壁厚公差的影响,以及毛坯尺寸精度对成型质量的影响。通过这些分析可使科研人员更准确的了解各旋压工艺参数的特性,并以此为依据进一步指导旋压工艺参数的设定,使其更加的合理化。
Power spinning process of cylindrical workpieces which synthesizes characters in forging, extruding and stretching is widely applied in national defense and aerospace field. With the development of spinning processing and material industry, higher demands on modeling quality of spinning products are placed at home and abroad. As more materials with different performance and dimension are applied in power-spinning of cylindrical workpieces, technological parameter needs to be reset in the spinning process of new products. The technological parameter is usually set by researchers depending on their working experiences and the design requirements of products. Spinning experiments are conducted for times to adjust the technological parameter according'to the experiment results. Then the technological parameter ultimately is ascertained and used for production. Therefore, money and production time are wasted. On account of the limitation of technological experiments in times of experiments, the final technological parameter is not always the most appropriate one.
     Setting technological parameter on computers with dynamics simulation and performing simulation experiments can greatly shorten the time of technological experiments and analyze the effects of each technological parameter on modeling) quality of products. The economic cost and times of experiments are unconstrained. Applying dynamics simulation technique to spinning process is playing a guiding role in setting spinning process parameter and it can improve the production efficiency and modeling quality effectively.
     Even though dynamics simulation has plenty of advantages, a series of spinning experiments are needed to be designed. The setting of technological parameter in each experiment is based on the spinning force. Therefore, calculating spinning force is the key to design a reasonable experiment. At present, Thamasett algorithm is Usually used to calculate spinning force. However, there is great deviation between the calculated values and measured values. Aiming at the problems of stress and spinning force modeling. Thamasett algorithm is corrected and a new spinning force model is built according to the deviation law between calculated values and measured values so as to make up the shortfall of the ignorance of metal accumulation before spinning wheels. In the part of stress, the author applies Hooke's law, Saint-Venant principle and elastic-plastic theory in the thesis. The stress of cylindrical workpieces is split in radial, axial and tangential direction, and the corresponding equilibrium equations. compatibility equations, boundary condition equations and constitutive equations are established to build the mathematical model of stress. The new spinning force and stress modelings can control technological parameters at a proper level. which is the base of setting reasonable process plans.
     ANSYS/LS-DYNA software is chosen as an analysis platform based on the metal plastic forming finite element method, the new algorithm of spinning force and stress and the deformation characteristics of materials in the process of modeling. The hypothesis is tested. The establishment of the geometric model of power spinning process of cylindrical workpieces, the division of the grid, the choice of friction model, the setting-up of connection and constraint, the selection of convergence rule and the iterative solution are all researched and the dynamics simulation model of power spinning process of cylindrical workpieces is established.
     This thesis studies the deformation of cylindrical workpieces in the power spinning process and changes of the spinning force and stress through simulation model. The spinning process experiments are carried out with the same technological parameters. The change rule of spinning force in the modeling process is obtained by electrometry. And defect analysis is done aiming at the defect of spinning products in different technical programs. The reliability of the results of dynamics simulation model is validated from the perspective of process experiments. The impacts of spindle speed and the feed rate of spinning wheels on spinning force, the influences of feed rate on stress, strain, circular degree, nominal diameter and wall thickness tolerance, and the effects of blank dimension on the modeling quality are analyzed. The analyses give researchers a better perspective on the characteristics of spinning technological parameters and provide guidance to the setting of parameters.
引文
[1]李超玲.筒形件强力旋压过程的有限元数值模拟[D].[硕士学位论文].西安.西北工业大学.2004.
    [2]赵云豪,李彦利.旋压技术与应用[M].北京:机械工业出版社.2008:5-6
    [3]杜坤.筒形件多道次普通缩旋三维弹塑性有限元模拟研究[D].[硕士学位论文].西安.西北工业大学.2001.
    [4]COURANT R. Variational methods for the solution of problems of equilibrium and vibration[J], Bull. Am, Math. Soc, 1943.49:1-23
    [5]Prasad YURK, Sechacharyu Lu T. Modelling of hot deformation for microstructural control[J]. Internation Materials Reviews.1998,43:243-258
    [6]HAYAMA, Hiroaki KUDO. Experimental Study of Tube Spinning. Bulletion of JSME[J].1979,22(167):769-775
    [7]C.C.Wong. T.A.Dean, J.Lin. Areview of spinning. Shear forming and flow forming processes[J]. Mechanical and Manufaturing Engineering, MACHINE TOOLS&MANUFACTURE.2003. Vol.43:1419-1435.
