用户名: 密码: 验证码:
煤矿井巷阵列天线应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑制多径衰落、增加无线覆盖范围,仍然是当前煤矿井巷无线通信的关键问题。本文致力于研究井巷无线电波的发送和传播机理,以期通过天线的改进从源头上减少多径的影响。根据传播机理,研究巷道波导效应对天线辐射场分布的影响;建立便于定量分析电波传播参数的数学模型;分析井巷阵列天线信道传输特征并建立合理的信道模型。
     根据波导理论研究煤矿井巷电波传播机理:(1)推导井巷电波所有可能传输模式的空间方向及数量;(2)推导高模式电波传播损耗公式,考虑了由巷道壁粗糙度、倾斜度引起的散射损耗。在此基础上建立多波模模型,仿真分析井巷多波模传播特点。煤矿井巷中可激励出的传输波模数量有限,各波模空间相位是与巷道尺寸及载波频率有关的离散变量。
     为了解巷道中阵列天线波束控制所需关注的重要参数,为信道传输特征的分析提供理论依据,研究巷道中天线辐射场分布特性:(1)推导巷道中天线输入功率耦合至各传输波模的效率;(2)推导巷道中天线的方向函数,给出煤矿井巷天线的辐射场分布规律:巷道中天线的方向图乘积定理。仿真分析了巷道波导效应对天线辐射场分布的影响:天线安装位置是改变巷道中天线耦合效率和辐射场分布的重要参数。
     为便于计算无线信道中各路径波达方向、时延、传输功率等参数,根据巷道内有效射线必须与波导波模相匹配的推想,提出融合波导与射线理论的电波传播模型:(1)利用波导理论确定巷道内源射线的方向和数量;(2)根据几何光学基本定律,证明了巷道内射线传播路径的投影反射定律和投影夹角定律;(3)推导出射线到达接收面的位置、传播过程中经历的反射次数、入射到巷道壁的掠射角、路径长度与射线离开角的关系,对主动射线法进行改进,避免了传统主动射线法对三维射线复杂繁琐的迭代跟踪计算,降低了计算量;(4)利用接收球判断射线是否被接收。通过与实际测量数据相比较,验证了融合模型的合理性。
     煤矿井巷阵列天线空时信道建模与分析:(1)研究井巷阵列天线信道传输特征:在井巷中,利用阵列天线改变方向图的本质是利用天线控制巷道内各波模的激励,决定辐射场集中于哪些方向的关键不是阵元间距,而是各阵元在巷道中的位置;(2)根据信道传输特征,运用融合模型建立通用的阵列天线空时信道模型,既注重天线间各个子信道的衰落和空间相关性,也注重信号空间信息及各阵元相位导数的作用;(3)根据信道模型给出井巷内的功率时延谱和功率角度谱公式。通过仿真信道在时域、空域的脉冲响应,并与实测数据相比较,验证了该模型预测信号空时特性的可行性。
In tunnels of coal mine underground, the key issue remains how to suppress thesevere multipath fading and to increase the wireless coverage. This paper is dedicatedto the research of the radio waves transmission and propagation mechanism, and try toreduce the multipath effects from the source by improving the antenna. In this work,the effect of the waveguide made by mine tunnels themselves on the radiation fielddistribution of the antenna is researched. A mathematical model is proposed, whichfacilitate to calculate the propagation parameters of the radio waves. Based on theabove study, the transmission characteristics of the channel for the antenna array areanalyzed. And then, a reasonable antenna array channel model is given.
     Firstly, this paper study the radio waves propagation mechanism based on themodal theory of the waveguide in coal mine tunnels.(1) Educe the spatial directionand the number of all allowed transmission modes in a tunnel.(2) Derive thepropagation loss of higher mode, including the refraction loss caused by the tunnelwalls and the scattering loss caused by the wall roughness and the wall tilt. On thisbasis, the multimode propagation in tunnels is modeled and analyzed by simulations.It is shown that the number of the allowed modes in a tunnel is limited; the spatialphase of each transmission mode is a discrete variable as a function of the tunnel sizeand the carrier frequency.
