用户名: 密码: 验证码:
新型超高强度马氏体钢组织超细化控制技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于超高强度马氏体钢而言,其韧性通常较差。晶粒细化是唯一一种既能提高强度又能改善韧性的方法。为进一步提高超高强度马氏体钢的性能,材料研究者们在超细晶马氏体钢制备方面开展了大量的研究工作,开发了许多晶粒细化方法,如循环热处理、快速加热法和形变热处理等。但这些方法存在工艺繁琐、成本高等缺憾,很难适应当前工业化生产装备和流程的特点,极大地限制了工业化应用。因此,有必要在现有的生产装备和工艺流程的基础上,发展出简单的、可行的晶粒细化方法,以提高超高强度马氏体钢的综合力学性能。
     本文采用Nb-Ti和V-Ti复合微合金化成分设计,提出了将控制轧制、直接淬火和再加热淬火等工艺相结合,通过控制微合金第二相在钢中奥氏体区及铁素体区的析出,制备具有良好综合力学性能的超细晶超高强度马氏体钢的新思路。利用第二相在钢中的固溶度积公式,建立了一种四元第二相在奥氏体中的析出热力学模型,为钢铁材料微合金成分的设计及均热温度的确定提供理论依据。结合微合金碳氮化物在奥氏体中的析出行为,优化轧制工艺,以实现奥氏体晶粒的超细化。利用扫描电镜(SEM)、透射电镜(TEM)和电子背散射技术(EBSD)等实验手段对直接淬火钢的组织进行表征,分析了细晶直接淬火钢的组织特征及强韧化机理。在直接淬火钢的基础上,进一步尝试了利用再加热工艺实现奥氏体晶粒超细化。研究了热轧态奥氏体扁平化程度、初始组织、再加热温度和保温时间等因素对再加热后奥氏体晶粒细化的影响;探讨了直接淬火钢在再加热过程中实现奥氏体超细化的机理;表征了超细晶马氏体钢的组织结构特征及其力学性能。
     对复合微合金碳氮化物在奥氏体中的析出热力学和动力学的研究表明,相比于(V,Ti)(C,N),(Nb,Ti)(C,N)在均热及轧制过程中更易于析出。采用Nb-Ti复合微合金化,将控制轧制与直接淬火工艺相结合,通过控制(Nb,Ti)(C,N)的在奥氏体中的析出行为,获得了原始扁平奥氏体厚度小于5μm的超细晶直接淬火钢。其均热工艺为1180℃保温1h,粗轧温度为1020℃,精轧温度为780℃。实验钢经两阶段轧制后进行直接淬火,基体组织由板条马氏体、等轴铁素体、扁平化铁素体及少量残余奥氏体组成。与V-Ti直接淬火钢相比,Nb-Ti直接淬火钢中的铁素体含量较少,奥氏体扁平化程度更高,基体中的界面密度更大,获得了更加优良的强韧性配合。其横向抗拉和屈服强度分别达到1750MPa和1300MPa;纵向-40℃夏比冲击吸收功达到37J。研究发现,将直接淬火工艺与低温回火工艺相结合能够进一步提高直接淬火钢的力学性能。Nb-Ti超细晶直接淬火钢在200℃回火1h后,横向抗拉和屈服强度分别为1730MPa和1400MPa,纵向-40℃夏比冲击吸收功上升至43J,突破了相同强度级别传统马氏体钢的强韧性水平。
     根据Nb-Ti和V-Ti直接淬火钢的相分析结果,在V-Ti直接淬火钢的基础上,利用再加热工艺,成功实现了奥氏体晶粒超细化。V-Ti直接淬火钢在880℃保温1s,获得了平均晶粒尺寸仅为2μm的超细晶奥氏体。研究结果表明:增大热轧态奥氏体扁平化程度,采用马氏体为基体组织,降低加热温度,缩短保温时间均能在一定程度上细化再加热态奥氏体晶粒。V-Ti直接淬火钢在加热过程中,奥氏体主要集中于原始奥氏体晶界、铁素体晶界、铁素体/马氏体界面等大角度晶界处形核,且新形成的奥氏体晶粒基本呈球状。与传统马氏体钢相比,在加热过程中,V-Ti直接淬火钢中可供奥氏体形核的位置更多。且在加热过程中,V, Ti)C在基体中将自发形核,其析出过程主要受原子扩散的控制。随着温度的升高,(V,Ti)C在铁素体区的沉淀析出PTT曲线单调地向短时间方向移动。当温度大于Ac3时,加热及保温过程中,基体中已析出的(V, Ti)C粒子会重新溶解和粗化,而未溶的(V, Ti)C粒子能够钉扎奥氏体晶粒,起到抑制晶粒长大的作用。
     不同尺寸的奥氏体晶粒发生马氏体相变后组织特征的研究结果表明,超细晶奥氏体发生马氏体相变基本符合K-S关系,其相变后获得的马氏体组织与传统马氏体组织一样具有多尺度的亚结构单元。随着奥氏体晶粒尺寸的减小,单个原始奥氏体晶粒内部的马氏体变体数减少,基体中大角度界面密度,尤其是原始奥氏体晶界密度随之增加,基体中马氏体板条束尺寸和板条块宽度则随之减小。相比于传统的马氏体钢和细晶直接淬火钢,V-Ti超细晶马氏体钢获得了最好的强韧性配合。其横向抗拉和屈服强度分别为1670MPa和1460MPa,纵向-40℃下冲击吸收功为57J。
Generally, ultra-high strength martensitic steel exhibited a poor toughness. Grain refinement is the only way which can be used to improve both strength and toughness. Many works about the manufacturing method of ultra-fine grained martensitic steels have been done by materials scientists in an attempt to further improve the performance of the ultra-high strength martensitic steel. And a lot of grain refinement methods have been developed, such as cyclic heat treatment, rapid heating method, deformation heat treatment and so on. However, these methods have many shortcomings, such as complicated process, high cost and so on, and thus are difficult to be applied in the current industrial process. Therefore, it is necessary to develop a novel, simple and available method for grain refinement of ultra-high strength martensitic steel.
