用户名: 密码: 验证码:
SPS制备细晶铝的形变微观组织与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细晶材料由于可达到高强度而受到广泛关注,但一般情况下能达到的塑性有限,为了得到良好的性能结合,十分有必要进行细晶材料的形变机理研究,此研究不仅可在工业领域为其应用提供基础理论指导,同时在科学领域可作为连接粗晶和纳米晶的桥梁,对目前颇具争议的纳米晶形变机理研究起指导作用。
     本文主要选用细晶铝来进行形变机理研究,关注形变微观组织演变,及组织与力学性能之间的关系。一个简单的形变前组织是研究的关键,本文利用放电等离子体烧结(SPS)技术制备了平均晶粒尺寸为5.2~0.8m的铝样品,这些样品具有等轴的完全再结晶晶粒和随机织构。在此基础上,利用ECC,EBSD和TEM等技术对压缩变形中的微观组织演变进行了详细的研究;利用弱束暗场技术对位错界面及位错柏氏矢量进行表征,结合Frank公式,Schmid因子和Bishop-Hill模型对开动的滑移系进行了深入的分析和讨论;最后,基于系统的微观组织研究结果和拉伸/压缩测试,对微观组织与力学性能的关系进行了定性与定量的分析。
     研究主要结果如下:(1)晶粒尺寸影响形变微观组织演变。随着晶粒尺寸的减小,晶粒内部形成的微观组织类型发生转变,位错界面的排列更加不规则。而当晶粒尺寸减小至1m以下后,晶粒内部形成的位错界面越来越少。(2)晶粒尺寸影响组织与取向的对应关系。随着晶粒尺寸的减小,III型组织对应的取向范围增加,从反极图三角形的[111]附近扩张到[100]-[110]线附近。(3)以上晶粒尺寸的影响是由于细晶中开动滑移系与粗晶不同,通过标定和分析细晶中位错界面上位错网络的柏氏矢量,发现细晶开动的滑移系比粗晶多,且Schmid因子最大的滑移系的主导地位减弱。对于细晶的变形,利用Bishop-Hill模型比Schmid因子能更好地预测滑移系的开动。(4)形变微观组织演变影响着力学性能,具体表现为平均晶粒尺寸大于1.3m的样品在形变中形成位错界面产生加工硬化,而平均晶粒尺寸降低到0.8m的样品在形变中不形成或很少形成位错界面而缺乏加工硬化。(5)对于产生了加工硬化的细晶铝样品,利用氧化物颗粒强化、林位错强化和晶界强化建立模型对流变应力进行预测,发现当利用2~3o区分林位错强化和晶界强化时,能得到预测值和实验值的良好匹配。
Fine-grained metals have attracted much interest due to the possibility to obtainhigh mechanical strengths, although in general such metals only have a limited ductility.Studies of the deformation mechanisms in fine-grained metals are therefore important,and can also help fill a gap in knowledge between nano-grained metals andconventional coarse-grained metals, which is an area of both scientific and industrialinterest.
     In the present work, the deformation mechanism of fine-grained metals has beenstudied, primarily using Al as an example system. Efforts have been focused oninvestigations of deformation microstructure evolution, and on the relationship betweenmicrostructure and mechanical properties. For such an investigation it is very importantto use a starting material with a simple starting microstructure. For this purpose thespark plasma sintering (SPS) technique has been used. By careful selection of powdercharacteristics and processing conditions, samples of fully dense, fine-grained Al withaverage grain sizes ranging from5.2m to0.8m, in a fully recrystallized condition,with equiaxed grains and a random texture, have been produced. The microstructureevolution during compression of the fine-grained Al SPS-samples up to a strain of0.3has been systematically investigated using a range of techniques, including ECC, EBSDand TEM. Detailed investigations of the dislocation content of dislocation boundarieshave also been carried out using a weak-beam technique, and the observations havebeen interpreted via a slip system analysis including Schmid factor calculations, use ofthe Frank formula and the Bishop-Hill crystal plasticity model. Based on the abovestudies, relationships between the microstructure and mechanical properties have beenestablished.