     Secondly, research the radiation characteristics of an antenna in coal minetunnels. It is very helpful to understand which parameters should be paid moreattention when apply and research the antenna array to form reasonable beams in atunnel, and then helpful to know about the transmission characteristics of the wirelesschannel of an antenna array.(1) Derive the power efficiency when the total power ofan antenna is coupled into the waveguide modes.(2) Educe directional functions ofthe antenna in coal mines. Then the radiation field distribution laws are provided,which are pattern product theorems of the antenna in coal mines. According to theabove derivations, the effects of the tunnel environments on the radiation fielddistribution of the antenna is simulated and analyzed. The results show that theinstallation location of the antenna is a significant parameter that could change thecoupling efficiency and the radiation pattern of the antenna.
     Thirdly, propose a fusion model that combined the modal theory and ray theoryin coal mine tunnels to facilitate the calculation of the channel parameters, such as AOD (Angle Of Departure), delay, transmission power of each path.(1) Based on thepresumption that the effective rays should match with the waveguide modes,determine the number of the launched rays and their AOD by the modal theory.(2)According to the theory of geometrical optics, prove the reflection law and theincluded angle law of the projection of the propagation path of a ray in a rectangulartunnel.(3) Deduce the arriving position, the reflections number and the travelingdistance of a ray as functions of its AOD.(4) Whether a ray hits the receiver or not isdecided by the reception spheres. Finally, the theoretical model is validated by theexperimental measurements.
     Lastly, develop the channel modeling and analysis for antenna array in coal minetunnels.(1) Research the channel transmission characteristics of antenna array. Intunnels underground, the essence of changing beams by antenna array is controlingthe excitation of each waveguide mode. Consequently, to go by appearances, the arrayelement spacing changes the directions which the radiation field focused on, but it isthe insertion position of each array element affects the radiation direction in actual.(2)According to the channel transmission characteristics, use fusion model to finish thespace-time channel model of the antenna array. The model not only focuses on thefading and the spatial correlation of each subchannel, but also focuses on the signalspatial information and the phase steering vector of each array element.(3) Providepower angular spectrum and power delay spectrum through the channel model.Simulations of the channel impulse response in the space and time domain arecompared with the experimental measurements. The results show that the theoreticalmodel is valid to predict the signal space-time characteristics.
引文
[1] Yarkan S, Guzelgoz S, et al. Underground mine communications:A Survey [J].IEEE Communications Surveys&Tutorials,2009,11(3):125-142.
    [2]张申,赵小虎.论感知矿山物联网与矿山综合自动化[J].煤炭科学技术.2012,40(1):83-91.
    [3]钱建生,马姗姗,孙彦景.基于物联网的煤矿综合自动化系统设计[J].煤炭科学技术.2011,39(2):73-76.
    [4]孙继平.煤矿物联网特点与关键技术研究[J].煤炭学报,2011,36(1):167-171.
    [5]解海东,李松林,王春雷,周亮.基于物联网的智能矿山体系研究[J].工矿自动化,2011,(3):63-66.
    [6]张文杰,王艳芬.Chirp-UWB无线通信技术在煤矿井下的应用[J].工矿自动化,2007,(2):7-10.
    [7]孙维.基于Wi-Fi技术的矿井无线通信系统的设计与应用[J].煤矿安全,2010,41(04):87-89.
    [8]李继来,王小岑.基于WCDMA的矿用M2M终端系统的设计[J].工矿自动化,2011,(12):1-4.
    [9]王安义,彭渝.基于TD-SCDMA煤炭行业信息化系统研究[J].西安邮电学院学报,2010,16(6):36-39.
    [10]潘志刚,卢建军,王晓路.基于TD-SCDMA的煤矿移动专网的应用研究[J].煤炭工程,2012,(2):132-134.
    [11]张生益,陈俊杰,张军朝.基于SDH/MSTP的煤矿物联网设计[J].太原理工大学学报,2012,43(5):564-568.