     In the present paper, the complex microalloying design of Nb-Ti and V-Ti were employed. A new process for producing ultra-fine grained martensitic steels with excellent mechanical properties was proposed as follow:obtaining ultra-fine grained austenite by thermomechanical control process, reheated-quenching process and controlling the precipitation behavior of the second phases in austenite and ferrite. Based on the solubility products of secondary phases, an analytical model for describing the precipitation thermodynamic of quadruple-element precipitation was built, which can provide a theoretical basis for the determination of microalloying design and soaking process. The microstructure of direct-quenched steels was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) and so on. The microstructure and the strengthening and toughening mechanism of direct-quenched steel were analyzed. The reheating process was carried out in an attempt to further refine the austenite grain size. The effects of controlled rolling parameters, matrix structure, reheating temperature and holding time on the austenite grain refinement were investigated. The mechanism of austenite grain refinement during reheating process in the direct-quenched steel was discussed. The microstructure and mechanical properties of ultra-fine grained martensitic steel was characterized.
     The thermodynamic and kinetic results of complex carbonitride precipitation in asutenite indicated that, compared to the (V, Ti)(C, N) precipitation, the (Nb, Ti)(C, N) precipitation was easier to precipitate during the soaking process and rolling process. For the Nb-Ti complex microalloyed design, combining the thermomechanical control process and direct-quenching technology, through controlling the precipitation behavior of (Nb, Ti)(C, N) in austenite, ultra-fine grained direct-quenched steel with the prior austenite grain thickness smaller than5μm was obtained. The soaking process carried out at1180℃for1h and the rough and finish rolling process were carried out at1020℃and780℃, respectively. After the two-stage rolling, the steel was directly quenched by water. The micro structure of the direct-quenched Nb-Ti microalloyed steels was composed of lath martensite, equiaxial ferrite, deformed ferrite and a very small amount of retained austenite. Compared to the direct-quenched V-Ti microalloyed steel, the amount of ferrite was smaller and the density of boundary was higher in the direct-quenched Nb-Ti microalloyed steel, in which the better balance between strength and toughness was obtained. The transverse tensile strength and yield strength were1750MPa and1300MPa, respectively and the longitudinal Charpy impact energy at-40℃was37J. Moreover, the effects of tempering temperature on the microstructure and mechanical properties of direct-quenched steel were also investigated. The results indicated that the mechanical properties of direct-quenched steels could be further improved by combining the direct quenching technology with low temperature tempering process. After tempering at200℃for1h, the direct quenched Nb-Ti microalloyed steel obtained the best mechanical properties. The transverse tensile strength and yield strength were1730MPa and1400MPa, respectively and the longitudinal Charpy impact energy at-40℃was increased to43J, which exceeded the level of toughness in the conventional martensitic steels with the same strength grade.