    [8]国外旋压技术与强力旋压机[G].重型机械.1972.01
    [9]Xia Qinxiang, Lai Zhouyi, Zhan Xinxi, Cheng Xiuquan. Research on spinning Method of Hollow part with triangle Arc-Type Cross SAection Based on Profiling Driving[J]. Steel Research International, Volume 81. Number 9. 2010:994-997.
    [10]陈辉.复杂曲面、薄壁件精密旋压成形技术研究[D].[硕士学位论文].成都.四川大学.2004.
    [11]熊火轮.计算机辅助板料成型分析模拟系统[Dl:[博士学位论文].北京:北京航空航天大学.1990
    [12]刘建华,杨合,李玉强.旋压技术基础原理的研宄现状与发展趋势[J].重型机械.2002(3):1-4
    [13]牟少正,韩冬.有色金属旋压技术研究现状[J].航天制造技术.2008.4:38-42
    [14]Akio Sekiguchi, Hirohiko Arai. Synchronous Die-less Spinning of Curved Products. Sheet Metal SpinningfJ]. Steel Reaearch International, Volume 81, Number9,2010:1010-1013.
    [15]Dieter Schmoeckel, Stefan Hauk. Tooling and process control for splitting of disk blank[J]. Journal of Materials Processing Technology,2000(98):65--69.
    [16]Jiang Shuyong, Zheng Yufeng, Ren Zhengyi, Li Chunfeng. Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs[J]. Transactions of Nonferrous Metals Society of China,2009:215-221.
    [17]徐洪列.强力旋压技术研究[M].北京:国防工业出版社.1984.
    [18]Xu Y, Zhang SH, Li P, et al.3D rigid-plastic FEM numerical simulation of tube spinning[J]. Journal of Materials Processing Technology,2001,113(1-3):710—713.
    [19]M.M.EL-Khabeery.M.Fattouh. M.N.EL-Sheikh, O.A.Hamed. On the Conventional Simple Spinning of Cylindrical Aluminum Cups[J]. International Journal of Machine Tools&Manufacture.1991.2:203-219.
    [20]S.C.Chang. C.A.Huang. S.Y.Yu. Tube spinnability of AA 2024 and 7075 aluminum alloys[J]. Journal of Materials Processing Technology.1998.80:676-677.
    [21]H.Sebastian, A.Birgit. Numerical and Experimental Investigations of Production of Non-rotationally Symmetric Hollow Parts Using Sheet Metal Spinning[J]. Steel Research International.2010.81(9):998-1001.
    [22]Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater.Sci.Eng.A.1996.213:103-114.
    [23]Matsunok. Recent Research and Development in Metal Forming in Japan, [J], Mater. Process. Technol.1997(6):1-3
    [24]侯红亮,余肖放.王耀奇.国内旋压设备及其相关技术发展与现状[J].锻压装备与制造技术.2009.4:16-19
    [25]李小曼.桂艳.齿轮旋压制造技术的研宄现状及发展[J].机械研究与应用.2009.4:14-15
    [26]牟少正,韩冬,杨英丽等.铸造钛合金管坯的旋压成型及性能研宄[J].锻压装备与制造技术.2009.2:98-100
    [27]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986.
    [28]张涛,刘智冲,马世成.旋压成形带内筋筒形件的工艺研究及数值模拟[J].机械工程学报,2007.43(4):109-112.
    [29]曾向东.钛合金筒形件的旋压[J].金属成形工艺.2003,21(6):113-115.
    [30]汪发春.赵云豪.薄壁壳体变薄旋压成形实验研究[J].新技术新工艺.2005.9:37-38.
    [31]刘奎立.张治民,杨宝付.镁合金的成形技术及其应用研究[J].锻压技术.2005.5:25-29
    [32]王大力.孙陆,李敬兰等.网格状内筋壳体零件旋压关键技术研究[C].第十二届全国旋压技术交流年会论文集.2011.8:114-117.
    [33]赵琳瑜,寒冬.张立武等.典型零件旋压成形技术应用发展[J].航天制造技术.2007.2:51-53.
    [34]刘继强,李茂盛,贾新潮等.高精度高温合金薄壁管旋压成形[J].宇航材料工艺.1999.6:32-36.