    [12]赵杰,刘刚峰,朱磊等.基于WSN的矿井事故搜索探测多机器人系统[J].煤炭学报,2009,34(7):997-1002.
    [13]焦保国.基于3G技术的煤矿移动综合监控平台[J].煤矿机电,2012,4:77-80.
    [14]张申.煤矿井下无线移动通信系统及其发展趋势[A].工矿自动化年会论文集[C].北京:第19届全国煤矿自动化与信息化学术会议暨中国矿业大学(北京)百年校庆学术会议论文集,2009.
    [15]樊荣,宋文,黄强.矿井无线通信系统研究与发展[J].西安电子科技大学学报,2010,30(4):471-474.
    [16]赵跟党.煤矿井下小灵通无线通讯系统优化[J].电子设计工程,2009,17(5):47-49.
    [17]Guan K, Zhong Z D, et al.Measurement of distributed antenna systems at2.4GHzin a realistic subway tunnel environment [J]. IEEE Transactions on VehicularTechnology,2012,61(2):834-837.
    [18]Sun Z, Akyidiz Ian F. Channel modeling and analysis for wireless networks inunderground mines and road tunnels [J]. IEEE Transaction on Communications,2010,58(6):1758-1768.
    [19]张申.帐篷定律与隧道无线数字通信信道建模[J].通信学报,2002,23(11):41-50.
    [20]张会清,于洪珍,王普等.矩形隧道中电波多径传播模型的建立与仿真[J].电波科学学报,2008,1(23):195-200.
    [21]Zhang Y P, Hong H J. Ray-optical modeling of simulcast radio propagationchannels in tunnels [J].IEEE Transactions on Vehicular Technology,2004,53(6):1800-1808.
    [22]Chen S H, Jeng S K.SBR image approach for radio wave propagation in tunnelswith and without traffic [J]. IEEE Transactions on Vehicular Technology,1996,45(3):570–578.
    [23]孙继平,石庆东.UHF频段在空矩形巷道中的无线传输特性[J].煤矿自动化,2002,(2):7-9.
    [24]Mahmoud S F. Modal propagation of high frequency electro magnetic waves instraight and curved tunnels within the earth [J]. Journal of Electromagnetic Wavesand Applications,2005,19:1611-1627.
    [25]杨维,李莹,孙继平.类矩形矿井巷道中UHF宽带电磁波统计信道建模[J].煤炭学报,2008,33(4):467-472.
    [26]Dudley D G, Lienard M, Mahmoud S F, et al. Wireless propagation in tunnels[J].IEEE Antennas and Propagation Magazine,2007,49(2):11-26.
    [27]孙继平,成凌飞.矩形隧道中电磁波传播模式的分析[J].电波科学学报,2005,20(4):522-525.
    [28]Zheng H D, Xu Z, Huo Y. Research on characteristics of the loss of UHFpropagation in rectangular tunnels[A].Proceedings of20084th internationalconference on wireless communications, networking and mobile computing[C].New York: WiCOM,2008.
    [29]Zhang Y P. Novel model for propagation loss prediction in tunnels [J].IEEEtransactions on vehicular technology,2003,52(5):1308–1314.
    [30]Fuschini F, Falciasecca G.A mixed rays-modes approach to the propagation in realroad and railway tunnels [J].IEEE transactions on antennas and propagation,2012,60(2):1095~1105.
    [31]霍羽,徐钊,郑红党.矩形隧道中的多波模传播特性.电波科学学报[J].2010,25(6):1225-1230.
    [32]张跃平,张文梅,郑国莘,盛剑桓.预测隧道中传波损耗的混合模型[J].电子学报,2001,29(9):1283-1286.
    [33]Mahmoud S F. Wireless transmission in tunnels with non-circular cross section[J].IEEE transactions on antennas and propagations.2010,58(3):613-616.
    [34]Boutin M, Benzakour A, Despins C, et al. Characterization and modeling of awireless channel at2.4and5.8GHz in underground tunnels [A].Proceedings of3rd international symposium on wireless communication Systems[C].New York:ISWCS,2006.