     The main conclusions arising from these studies are as follows:(1) The formation ofdeformation microstructure depends on grain size. It is found that as the grain sizedecreases, the deformation microstructure changes from one containing well definedfeatures to one with less-well defined features. Additionally as the grain size decreasesbelow1m, only few dislocation boundaries are formed.(2) The relationship betweenmicrostructure and grain orientation changes with decreasing grain size, showing an expansion of grain orientations with type3microstructure from [111] corner toward the[100]-[110] line.(3) The above grain size effect is attributed to different slip systemactivity in fine-grained Al compared to coarse-grained Al. By investigating the Burgersvector of dislocations in the dislocation boundaries, it is found that more slip systemsare activated in fine-grained Al, and that slip systems with the highest Schmid factor areless dominant in the dislocation boundaries formed during deformation. The use of aBishop-Hill model is found to give better predictions compared to a Schmid factoranalysis.(4) The mechanical properties of fine-grained Al show a transition behavior asthe average grain size decreases, and this transition can be related to the differentmicrostructure evolution behavior. For samples with grain size larger than1.3m,dislocation boundaries are stored in each grain during deformation, causingwork-hardening after yielding. However, for samples with grain size below0.8m, fewdislocation boundaries are stored in each grain during deformation, causing a lack ofwork-hardening after yielding.(5) For samples showing work-hardening after yielding,the relationship between microstructure and flow stress has been established. By a linearcombination of oxide particle hardening, forest dislocation hardening and grainboundary hardening, the flow stress can be well predicted by choosing a criticalmisorientation angle of2~3oto distinguish forest dislocation hardening and grainboundary hardening.
引文
[1] Chokski A H, Rosen A, Karch J, et al. On the validity of the Hall-Petchrelationship in nanocrystalline materials. Scripta Metall,1989,23:1679-1683.
    [2] Giga A, Kimoto Y, Takigawa Y, et al. Demonstration of an inverse Hall-Petchrelationship in electrodeposited nanocrystalline Ni-W alloys through tensiletesting. Scripta Mater,2006,55:143-146.
    [3] Nieh T G, Wadsworth J. Hall-petch relation in nanocrystalline solids. ScriptaMetallurgica et Materialia,1991,25:955-958.
    [4] Lu K, Sui M L. An explanation to the abnormal Hall-Petch relation innanocrystalline materials. Scripta Metallurgica et Materialia,1993,28:1465-1470.
    [5] Shan Z W, Stach E A, Wiezorek J M K, et al. Response to comment on "grainboundary-mediated plasticity in nanocrystalline nickel". Science,2005,308:356d.
    [6] Shan Z W, Stach E A, Wiezorek J M K, et al. Grain boundary-mediated plasticityin nanocrystalline nickel. Science,2004,305:654-657.
    [7] Huang X, Hansen N, Tsuji N. Hardening by annealing and softening bydeformation in nanostructured metals. Science,2006,312:249-251.
    [8] Sun X K, Cong H T, Sun M, et al. Preparation and mechanical properties of highlydensified nanocrystalline Al. Metall Mater Trans A,2000,31:1017-1024.
    [9] Hung P C, Sun P L, Yu C Y, et al. Inhomogeneous tensile deformation inultrafine-grained aluminum. Scripta Mater,2005,53:647-652.
    [10] Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms innanostructured high-purity aluminium deformed to high strain and annealed. ActaMaterialia,2009,57:4198-4208.
    [11] Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors inultrafine-grained aluminum. Acta Materialia,2005,53:4019-4028.
    [12] Bhattacharjee P P, Tsuji N. Development of highly cube textured nickelsuperconductor substrate tapes by Accumulative Roll Bonding (ARB). Int J MaterRes,2011,102:173-182.
    [13] Borhani E, Jafarian H, Shibata A, et al. Texture Evolution in Al-0.2mass%ScAlloy during ARB Process and Subsequent Annealing. Mater Trans,2012,53:1863-1869.
    [14] Cao W Q, Liu Q, Godfrey A, et al. Microstructure and texture evolution duringannealing of an aluminium ARB material. Textures of Materials, Pts1and2,2002,408-4:721-726.
    [15] Cojocaru V D, Raducanu D, Gordin D M, et al. Texture evolution during ARB(Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy. J AlloyCompd,2013,546:260-269.
    [16] Huang X, Tsuji N, Hansen N, et al. Microtexture of lamellar structures in Alheavily deformed by accumulative roll-bonding (ARB). Textures of Materials, Pts1and2,2002,408-4:715-720.
    [17] Kamikawa N, Huang X, Tsuji N, et al. EBSD and TEM characterization ofultrafine grained high purity aluminum produced by accumulative roll-bonding.Mater Sci Forum,2006,512:91-96.
    [18] Kamikawa N, Tsuji N, Huang X, et al. Quantification of annealed microstructuresin ARB processed aluminum. Acta Materialia,2006,54:3055-3066.