    [35]刘杰,彭晓媛,刘丽.飞行器动力学虚拟样机技术研究[J].北京航空航天大学学报.2003.7:47-50.
    [36]薛克敏,江树勇,康达昌.带纵向内筋薄壁筒形件强力旋压成形[J].材料科学与工艺.2002.10(3):287-290.
    [37]徐恒秋,张锐,王大力等.双锥形件错距强力旋压成型技术[C].第十二届全国旋压技术交流年会论文集.2011.8:168-171.
    [38]Anon. Metal spinning in the auto motive industry[J]. Sheet Metal Industries.1995.12(4):13-18
    [39]陈瑞华SY-11CNC三旋轮数控旋压机床的技术改造[J].机械.2009,5:77-78
    [40]郭丽,杨浩.李亦楠等QX63-500CNC三轮强力旋压机的结构设计与应用[C].第十二届全国旋压技术交流年会论文集.2011.8:24-27.
    [41]樊桂森.五五所旋压技术回顾与展望[C].第十二届全国旋压技术交流年会论文集.2011.8:14-18.
    [42]Xue Kemin, Wang Zhen. Lu Yan. Elasto-plastic FEM Analysis and Experimental Study of Diametral Growth in Tube Spinning, [J], Mater. Process, Technol.1997,69:172-175
    [43]TURNER M R, CLOUGH R W, MARTIN H. et al. Stiffness and deflection analysis of complex structure[J], J, Aero. Sci,1956,23:805-823
    [44]CLOUGH R W. The finite element method in plane stress analysis[C]. Proceedings of 2~(nd) Conference on Electronic Computation, Pittsburgh, ASCE,1960:345-377
    [45]ARGRIS J H. Elasto-plastic matrix displacement analysis of three-dimensional continua[J], J, Royal Aeronautical Society,1965.69:633-635
    [46]鲍梅玲.针对316LN不锈钢动静态再结晶模型的DEFORM二次开发[D].[硕士学位论文].山西.太原.2013,
    [47]BELYTSCHKO T, LIU W K. MORAN B. Nonlinear finite elements for continua and structures[M], UK:John Wiley & Sons.2000
    [48]LEE C H, KOBAYASHI S. Elastoplastic Analysis of plane strain and axisymmetric flat punch indentation by the finite element method[J], Int, J. Mech. Sci.1970.12:349-356
    [49]KOBAYASHI S, KIM J H. Deformation analysis of axisymmetric sheet metal forming processes by rigid plastic finite element method[C], In:Koistnen DP, Wang NM. Mechanics of Sheet Metal Forming, New York:lenum Press. 1978:341-365
    [50]PARK J J, KOBYASHI S. Three-dimensional finite element analysis of block compression[J], Int. J. Mech. Sci.1981. 26:165-176
    [51]张利鹏,刘智冲,周宏宇.筒形件强力旋压发展过程及其现状分析[J].塑性工程学报.2006.13(1):43-46
    [52]谢水生,李雷.金属塑性成型的有限元模拟技术及应用[M].北京:科学出版社.2008:107-199
    [53]HONECKER A, MATTIASON K. Finite element procedures for 3D sheet metal forming simulation[C]. Thompson EG eds. NUMIFORM'89. Netherlands.1989:457-464
    [54]WANG Z T. XIE S S. JIN Q J. Elasto-plastic finite element analysis of hydrostatic extrusion with various mathematically contoured dies[J], Proceedings of the 24~(th) International Machine Tool Design and Research Conference. eds. Davies BJ, Manchester,31 Aug.-1 Sep,1983:51-58
    [55]Xue Kemin. Lv Yan, Zhao Xianming. The disposal of key problems in the FEM analysis of tube stagger spinning[J]. Journal of Materials Processing Technology.1997.69:176-179
    [56]Q.X.Xia, X.Q.Cheng. Y.Hu, F.Ruan. Finite Element Simulation and Experimental investigation on the Forming Forces of 3D Non-axisymmetrical tubes spinning[J].International Journal of Mechanical Sciences.Volume 48. Issue 7. July 2006:726-735.
    [57]Xiuquan Cheng. Jiazi Wang, Qinxiang Xia. Analysis of the forming defects and its influencing factors of the poly-wedge pulley spinning[J]. The Tenth Asia-Pacific Conference on Engineering Plasticity and Its Applications. AEPA2010, Wuhan, China,15-17, Nov.,2010:341-345.