     According to the results of physical and chemical phase analysis for the direct-quenched steel, the reheating process was carried out in the V-Ti microalloyed steel and ultra-fine grained austenite was obtained. The ultra-fine austenite grains with the size of2μm was obtained in the V-Ti microalloyed steel as reheated at880 ℃for1s. The experimental results indicated that increasing flattening degree of austenite, using martensite as matrix structure, decreasing reheating temperature and holding time could refine austenite grain to some extent. The globular austenite nuclei intensely formed at the high angle boundaries in V-Ti microalloyed steel during the reheating process, such as prior austenite grain boundary, ferrite grain boundary, ferrite/martensite boundary and so on. Compared to the conventional martensitic steel, the amount of austenite nucleation site was more in the direct quenched V-Ti microalloyed steel during the reheating process. Moreover, the (V, Ti)C precipitates would spontaneous nucleate in the matrix during the reheating process. And the precipitation behavior of (V, Ti)C was mainly controlled by atomic diffusion. With the reheated temperature increased, the PTT curve of (V, Ti)C precipitates in ferrite monotonically trends to the short time direction. However, when the reheating temperature was above AC3, the (V, Ti)C particles will be redissolved and coarsened. However, the undissolved particles in the matrix can pin the austenite grains and inhibit the austenite grain growth effectively.
     Martensite transformation from austenite with different grain sizes obeyed K-S orientation relationship. The martensite transformed from ultra-fine austenite had a multi-scale structure consistent with conventional martensite. However, with the decreasing of austenite grain size, the numbers of martensite variant in a prior austenite grain decreases and the density of high angle boundary, especially the density of prior austenite grain boundary also significantly increases. Moreover, the packet size and block width were decreased with the austenite grain size. Compared to the conventional martensitic steel and the direct quenched steel, the best balance between strengthen and toughness was achieved in the ultra-fine grained martensite V-Ti microalloyed steel due to the grain refinement. The transverse tensile strength and yield strength were1670MPa and1460MPa, respectively and the longitudinal Charpy impact energy at-40℃was57J.
引文
[1]翁宇庆.超细晶钢—钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003.
    [2]Okamoto K, Yoshie A, Nakao H. Physical metallurgy of direct quenched steel plates and its application for commercial process and products[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels, TMS,1992.
    [3]Krauss G. Steels-processing, structure, and performance [M]. ASM International, 2005.
    [4]Brooks C R. Principles of the austenitization of steels [M]. London:Elsevier Applied Science,1992:91.
    [5]Samuels L E. Light microscopy of carbon steels [M]. ASM International,1999: 185.
    [6]Gladman T. The physical metallurgy of microalloyed steels [M]. Landon:The Institute of Materials,1997:215-218.
    [7]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [8]Maropoulos S, Karagiannis S, Ridley N. The effect of austenitising temperature on prior austenite grain size in a low-alloy steel [J]. Materials Science and Engineering,2008,483-484A:735-739.
    [9]Koo J Y, Luton M J, Bangaru N V, et al. Metallurgical Design of Ultra-High Strength Steels for Gas Pipelines [C]. Proceedings of the Thirteenth International Offshore and Polar Engineering Conference (Honolulu, Hawaii, USA), 2003:10-18.
    [10]Grange R A. The rapid heat treatment of steel [J]. Metallurgical Transactions, 1971,2:65-78.
    [11]Porter L F, Dabkowski D S. Ultrafine-Grain Metals [M], ed. by Burke J J and Weiss V, Syracuse University Press, Syracuse,1970:133.
    [12]Masanori.低碳钢和V-Nb微合金钢的高温变形和形变热处理[C],高洁净度超细晶微合金化高强高韧钢文集,北京,冶金部钢铁研究总院编,1998:180-185.
    [13]王泾文,周红生.W9Mo3Cr4V钢的超细化处理[J].钢铁研究学报,1999, 11(1):20-22.