    [19] Kamikawa N, Tsuji N, Minamino Y. Microstructure and texture through thicknessof ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding.Sci Technol Adv Mat,2004,5:163-172.
    [20] Kamikawa N, Tsuji N, Saito Y. Effect of strain on microstructures and mechanicalproperties of ARB processed and annealed ultra-low carbon IF steel. Tetsu toHagane,2003,89:63-70.
    [21] Kim H W, Kang S B, Xing Z P, et al. Texture properties of AA8011aluminumalloy sheet manufactured by the accumulative roll bonding process (ARB).Textures of Materials, Pts1and2,2002,408-4:727-732.
    [22] Lee S H, Sakai T, Saito Y, et al. Strengthening of sheath-rolled aluminum basedMMC by the ARB process. Mater T Jim,1999,40:1422-1428.
    [23] Li B L, Shigeiri N, Tsuji N, et al. Microstructural evolution in pure copperseverely deformed by the ARB process. Mater Sci Forum,2006,503-504:615-620.
    [24] Li B L, Tsuji N, Minamino Y. Microstructural evolution in36%Ni austenitic steelduring the ARB process. Mater Sci Forum,2006,512:73-77.
    [25] Tsuji N, Okuno S, Koizumi Y, et al. Toughness of ultrafine grained ferritic steelsfabricated by ARB and annealing process. Mater Trans,2004,45:2272-2281.
    [26] Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafinegrained IF steel fabricated by ARB process. Scripta Mater,2002,47:69-76.
    [27] Bowen J R, Mishin O V, Prangnell P B, et al. Orientation correlations inaluminium deformed by ECAE. Scripta Mater,2002,47:289-294.
    [28] Bowen J R, Prangnell P B, Jensen D J, et al. Microstructural parameters and flowstress in Al-0.13%Mg deformed by ECAE processing. Mat Sci Eng a-Struct,2004,387:235-239.
    [29] Sun P L, Kao P W, Chang C P. Effect of deformation route on microstructuraldevelopment in aluminum processed by equal channel angular extrusion. MetallMater Trans A,2004,35A:1359-1368.
    [30] Abd El Aal M I, Yoon E Y, Kim H S. Recycling of AlSi8Cu3alloy chips via highpressure torsion. Mat Sci Eng a-Struct,2013,560:121-128.
    [31] Rathmayr G B, Hohenwarter A, Pippan R. Influence of grain shape and orientationon the mechanical properties of high pressure torsion deformed nickel. Mat SciEng a-Struct,2013,560:224-231.
    [32] Srinivasarao B, Zhilyaev A P, Langdon T G, et al. On the relation between themicrostructure and the mechanical behavior of pure Zn processed by high pressuretorsion. Mat Sci Eng a-Struct,2013,562:196-202.
    [33] Sun Y F, Todaka Y, Umemoto M, et al. Solid-state amorphization of Cu plus Zrmulti-stacks by ARB and HPT techniques. J Mater Sci,2008,43:7457-7464.
    [34] Wang C T, Gao N, Gee M G, et al. Processing of an ultrafine-grained titanium byhigh-pressure torsion: An evaluation of the wear properties with and without a TiNcoating. J Mech Behav Biomed,2013,17:166-175.
    [35] Wang Y C, Langdon T G. Influence of phase volume fractions on the processing ofa Ti-6Al-4V alloy by high-pressure torsion. Mat Sci Eng a-Struct,2013,559:861-867.
    [36] Kuhlmann-Wilsdorf D. Advancing towards constitutive equations for the metalindustry via the LEDS theory. Metall Mater Trans B,2004,35:5-54.
    [37] Kuhlmann-Wilsdorf D. Why do dislocations assemble into interfaces in epitaxy aswell as in crystal plasticity? To minimize free energy. Metall Mater Trans A,2002,33:2519-2539.
    [38] Kuhlmann-Wilsdorf D. Q: Dislocations structures-how far from equilibrium? A:Very close indeed. Mat Sci Eng a-Struct,2001,315:211-216.
    [39] Kuhlmann-Wilsdorf D. Deformation bands, the LEDS theory, and their importancein texture development: Part II. Theoretical conclusions. Metall Mater Trans A,1999,30:2391-2401.
    [40] Kuhlmann-Wilsdorf D. Overview no.131-"Regular" deformation bands (DBs)and the LEDS hypothesis. Acta Materialia,1999,47:1697-1712.