    [58]Quigley. E.John Monaghan. Metal forming:an analysis of spinning process[J]. Journal of Material Processing Technology,2000(103):114-119.
    [59]李德群.塑性加工技术发展现状及趋势[J].航空制造技术.2000.3:27-28.
    [60]YAMADA Y, YISHIMURA N, SAKURAI T. Plastic stress-strain matrix and its applicantion for the solution of elasto-plastic problems by the finite element method[C]. Int, J. Mech. Sci,1968,10:343-354
    [61]HIBBIT H D, MARCAL P V, RICE J R. Finite element formulations of problems of large elastic-plastic deformation [J], Int, J. Solids&Structures,1970,6:1069-1084
    [62]MCMEEKING R M, RICE J R. Finite element formulations for problems of large elastic-plastic deformation[J], Int. J, Solids Struct 1975,11:601-616
    [63]LEE C H, KOBAYASHI S. New solutions to rigid plastic deformation problems using a matrix method[J], Trans. ASME J, Eng, for Ind,1973,95:865-873
    [64]ZIENKIEWICZ O C, GODBOLE P N. A penalty function approach to problems of plasticity for compressible solid[M], Proc,28~(th) Japanese Joint Conf, Tech, Plas.1977:156-158
    [65]RJ.Asaro. Crystal Plasticity[J]. J.Appl.Mech.1983.50:921-934.
    [66]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京,机械工业出版社,2007.
    [67]龚曙光ANSYS基础应用级范例解析.北京:机械工业出版社[M],2003:29-444.
    [68]郭刚.直壁类冲压件成型过程弹塑性有限元模拟及破裂预测系统[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1994
    [69]张宾宾,李萍,章凯.多V型皮带轮旋压成形过程的有限元分析[J].金属加工,2010.13:55-58.
    [70]袁晓红.马力,曾娟等.旋压带轮的非线性有限元分析[J].武汉大学学报.2007.40(4):P113-116.
    [71]吕晰宇.TC4钛合金旋压成形三维弹塑性有限元分析[J].全国第十届旋压技术交流大会论文汇编.:44-47.
    [72]周照耀,赵宪明,王真.筒形件强力旋压的刚塑性有限元分析[J].塑性工程学报,1994,1(1):37-42.
    [73]马琳伟.金属板材单点渐进成型数值模拟及机理研究[D].[博士学位论文].武汉:华中科技大学.2008
    [74]孙丽丽,聂爱琴,胡小建等.汽车轮毂旋压成型工艺过程中的有限元数值模拟[J].合肥工业大学学报,2008,31(4):552-555
    [75]基于Simufact的连杆衬套旋压工艺参数的模拟研究[J].热加工工艺.2013.01(42):63-66
    [76]田辉,黄海涛,陈国清等.强旋工艺参数对TC4钛合金筒形件旋压成型的影响[J].航天制造技术.2009.5:14-17
    [77]陈建维.TC4钛合金深筒形件的超塑性成形及其精度控制[D].[硕士学位论文].哈尔滨:哈尔滨工业大学.2007.
    [78]马世成.王振杰.王东坡等.异形件内旋压数值模拟成形技术研究[C].第十二届全国旋压技术交流年会论文集.2011.8:124-128.
    [79]韩智仁.陶华.刘黎明.筒形件强力内旋压有限元模拟[J].机械科学与技术.2004.23(1):63-65.
    [80]夏琴香.杨明辉.胡昱等.杯形薄壁矩形内齿旋压成形数值模拟与试验研究[J].机械工程学报.2006.12.42(12):192-196.
    [81]孙凌燕.杯形薄壁内齿轮旋压成形机理及工艺优化研究[D].[博士学位论文].广州.华南理工大学.2001.
    [82]陈适先,贾文铎.强力旋压工艺与设备[M].北京:国防工业出版社.1986:16-19
    [83]刘毅.复合材料旋压制动缸制造工艺.机车车辆工艺[G].2009.4:22-24
    [84]毛柏平,沈健.旋压变形对铝合金筒形件组织和性能的影响[J].热加工工艺.2008,37(11):49-54
    [85]李增辉.温树斌,韩冬等.大长径比薄壁圆筒旋压精度控制工艺研究[J].锻压装备与制造技术.2009,4:102-105
    [86]Wang Qiang, Z-R Wang. Numerical Simulation and Experimental Study on the New Process of Two-Roller Bending Spinning[J]. Advanced Technology of Plasticity 1993-Proceeding of the Fourth International Conference on Technology of plastici. Vol,3:1387-1390
    [87]张锐,徐恒秋,王大力等.特种车辆负重轮旋压工艺研究[C].第十二届全国旋压技术交流年会论文集.2011.8:228-229.