    [14]Belyakov A, Miura H, Sakai T, Dynamic recrystallization ultra fine-grained stainless steel [J]. Scripta Materialia.2000,43:21-26.
    [15]Umemoto M. Nanocrystallization of steel by severe plastic deformation [J]. Metallurgical Transactions,2003,44(10):1900-1911.
    [16]Han J, wang Z Y, Jiang L Z. Properties of a 304 austenitic stainless steel hot strip by TMCP [J]. Journal of Iron and Steel, International,2007,14(5): 282-287.
    [17]Wu D, Li Z, Lu H S. Effect of controlled cooling after hot rolling on mechanical properties of hot rolled TRIP steel [J]. Journal of Iron and Steel, International, 2008,15(2):65-70.
    [18]Xiao F R, Liao B, Shan Y Y, et al. Challenge of mechanical properties of an acicular ferrite pipeline steel [J]. Materials Science and Engineering,2006, 431A:41-52.
    [19]Gazder A A, Cao W Q, Pereloma E V, et al. An EBSD investigation of interstitial-free steel subjected to equal-channel angular extrusion [J]. Materials Science and Engineering,2008,497A:341-352.
    [20]Huang C X, Yang G, Gao Y L, et al. Influence of processing temperature on the microstructures and tensile Properties of 304L stainless steel by ECAP [J]. Materials Science and Engineering,2008,485A:643-650.
    [21]Dobatkin S V, Rybal' chenko O V, Raab G I. Structure formation, Phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating [J]. Materials Science and Engineering,2007, 463A:41-45.
    [22]Tamimi S, Ketabchi M, Parvin N. Microstructure evolution and mechanical properties of accumulative roll bonded interstitial free steel [J]. Materials and Design,2008,30(7):2556-2562.
    [23]Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia,1999,40(7): 795-800.
    [24]Valiev R Z, IvanisenkoY V, Rauch E F, et al. Structure and deformation behavior of Armco iron subjected to severe plastic deformation [J]. Acta Materialia,1996,44(12):4705-4712.
    [25]Heilmann P, Clark W A T, Rigney D A. Orientation determination of subsurface cells generated by sliding [J]. Acta Metallurgica 1983,31(8):1293-1305.
    [26]Umemoto M, Huang B, Tsuchiya K, et al. Formation of nanocrystalline structure in steels by ball drop test [J]. Scripta Materialia,2002,46(5): 383-388.
    [27]佐藤彰.超铁钢材料[J].铁钢界,1997,12:14-15.
    [28]Lee W P. Development of high performance structural steels for 21st century in Korea [C]. Ultra Steel 2000, Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Held in Tsukuba, Japan,12-13 January,2000:33-63.
    [29]杨蕴林,席聚奎,孙万昌.65Mn钢的组织超细化与超塑性[J].热加工工艺,1995,2:14-15.
    [30]文九巴.9SiCr钢超塑性变形热处理的组织与性能[J].金属热处理学报,1994,15(4):26-29.
    [31]陈思联,董瀚,惠卫军等.合金结构钢的组织超细化及其性能研究[C].新一代钢铁材料重大基础研究论文集,北京科技大学编,2000,281-286.
    [32]Furuhara T, Kikumoto K, Saito H, et al. Phase transformation from fine-grained austenite [J]. ISIJ International,2008,48:1038-1045.
    [33]Tokizane M, Matsumura N, Tsuzaki, et al. Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels [J]. Metallurgical Transactions,1982,13 A:1379-1388.
    [34]雍岐龙,马鸣图,吴宝榕等.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989.
    [35]Cho S H, Kang K B, Jonas J J. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel [J]. ISIJ International,2001,41: 63-69.
    [36]Cho S H, Kang K B, Jonas J J. Mathematical modeling of the recrystallization kinetics of Nb-microalloyed steels [J]. ISIJ International,2001,41:766-773.
    [37]Khlestov V M, Konopleva E V, Mqueen H J. Effect of deformation in controlled rolling on ferrite nucleation [J]. Canadian Metallurgical Quarterly,2001,40: 221-234.
    [38]Roberts W, Lidefelt H, Sandberg A. Mechanism of enhanced ferrite nucleation from deformed austenite in microalloyed steels [J]. Proc. Sheffield conf. On Hot-working and Forming Processes, The Metal Society, London, Edited by Sellars C M, Davies G J,1980:38-63.