    [41] Kuhlmann-Wilsdorf D, Kulkarni S S, Moore J T, et al. Deformation bands, theLEDS theory, and their importance in texture development: Part I. Previousevidence and new observations. Metall Mater Trans A,1999,30:2491-2501.
    [42] Kuhlmann-Wilsdorf D, Winey K I. Does plastic deformation proceed nearthermodynamic equilibrium? The case made for shear-strained lamellar diblockcopolymers. J Appl Phys,1999,85:6392-6399.
    [43] Kulkarni S S, Starke E A, Kuhlmann-Wilsdorf D. Some observations ondeformation banding and correlated microstructures of two aluminum alloyscompressed at different temperatures and strain rates. Acta Materialia,1998,46:5283-5301.
    [44] Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns.Philos Mag,2006,86:3981-3994.
    [45] Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure andflow stress. Mat Sci Eng a-Struct,2008,494:61-67.
    [46] Hansen N, Huang X, Winther G. Effect of Grain Boundaries and Grain Orientationon Structure and Properties. Metall Mater Trans A,2011,42A:613-625.
    [47] He Y, Huang X, Hansen N, et al. Effect of grain orientation on microstructures ofaluminium in warm tension. Mater Sci Tech-Lond,2005,21:1471-1475.
    [48] Hong C S, Tao N R, Lu K, et al. Grain orientation dependence of deformationtwinning in pure Cu subjected to dynamic plastic deformation. Scripta Mater,2009,61:289-292.
    [49] Huang X. Grain orientation effect on microstructure in tensile strained copper.Scripta Mater,1998,38:1697-1703.
    [50] Huang X, Hansen N. Grain orientation dependence of microstructure in aluminiumdeformed in tension. Scripta Mater,1997,37:1-7.
    [51] Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence.Philos Mag,2007,87:5189-5214.
    [52] Le G M, Godfrey A, Hong C S, et al. Orientation dependence of the deformationmicrostructure in compressed aluminum. Scripta Mater,2012,66:359-362.
    [53] Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries,incidental dislocation boundaries and geometrically necessary dislocations.Scripta Mater,2003,48:147-153.
    [54] Kuhlmann-Wilsdorf D, Hansen N. geometrically necessary, incidental andsubgrain boundaries. scripta metallugica et materialia,1991,25:1557-1562.
    [55] Liu Q, Hansen N. Geometrically Necessary Boundaries and Incidental DislocationBoundaries Formed during Cold Deformation. Scripta Metallurgica Et Materialia,1995,32:1289-1295.
    [56] Feaugas X, Haddou H. Effects of grain size on dislocation organization andinternal stresses developed under tensile loading in fcc metals. Philos Mag,2007,87:989-1018.
    [57] Chen H S, Godfrey A, Hansen N, et al. Microstructure–grain orientationrelationship in coarse grain nickel cold-rolled to large strain. Materials Scienceand Engineering: A,2008,483–484:157-160.
    [58] Haldar A, Huang X, Leffers T, et al. Grain orientation dependence ofmicrostructures in a warm rolled IF steel. Acta Materialia,2004,52:5405-5418.
    [59] Buque C, Bretschneider J, Schwab A, et al. Dislocation structures in cyclicallydeformed nickel polycrystals. Mat Sci Eng a-Struct,2001,300:254-262.
    [60] Buque C, Bretschneider J, Schwab A, et al. Effect of grain size and deformationtemperature on the dislocation structure in cyclically deformed polycrystallinenickel. Mat Sci Eng a-Struct,2001,319:631-636.
    [61] Li P, Li S X, Wang Z G, et al. Cyclic Deformation Behaviors of [-579]-OrientedAl Single Crystals. Metall Mater Trans A,2010,41A:2532-2537.
    [62] Li P, Li S X, Wang Z G, et al. Formation mechanisms of cyclic saturationdislocation patterns in [001],[011] and [-111] copper single crystals. ActaMaterialia,2010,58:3281-3294.
    [63] Li P, Zhang Z F, Li S X, et al. Effect of orientation on cyclic stress-strain curvesand dislocation patterns of Ag and Cu single crystals. Mat Sci Eng a-Struct,2010,527:2305-2312.
    [64] Weingarten N S, Selinger R L B. Size effects and dislocation patterning intwo-dimensional bending. J Mech Phys Solids,2007,55:1182-1195.
    [65] Huang X, Hansen N. Flow stress and microstructures of fine grained copper. MatSci Eng a-Struct,2004,387:186-190.
    [66] Winther G, Huang X. Dislocation structures. Part II. Slip system dependence.Philos Mag,2007,87:5215-5235.