    [35]李晶.井下巷道超高频无线电波传播及定位算法的研究[D].天津:天津大学,2006.
    [36]陈奎.井下移动目标精确定位理论与技术的研究[D].徐州:中国矿业大学,2009.
    [37]刘晓阳,程来奇,孙继平.超宽带技术在矿井通信中的应用[J].中国矿业,2006,15(4):52-55.
    [38]彭丽,孙彦景,钱建生.UWB矿井巷道无线信道模型[J].华中科技大学学报,2008,36(1):247-251.
    [39]Volos H I, Anderson C R, Headley W C, Buehrer R M,Da Silva C R C, Nieto A.Preliminary UWB propagation measurements in an underground limestone mine[A]. Proceedings of Global Telecommunications Conference[C]. New York:GLOBECOM,2007.
    [40]Wang Y F, Wang Z G, Yu H Z. Simulation study and probe on UWB wirelesscommunication in underground coal mine[J].Journal of China University ofMining&Technology.2006,16(3):296-300.
    [41]刘鹏,张国鹏,杨小东,赵小虎,丁恩杰.基于UWB的井下无线传感网信道模型研究[J].武汉理工大学学报,2011,33(6):139-143.
    [42]Wang Y f,Chen M Z, Li S S. Study on semi-deterministic statistical model inmine UWB LOS environments[A]. Proceedings of ICCAE[C].New York: ICCAE,2011.
    [43]Zhang X G, Tian Z J, Zheng H D, Zhu L P, Ma X. Performance of adaptiveOFDM transceiver in wireless channels with loading algorithm[A].Proceedings ofIntelligent Computing and Intelligent Systems[C].New York: ICIS,2009.
    [44]Wang W X, Yang G X, Wang W J.A new communication system based on OFDMin coal mine underground [A].Proceedings of Microwave Conference [C]. NewYork: APMC,2005.
    [45]张靖,姚善化.基于OFDM技术的矿井通信抗多径衰落方案的研究[J].煤炭工程,2009,12:22-257.
    [46]张晓光.基于OFDM_CDMA的矿井无线通信抗多径关键技术研究[D].徐州:中国矿业大学,2012.
    [47]姚善华,吴先良.MIMO-OFDM用于提高矿井无线通信性能的研究[J].合肥工业大学学报,2009,32(4):557-590.
    [48]郑红党.煤矿井巷电波传播理论和MIMO信道建模关键技术研究[D].江苏徐州:中国矿业大学,2010.
    [49]Cocheril Y, Langlais C, Berbineau M, et al. Advantages of simple MIMOschemes for robust or high data rate transmission systems in undergroundtunnels[A].Proceedings of Vehicular Technology[C].IEEE New York: VTC,2008.
    [50]Molina-Garcia-Pardo J M, Lienard M, Degauque P, et al. MIMO channel capacitywith polarization diversity in arched tunnels[J].IEEE Antennas and WirelessPropagation Letters,2009,8:1186-1189.
    [51]Molina-Garcia-Pardo J M, Lienard M, Degauque P, et al. On MIMO channelcapacity in tunnels [J].IEEE Transactions on Antennas andPropagation,2009,57(11):3697-3701.
    [52]Izquierdo B, Capdevila S, Jofre L, et al. Evaluation of MIMO capacity in traintunnels [A]. Proceedings of Antennas and Propagation Society[C].New York:Antennas and Propagation Society Symposium,2007.
    [53]Mabrouk I B, Talbi L, Nedil M, et al. Effect of antenna directivity on performanceof multiple input multiple output systems in an underground gold mine [J].Microwaves, Antennas&Propagation, IET.2012,6(5):555-561.
    [54]Sanchis-Borras C, Molina-Garcia-Pardo J M, Lienard M, et al. Performance ofQSTBC and VBLAST algorithms for MIMO channels in tunnels [J]. IEEEAntennas and Wireless Propagation Letters,2010,9:905-909.