    [39]Amin P K, Pickering F B, Ferrite formation from thermo-mechanically processed austenite [J]. Proceedings of an international Conference on the Thermo-mechanical Processing of Microalloyed Austenite, Metallurgical Society of AIME, Edited by DeArdo A J, Ratz G A, Wray P J,1995:377-392.
    [40]Wang R Z, Lei T C. Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in the (F+A) two-phase range [J]. Scripta Metallurgica et Materialia,1994,31:1191-1197.
    [41]Zener C. quoted by Smith C S, Grains, Phases, and Interfaces:An Interpretation of Micro structure [J]. Transitions of AIME,1948,175:47
    [42]Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metallurgica,1965,13:227-238.
    [43]Gladman T. The theory of precipitate particles on grain growth in metals [J]. Proceedings of the Royal Society,1966,294A:298-309.
    [44]Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Sci Pub,1978.
    [45]Balance J B. The hot deformation of austenite [M]. New York:TMS-AIME, 1976
    [46]孟繁茂,付俊岩.现代铌钢长条材[M].北京:冶金工业出版社,2006.
    [47]Cuddy L J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation [J]. In:DeArdo A J, Ratz G A (eds), Thermomechanical Processing of Microalloyed Austenite, Warrendale: TMS-AIME,1984:129-140.
    [48]Yuan X Q, Liu Z Y, Jiao S H, et al. The onset temperatures of y to a phase transformation in hot deformed and non-deformed Nb micro-alloyed steels [J]. ISIJ International,2006,46(4):579-585.
    [49]Thillou V, Hua M, Gareia C I, et al. Precipitation of NbC and effect of Mn on the strength Properties of hot strip HSLA low carbon steel [J]. Materials Science Forum,1998,284-286:311-318.
    [50]Zhang Z H, Liu Y N, Liang X K, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed Steel [J]. Materials Science and Engineering, 2008,474(1-2) A:254-260.
    [51]Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrystallization in deformed austenite [J]. Acta Materialia,2001,49: 4183-4190.
    [52]Lee K J. Recrystallization and Precipitation interaction in Nb-containing steels [J]. Scripta Materialia,1999,40 (7):837-843.
    [53]Hoogendorn T M, Spanraft M J., "Quantifying the Effect of Microalloying Elements on Structures During Processing," Microalloying'75, Proceedings of an International Symposium on High-Strength, Low-Alloy Steels, (New York, NY:Union Carbide Corporation,1977),75-85.
    [54]詹新伟,王树青,邵扬道.钢轨欠速淬火加热感应器的改进[J].金属热处理,2005,30(5):84-86.
    [55]Zajac S. Expanded use of vanadium in new generations of high strength steels Materials Science and Technology [C]. Conference and Exhibition/Product Manufacturing, Duke Energy Center, Cincinnati, Ohio, USA 2006,317-326.
    [56]Honeycombe R W K. Transformation from Austenite in Alloy Steels [J]. Metallurgical and Materials Transactions A,1976,7(7):915-936.
    [57]Peters M, Hemptenmacher J, Kumpfert J, Leyens C. in:Titanium and Titanium Alloys (ed. Leyens C, Peters M), Willey-VCH, Weinheim, Germany,2003,1-36.
    [58]Gray J M, DeArdo A J. Fundamental Metallurgy of Niobium in Steel [C].HSLA steels:metallurgy and applications. ASM International, USA,1986.
    [59]Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels [J]. Scripta Materialia,2009, 60:1044-1049.
    [60]Tamura I, Ouchi C, Tanaka T, et al. Thermomechanical processing of high strength low carbon steels. Butterworth & Co. Ltd,1988.
    [61]Kitahara H, Ueji R, Ueda M, et al. Crystallographic analysis of plate martensite in Fe-28.5at.%Ni by FE-SEM/EBSD [J]. Materials Characterization,2005, 54(4-5):378-386.
    [62]Kitahara H, Ueji R, Ueda M, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Materialia,2006,54(5):1279-1288.
    [63]Morito S, Tanaka H, Konishi R. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Materialia,2003,51:1789-1799.
    [64]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [65]徐祖耀.应力作用下的相变[J].热处理,2004,19(2):1-17.