    [67] McCabe R J, Misra A, Mitchell T E. Experimentally determined content of ageometrically necessary dislocation boundary in copper. Acta Materialia,2004,52:705-714.
    [68] Hughes D A, Khan S M A, Godfrey A, et al. Internal structures of deformationinduced planar dislocation boundaries. Mat Sci Eng a-Struct,2001,309:220-226.
    [69] Wert J A, Liu Q, Hansen N. Dislocation Boundaries and Active Slip Systems. ActaMetall Mater,1995,43:4153-4163.
    [70] Wei Y L, Godfrey A, Liu W, et al. Dislocations, boundaries and slip systems incube grains of rolled aluminium. Scripta Mater,2011,65:355-358.
    [71] Hirth J P, Lothe J. Theory of dislocations. New York: Wiley,1982:697-750.
    [72] Jung J Y, Park J K, Chun C H, et al. Hall-Petch relation in two-phase TiAl alloys.Mat Sci Eng a-Struct,1996,220:185-190.
    [73] Teng Z Y, Teng F E, Wang Y M. Some Applications of the Hall-PetchRelationship for Single-Phase Imperfect Polycrystals. Mater Charact,1995,34:237-240.
    [74] Miller M, Dawson P. Influence of slip system hardening assumptions on modelingstress dependence of work hardening. J Mech Phys Solids,1997,45:1781-1804.
    [75] Armstrong P E, Hockett J E, Sherby O D. Large Strain MultidirectionalDeformation of1100Aluminum at300-K. J Mech Phys Solids,1982,30:37-&.
    [76] Hansen N, Huang X, Hughes D A. Microstructural evolution and hardeningparameters. Mat Sci Eng a-Struct,2001,317:3-11.
    [77] Hansen N, Jensen D J. Flow-Stress Anisotropy Caused by GeometricallyNecessary Boundaries. Acta Metall Mater,1992,40:3265-3275.
    [78] Hansen N, Li Z J, Winther G. Flow stress anisotropy and hardening parameters.Mater Sci Tech-Lond,2005,21:1423-1427.
    [79] Hughes D A, Hansen N. Microstructure and strength of nickel at large strains. ActaMaterialia,2000,48:2985-3004.
    [80] Liu Q, Huang X, Lloyd D J, et al. Microstructure and strength of commercialpurity aluminium (AA1200) cold-rolled to large strains. Acta Materialia,2002,50:3789-3802.
    [81] Hughes D A, Hansen N. Microstructural Evolution in Nickel during Rolling fromIntermediate to Large Strains. Metall Trans A,1993,24:2021-2037.
    [82] Hughes D A, Hansen N. Microstructural Evolution in Nickel during Rolling andTorsion. Mater Sci Tech-Lond,1991,7:544-553.
    [83] Afizadeh M, Paydar M H, Jazi F S. Structural evaluation and mechanicalproperties of nanostructured Al/B4C composite fabricated by ARB process.Compos Part B-Eng,2013,44:339-343.
    [84] Alizadeh M, Paydar M H, Terada D, et al. Effect of SiC particles on themicrostructure evolution and mechanical properties of aluminum during ARBprocess. Mat Sci Eng a-Struct,2012,540:13-23.
    [85] Darmiani E, Danaee I, Golozar M A, et al. Corrosion investigation of Al-SiCnano-composite fabricated by accumulative roll bonding (ARB) process. J AlloyCompd,2013,552:31-39.
    [86] Ikeda K, Takata N, Yamada K, et al. Grain boundary structure in ARB processedcopper. Mater Sci Forum,2006,503-504:925-930.
    [87] Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced byaccumulative roll-bonding (ARB) process. Scripta Mater,1999,40:795-800.
    [88] Orlov D, Kamikawa N, Tsuji N. High pressure torsion to refine grains in purealuminum up to saturation: mechanisms of structure evolution and theirdependence on strain. Philos Mag,2012,92:2329-2350.
    [89] Tsuji N, Saito Y, Lee S H, et al. ARB (accumulative roll-bonding) and other newtechniques to produce bulk ultrafine grained materials. Adv Eng Mater,2003,5:338-344.
    [90] Billard S, Fondere J P, Bacroix B, et al. Macroscopic and microscopic aspects ofthe deformation and fracture mechanisms of ultrafine-grained aluminum processedby hot isostatic pressing. Acta Materialia,2006,54:411-421.
    [91] Balog M, Poletti C, Simancik F, et al. The effect of native Al2O3skin disruptionon properties of fine Al powder compacts. J Alloy Compd,2011,509:S235-S238.