    [88]宛琼,李付国,李超玲等.钛合金筒形件强力旋压工艺模拟[J].金属学及金属工艺.2012.01:106-108.
    [89]耿艳青.多道次普通旋压成形工艺试验及数值模拟研究[D].[硕士学位论文].南昌:南昌航空大学.2012.
    [90]胡硕生.进口旋压封头表面裂纹原因分析[J].石油和化工设备.2009,9:46-47
    [91]胡莉巾,詹梅,黄亮等.采用韧性断裂准则预测分形旋压径向开裂[J].塑性工程学报.2009,4:22-24
    [92]李永华,张宁,檀雯等.不锈钢筒形件错距旋压过程的缺陷研究[J].锻压技术.2009,34(6):32-34
    [93]王德广.金属粉末高致密化成形及其数值模拟研究[D].[博士学位论文].安徽:合肥工业大学2010.
    [94]郑艳丽.三通管液压胀形的数值模拟[D].[硕士学位论文].陕西:西北工业大学.2003.
    [95]张海筹.弧面凸轮等温挤压预成形工艺与模具结构优化[D].[硕士学位论文].湖南:湘潭大学.2006.
    [96]张全忠.GH4169合金摩擦焊接过程的数值模拟研究[D].[博士学位论文].辽宁:大连理工大学.2007.
    [97]郭太雄.热轧粗轧过程的有限元解析[D].[硕士学位论文].云南:昆明理工大学.2005.
    [98]陈雷.数值模拟法组合冲压连接模具[D].[硕士学位论文].上海:上海交通大学.2009.
    [99]于翔.AZ61B镁合金热加工成形的数值模拟及组织预报[D].[硕士学位论文].重庆:重庆大学.2004.
    [100]胡海昌.论弹性力学与受范性力学的一般变分原理[J].物理学报.1954,3:259-290
    [101]陈适先.筒形件强力旋压的塑性流动场及旋压力解析[J].机械工程学报.1982,18(3):41-50
    [102]张宁,檀雯,李永华等.筒形件错距旋压数值模拟及旋压力分析[J].沈阳理工大学学报.2009.28(5):55-58
    [103]O.Music. J.M.Allwood, K.Kawai. A review of the mechanics of metal spinning[J]. Journal of Materials Processing Technology.2009.
    [104]Musica O, Allwooda J M. Kawai K. A Review of the Mechanics of Metal Spinning[J]. Journal of Materials Processing Technology.2010.210(1):3-23.
    [105]彭子明.汽车轮毂旋压工艺分析软件及旋压力和偏载力研究[D].[硕士学位论文].秦皇岛:燕山大学.2004.
    [106]Sawtell R.R, Jensen C.L. Mechanical Properties and Microstructures of Al-Mg-Sc-Alloy[J]. Metall.Trans. 1990.21A:421-425.
    [107]刘承东.GH4169惯性摩擦焊接过程的有限元热力耦合分析[D].[硕士学位论文].大连:大连理工大学.2003.
    [108]杨羽.曹国华.筒形件旋压力Thamasett算法参数修正及仿真[J].兵器材料科学与工程2012.35(1):84-87.
    [109]M.Zhan, H.Yang, J.H.Zhang.et al. Research on variation of stress and strain field and wall thickness during cone spinning[J], Mater.Sci.Forum532-533(2006):149-152.
    [110]赵宪明.吴迪.吕炎等.筒形件正旋旋压力及位移分布规律的有限元分析[J].塑形工程学报.2000.04:58-61
    [111]赖周艺.非圆横截面空心零件旋压成形机理研究[D].[博士学位论文].广州.华南理工大学.2012.
    [112]冯万林,夏琴香,程秀全等.旋压力的测试方法及试验研究[J].锻压装备与制造技术.2005.04:92-96
    [113]王映品.五边形截面空心零件旋压成形数值模拟与工艺研究[D].[硕士学位论文].广州.华南理工大学.2011.
    [114]梅瑛.李瑞琴.张晨爱等.基于ANSYS的筒形件强力反旋应力应变分析[J].机械设计与研究.2008.06:69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700