    [66]Kawata H, Sakamoto K, Moritani T. Crystallography of ausformed upper bainite structure in Fe-9Ni-C alloys [J]. Materials Science and Engineering 2006, 438-440A:140-144.
    [67]Maki T, Tamura I. Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (Thermec), ISIJ (1988) p.458.
    [68]Zhang X M, Li D F, Xing Z S. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys [J]. Acta Metallurgica et Materiala, 41(1):1693-1699.
    [69]Shao Y, Clapp P C, Rifkin J A. Molecular dynamic simulation of martensitc transformations in NiAl [J]. Metallurgical Transactions,1996,27A:1477-1489.
    [70]Umemoto M, Owen W S. Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy [J]. Metallurgical Transactions,1974,5:2041-2046.
    [71]Brofman P J, Ansell G S. On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys [J]. Metallurgical Transactions,1983,14A: 1929-1931.
    [72]Wu Jianxin, Jiang Bohong, Hsu T Y. Influence of grain size and ordering degree of the parent phase on Ms in a cuznal alloy containing boron [J]. Acta Metallurgica,1988,36:1521-1526.
    [73]Lee Y K, Choi C S. Effects of thermal cycling on the kinetics of the gamma→epsilon martensitc transformation in an Fe-17 wt pct Mn alloy [J]. Metallurgical Transactions,2000,31(11)A:2735-2738.
    [74]Mohanty O N. On the stabilization of retained austenite:mechanism and kinetics [J]. Materials Science and Engineering 1995 32B:267-278.
    [75]Kajiwara S. Roles of dislocations and grain boundaries in martensite nucleation [J]. Metallurgical Transactions,1986,17A:1693-1702.
    [76]Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel [J]. Metallurgical Transactions,2004,45, 2245-2251.
    [77]Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ International,2005,45:91-94.
    [78]Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite [J]. ISIJ International,2011,51(2): 299-304.
    [79]Sadovskii V D. Problems of Physical Metallurgy and Heat Treatment [M], Mashgiz, Moscow,1956:31.
    [80]Sadovskii V D, Sokolov B K. Problems of Physical Metallurgy and Heat Treatment [M], Mashgiz, Moscow,1960:5.
    [81]Matsuda S, Okamura Y. Reverse transformation of low-carbon low alloy steels [J]. Tetsu-to-Hagane,1974,60(2):226-238.
    [82]Speich G R, Szirmae A. Formaiton of Austenite from Ferrite and Ferrite-Carbide Aggregates [J]. Transactions of TMS-AIME,1969,245: 1063-1074.
    [83]Roosz A, Gacsi Z, Fuchs E G. Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel [J]. Acta Metallurgica,1983,31:509-517.
    [84]Shtansky D V, Nakai K, Ohmori Y. Pearlite to Austenite Transformation in an Fe-2.6Cr-1C Alloy [J]. Acta Materialia,1999,47:2619-2632.
    [85]Roberts R A, Mehl R F. The Mechanism and the rate of formation of austenitefrom ferrite-cementite [J]. Transactions of ASM,1943,31:613-650.
    [86]Hara T, Maruyama N, Shinohara Y, et al. Abnormal a to y transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate [J]. ISIJ International,2009,49(11):1792-1800.
    [87]Judd R R, Paxton H W. Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide Aggregate [J]. Transactions of TMS-AIME,1968,242:206-215.
    [88]Nakada N, Tsuchiyama T, Takaki S, et al. Variation selection of reversed austenite in lath martensite. ISIJ International,2007,47:1527-1532.
    [89]李昭东.变形和合金元素对钢中奥氏体组织形成和分解相变的影响:[博士 学位论文].北京:清华大学,2011.
    [90]Strid J, Easterling K E. On the chemistry and stability of complex carbide and nitridesin microalloyed steels [J]. Acta metallurgica,1985,33(11):2057-2074.
    [91]Satoshi A, Mitsuhiro H, Takehide S. Thermodynamic calculation of solute carbon and nitrogen in Nb and Ti added extra-low carbon steels [J]. Transactions of the Iron and Steel Institute of Japan,1994,34(1):9-16.
    [92]Shoichi M, Naoki O. Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels [J]. Transactions of the Iron and Steel Institute of Japan,1978,18(3):198-205.