    [92] Guignard J, Bystricky M, Bejina F. Dense fine-grained aggregates prepared byspark plasma sintering (SPS), an original technique in experimental petrology. EurJ Mineral,2011,23:323-331.
    [93] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field andpressure on the synthesis and consolidation of materials: A review of the sparkplasma sintering method. J Mater Sci,2006,41:763-777.
    [94] Omori M. Sintering, consolidation, reaction and crystal growth by the sparkplasma system (SPS). Mat Sci Eng a-Struct,2000,287:183-188.
    [95] Saheb N, Iqbal Z, Khalil A, et al. Spark Plasma Sintering of Metals and MetalMatrix Nanocomposites: A Review. J Nanomater,2012.
    [96] Aman Y, Garnier V, Djurado E. Pressure-less spark plasma sintering effect onnon-conventional necking process during the initial stage of sintering of copperand alumina. J Mater Sci,2012,47:5766-5773.
    [97] Anselmi-Tamburini U, Kodera Y, Gasch M, et al. Synthesis and characterizationof dense ultra-high temperature thermal protection materials produced by fieldactivation through spark plasma sintering (SPS): I. Hafnium Diboride. J Mater Sci,2006,41:3097-3104.
    [98] Bousnina M A, Omrani A D, Schoenstein F, et al. Spark plasma sintering and hotisostatic pressing of nickel nanopowders elaborated by a modified polyol processand their microstructure, magnetic and mechanical characterization. J AlloyCompd,2010,504:S323-S327.
    [99] Chen H B, Tao K, Yang B, et al. Nanostructured Al-Zn-Mg-Cu alloy synthesizedby cryomilling and spark plasma sintering. T Nonferr Metal Soc,2009,19:1110-1115.
    [100] Diouf S, Menapace C, Molinari A. Study of effect of particle size on densificationof copper during spark plasma sintering. Powder Metall,2012,55:228-234.
    [101] El-Atwani O, Quach D V, Efe M, et al. Multimodal grain size distribution and highhardness in fine grained tungsten fabricated by spark plasma sintering. Mat SciEng a-Struct,2011,528:5670-5677.
    [102] Fabregue D, Piallat J, Maire E, et al. Spark plasma sintering of pure ironnanopowders by simple route. Powder Metall,2012,55:76-79.
    [103] Kubota M. Properties of nano-structured pure Al produced by mechanical grindingand spark plasma sintering. J Alloy Compd,2007,434:294-297.
    [104] Li Y Y, Li X Q, Long Y, et al. Fabrication of iron-base alloy by spark plasmasintering. J Mater Sci Technol,2006,22:257-260.
    [105] Libardi S, Zadra M, Casari F, et al. Mechanical properties of nanostructured andultrafine-grained iron alloys produced by spark plasma sintering of ball milledpowders. Mat Sci Eng a-Struct,2008,478:243-250.
    [106] Liu D M, Xiong Y H, Li Y, et al. Spark Plasma Sintering of NanostructuredAluminum: Influence of Tooling Material on Microstructure. Metall Mater TransA,2013,44A:1908-1916.
    [107] Lu N D, Song X Y, Liu X M, et al. Structure and properties of nanocrystalline rareearth bulks prepared by spark plasma sintering. J Rare Earth,2009,27:961-966.
    [108] Ma Y, Zhou Z J, Tan J, et al. Fabrication of Ultra-fine Grain Tungsten byCombining Spark Plasma Sintering with Resistance Sintering under Ultra HighPressure. Rare Metal Mat Eng,2011,40:4-8.
    [109] Minamino Y, Koizumi Y, Tsuji N, et al. Bulk Fe-Al-C nanoalloys made bymechanically alloying with subsequent spark plasma sintering and theirmechanical properties. Sol St Phen,2005,101-102:103-110.
    [110] Minier L, Le Gallet S, Grin Y, et al. A comparative study of nickel and aluminasintering using spark plasma sintering (SPS). Mater Chem Phys,2012,134:243-253.
    [111] Mouawad B, Soueidan M, Fabregue D, et al. Application of the Spark PlasmaSintering Technique to Low-Temperature Copper Bonding. Ieee T Comp Pack Man,2012,2:553-560.
    [112] Ohser-Wiedemann R, Martin U, Seifert H J, et al. Densification behaviour of puremolybdenum powder by spark plasma sintering. Int J Refract Met H,2010,28:550-557.