    [93]McLean A, Kay D A R. Control of inclusions in HSLA steels [A]. Korchynsky M. eds, Microalloying'75[C]. New York:Union Carbides Corporation,1976: 215-231.
    [94]Narita K. Physical chemistry of the groups Ⅳa(Ti, Zr), Ⅴa(V, Nb, Ta) and the rare earth elements in steel [J]. Transactions of the Iron and Steel Institute of Japan,1975,15:145-152.
    [95]Nordberg H, Aronsson B. Solubility of niobium carbide in austenite [J]. JISI, 1968,12:1263-1266.
    [96]Cahn J W. Nucleation on dislocations [J]. Acta Metallurgica,1957,5:168-172.
    [97]夏志伟.亚稳奥氏体的相变表征与高强高韧钢的开发:[硕士学位论文].云南:昆明理工大学,2012.
    [98]Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Materials Science and Engineering,2006, 438-440A:237-240.
    [99]胡赓祥.材料科学基础(第二版)[M].上海:上海交通大学出版社.2007.
    [100]Gladman T. Precipitation hardening in metals [J]. Materials Science and Technology,1999,15 (1):30-36.
    [101]余永宁.金属学原理[M].北京:冶金工业出版社,2003.
    [102]Ashby M F. Strengthening methods in crystals [M]. London:Applied Science Publishers Ltd,1971.
    [103]Luo H W, Sietsma J, Zwaag S Van der. A novel observation of strain-induced ferrite-to-austenite retransformation after intercritical deformation of C-Mn steel [J]. Metallurgical and Materials Transactions,2004,35A:2789-2797.
    [104]王春芳.低合金马氏体钢强韧性组织控制单元的研究:[博士学位论文].北京:钢铁研究总院,2008.
    [105]Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Effect of microstructure refinement on the toughness of low carbon martensitic steel [J]. Scripta Materialia,2008,58(6):492-498.
    [106]Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels [J]. Metallurgical Transactions A, 1986,17 (7):1203-1209.
    [107]徐祖耀.低碳钢中的残余奥氏体[J].上海金属,1995,17(1):1-7.
    [108]Cottrell A H. Dislocation and plastic flow in crystals [M]. London, UK: Oxford University Press,1956.
    [109]崔忠圻,谭耀春.金属学与热处理[M].北京:机械工业出版社.2007.
    [110]Manohar P A, Ferry M, Chandra T. Five decades of the zener equation [J]. ISIJ International,1998,38(9):913-924.
    [111]Hu H, Rath B B. On the time exponent in isothermal grain growth [J]. Metallurgical Transactions,1970,1:3181-3184.
    [112]Beck P A, Kremer L C, Demer L J, et al. Grain growth in high-purity aluminum and in an aluminum magnesium alloy [J], Transactions of AIME,1948,175: 372-394.
    [113]UHM S H, Moon J, Lee C H, et al. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels:considering the effect of initial grain size on isothermal growth behavior [J], ISIJ International, 2004,44:1230-1237.
    [114]徐州,赵连城.金属固态相变原理[M].北京:科学出版社,2004.
    [115]Luo H, Shi J, Wang C et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Materialia,2011,59:4002-4014.
    [116]王存宇.30GPa%级超高强度马奥组织钢的研究:[博士学位论文].北京:钢铁研究总院,2010.
    [117]Judd R R, Paxton H W. Kinetics of austenite fromation from a spheroidized ferrite-carbide aggregate [J]. Transactions of TMS-AIME,1968,242:206-215.
    [118]Koyama S, Ishii T, Narita K. Solubility of vanadium carbide and nitride in ferric iron [J]. Journal of the Japan institute of Metals,1973,37:191-196.
    [119]Tailor K A. Solubility products for titanium-, vanadium-, and niobium-carbides in ferrite [J]. Scripta Metallurgica et Materalia,1995,32: 7-12.
    [120]Moon J, Kim S, Lee J, et al. Limiting austenite grain size of TiN-containing steel considering the critical particle size [J]. Scripta Materialia,2007,56: 1083-1086.
    [121]Hutchinson B, HagstrOm J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J]. Acta Materalia,2011,59: 5845-5858.
    [122]Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys [J]. ISIJ International.2003,43:1475-1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700