    [113] Rana J K, Sivaprahasam D, Raju K S, et al. Microstructure and mechanicalproperties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by highenergy ball milling and spark plasma sintering. Mat Sci Eng a-Struct,2009,527:292-296.
    [114] Sasaki T T, Mukai T, Hono K. A high-strength bulk nanocrystalline Al-Fe alloyprocessed by mechanical alloying and spark plasma sintering. Scripta Mater,2007,57:189-192.
    [115] Sasaki T T, Ohkubo T, Hono K. Microstructure and mechanical properties of bulknanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasmasintering. Acta Materialia,2009,57:3529-3538.
    [116] Srinivasarao B, Oh-Ishi K, Ohkubo T, et al. Synthesis of high-strength bimodallygrained iron by mechanical alloying and spark plasma sintering. Scripta Mater,2008,58:759-762.
    [117] Wen H M, Zhao Y H, Zhang Z H, et al. The influence of oxygen and nitrogencontamination on the densification behavior of cryomilled copper powders duringspark plasma sintering. J Mater Sci,2011,46:3006-3012.
    [118] Xu C Y, Jia S S, Cao Z Y. Fabrication of bulk Al-La-Ni alloy by spark plasmasintering. J Mater Sci,2006,41:463-466.
    [119] Xu C Y, Jia S S, Cao Z Y. Synthesis of Al-Mn-Ce alloy by the spark plasmasintering. Mater Charact,2005,54:394-398.
    [120] Zhang Z H, Wang F C, Wang L, et al. Ultrafine-grained copper prepared by sparkplasma sintering process. Mat Sci Eng a-Struct,2008,476:201-205.
    [121] Zuniga A, Ajdelsztajn L, Lavernia E J. Spark plasma sintering of a nanocrystallineAl-Cu-Mg-Fe-Ni-Sc alloy. Metall Mater Trans A,2006,37A:1343-1352.
    [122] Kwon H, Park D H, Park Y, et al. Spark Plasma Sintering Behavior of PureAluminum Depending on Various Sintering Temperatures. Met Mater Int,2010,16:71-75.
    [123] Sun P L, Cerreta E K, Gray G T, et al. The effect of grain size, strain rate, andtemperature on the mechanical behavior of commercial purity aluminum. MetallMater Trans A,2006,37A:2983-2994.
    [124] Alves L M, Nielsen C V, Martins P A F. Revisiting the Fundamentals andCapabilities of the Stack Compression Test. Exp Mech,2011,51:1565-1572.
    [125] Zhang X D, Godfrey A, Huang X X, et al. Microstructure and strengtheningmechanisms in cold-drawn pearlitic steel wire. Acta Materialia,2011,59:3422-3430.
    [126] Zhang X D, Hansen N, Gao Y K, et al. Hall-Petch and dislocation strengthening ingraded nanostructured steel. Acta Materialia,2012,60:5933-5943.
    [127] Rollett A D, Graef M. Microstructure-Properties: I Materials Properties: Strength,Ductility[R/OL].2007.http://neon.mems.cmu.edu/rollett/27301/L27303_strength_27310Sep27307.pdf.
    [128] Li X W, Zhang Z F, Wang Z G, et al. SEM-ECC investigation of dislocationarrangements in cyclically deformed copper single crystals with differentcrystallographic orientations. Defect Diffus Forum,2001,188-1:153-169.
    [129] Li X W, Zhou Y. SEM-ECC observations of dislocation structures in a cyclicallydeformed Cu single crystal oriented for [-223] conjugate double slip. J Mater Sci,2007,42:4716-4719.
    [130] Stickler C. SEM-ECC imaging and SAC-Patterns-Procedures for thenondestructive characterization of microstructures and for revealing the globaldislocation arrangement. Prakt Metallogr-Pr M,2001,38:566-589.
    [131] Schwab A, Bretschneider J, Buque C, et al. Application of electron channellingcontrast to the investigation of strain localization effects in cyclically deformedfcc crystals. Phil Mag Lett,1996,74:449-454.
    [132]孟庆昌.透射电子显微学.哈尔滨:哈尔滨工业大学出版社,1998.
    [133] Liu Q, Meng Q C, Hong B D. Calculation of Tilt Angles for Crystal SpecimenOrientation Adjustment Using Double-Tilt and Tilt-Rotate Holders. MicronMicrosc Acta,1989,20:255-259.
    [134] Huang X. Precise determination of extended dislocation boundary plane intransmission electron microscopy. Mater Sci Tech-Lond,2005,21:1379-1382.
    [135] Bloch E A. Dispersion-strengthened aluminium alloys. Metall Rev,1961,6:193-239.
    [136] Dirras G, Gubicza J, Tingaud D, et al. Microstructure of Al-Al2O3nanocompositeformed by in situ phase transformation during Al nanopowder consolidation.Mater Chem Phys,2011,129:846-852.
    [137] Schaffer G B, Hall B J. The influence of the atmosphere on the sintering ofaluminum. Metall Mater Trans A,2002,33:3279-3284.
    [138] Showaiter N, Youseffi M. Compaction, sintering and mechanical properties ofelemental6061Al powder with and without sintering aids. Materials&Design,2008,29:752-762.
    [139] Le H R, Sutcliffe M P F. The effect of surface deformation on lubrication andoxide-scale fracture in cold metal rolling. Metall Mater Trans B,2004,35:919-928.
    [140] Le H R, Sutcliffe M P F, Wang P Z, et al. Surface oxide fracture in cold aluminiumrolling. Acta Materialia,2004,52:911-920.
    [141] Barlow C Y, Nielsen P, Hansen N. Multilayer roll bonded aluminium foil:processing, microstructure and flow stress. Acta Materialia,2004,52:3967-3972.
    [142] Hansen N. A note on the density of sintered aluminium products. Powder Metall,1964,7:64-67.
    [143] Hansen N. Dispersion Strengthening of Aluminium-Aluminium-Oxide Products.Acta Metallurgica,1970,18:137-145.
    [144]姚宗勇,刘庆, Godfrey A, et al.形变金属组织的EBSD取向分析研究.电子显微学报,2008,27:452-456.
    [145]赵庆龙, Godfrey A. EBSD取向成像图在表征热轧Al-Li合金显微组织中的应用.中国体视学与图像分析,2010,15:37-42.
    [146] Hayes R W, Witkin D, Zhou F, et al. Deformation and activation volumes ofcryomilled ultrafine-grained aluminum. Acta Materialia,2004,52:4259-4271.
    [147] Morris D G, Morris M A. Microstructure and Strength of Nanocrystalline CopperAlloy Prepared by Mechanical Alloying. Acta Metall Mater,1991,39:1763-1770.
    [148] Winther G. Use of dislocation structure characterisation in modelling ofpolycrystal deformation. Mat Sci Eng a-Struct,2001,309:486-489.
    [149] Liu Q, Jensen D J, Hansen N. Effect of grain orientation on deformation structurein cold-rolled polycrystalline aluminium. Acta Materialia,1998,46:5819-5838.
    [150] Rollett A D, Garmestani H, Branco G. Polycrystal Plasticity-MultipleSlip[R/OL].2012.http://neon.mems.cmu.edu/rollett/27750/L27712-PolyXtal_plast-Aniso27753-27714Aug27712.pdf.
    [151] Godfrey A. Plastic deformation and forming, Lecture6, multi-slip(polycrystallinedeformation)[R].2012.
    [152] Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminumand iron produced by ARB and annealing. Scripta Mater,2002,47:893-899.
    [153] Hansen N. The effect of grain size and strain on the tensile flow stress ofaluminium at room temperature. Acta Metallurgica,1977,25:863-869.
    [154] Benzerga A A, Shaver N F. Scale dependence of mechanical properties of singlecrystals under uniform deformation. Scripta Mater,2006,54:1937-1941.
    [155] Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties ofgold at the micron scale in the absence of strain gradients. Acta Materialia,2005,53:1821-1830.
    [156] Shan Z W, Mishra R K, Asif S A S, et al. Mechanical annealing and source-limiteddeformation in submicrometre-diameter Ni crystals. Nat Mater,2008,7:115-119.
    [157] Hirsch P B, Partridge P G, Segall R L. An Electron Microscope Study of StainlessSteel Deformed in Fatigue and Simple Tension. Philos Mag,1959,4:721-729.
    [158] Segall R L, Partridge P G. Dislocation Arrangements in Aluminium Deformed inTension or by Fatigue. Philos Mag,1959,4:912-919.
    [159] Goodrich R S, Ansell G S. Observations of Deformation Induced Substructure inAl-Al2O3Sap-Type Dispersion-Strengthened Alloys. Acta Metallurgica,1964,12:1097-1110.
    [160] Hansen N. Microstructure and flow stress of aluminum anddispersion-strengthened aluminum aluminum-oxide products drawn at roomtemperature. T Metall Soc Aime,1969,245:2061-2068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700