    [55]Loyka S. Multiantenna capacities of waveguide and cavity channels [J]. IEEETransactions on Vehicular Technology,2005,54(3):863–872.
    [56]Lienard M, Baudet J, Degardin D, et al. Capacity of multi-antenna array systemsin tunnel environment[A]. Proceedings of IEEE55th Vehicular TechnologyConference[C]. New York: VTC,2002.
    [57]Molina-Garcia-Pardo J, Lienard M, Degauque P, et al. Interpretation of MIMOchannel characteristics in rectangular tunnels from modal theory[J]. IEEETransactions on Vehicular Technology,2008,57(3):1974-1979.
    [58]Sun Z, Akyildiz I F. Optimal MIMO antenna geometry analysis for wirelessnetworks in underground tunnels[A]. Proceedings of GLOBECOM [C]. New York,GLOBECOM,2009.
    [59]Nasr A, Molina J M, Lienard M, et al. Optimisation of antenna arrays forcommunication in tunnels[A]. Proceedings of3rd International Symposium onWireless Communication Systems[C]. New York: ISWCS,2006.
    [60]Huo Yu, Xu Z, Zheng H D, et al. Effect of antenna on propagation characteristicsof electromagnetic waves in tunnel environments[A]. Proceedings of PrimeAsia[C]. New York: PrimeAsia,2009.
    [61]Nedil M, Habib A M, Djaiz A, et al. Design of a new mm-wave antenna fed byCPW inductively coupling for mining communication [A]. Proceedings ofAntennas and Propagation Society2009[C]. New York: APSURSI,2009.
    [62]Coulibaly Y, Nedil M, Talbi L, et al. Design of a mm-wave broadband CPW-fedstacked dielectric resonator antenna for underground mining communication [A].Proceedings of Antennas and Propagation Society[C]. New York: APSURSI,2010.
    [63]Kamil A, Coulibaly Y, et al. Design of an ultrawideband ring patch wsingcoplanar waveguide technology for underground mining communications [A].Proceedings of Electrical and Computer Engineering [C]. New York: CCECE,2011.
    [64]Rong Y C, Chung K S. A low profile antenna array for underground minecommunication [A]. Proceedings of Singapore ICCS [C]. New York: ICCS,1994.
    [65]Liu L S, Zhang Z J, et al. A bidirectional endfire array with compact antennaelements for coal mine/tunnel communication [J]. IEEE Antennas and WirelessPropagation Letters,2012,11:342-345.
    [66]Arai H, Kohzu K, Mukaiyama T. Bi-directional notch antenna with parasiticelements for tunnel booster system [A]. Proceedings of IEEE AP-S Int Symp [C].New York: AP-S Int Symp,1997.
    [67]Alessandro C, Bruno S. Using a pair of phased antennas to improve UHFreception/transmission in tunnels [J]. IEEE Antenna and Propagation Magazine,2000,42(5):40~47.
    [68]孙继平,高美凤.矩形巷道中对称振子天线辐射特性的研究[J].煤炭学报,2010,35(12):2121-2124.
    [69]曹育红.矿井无线通信系统的频率选择[J].工矿自动化,2005,(4):38~40.
    [70]孙继平,李继生,雷淑英.煤矿井下无线通信传输信号最佳频率选择[J].辽宁工程技术大学学报,2005,24(3):378-380.
    [71]黎滨洪.表面电磁波和介质波导[M].上海:上海交通大学出版社.1990.
    [72]Zhang Y P, Hwang Y. Characterization of UHF radio propagation channels intunnel environments for microcellular and personal communications [J]. IEEETransactions on Vehicular Technology,1998,47(1):283-296.
    [73]Lienard M, Degauque P. Natural wave propagation in mine environments [J].IEEE Transactions on Antennas and Propagation,2000,48(9):1326-1339.
    [74]Cerasoli C. RF Propagation in tunnel environments [A]. Proceedings ofMILCOM [C]. New York: MILCOM,2004.
    [75]Emslie G E, Robert L L, et al. Theory of the propagation of UHF radio waves incoal mine tunnels [J]. IEEE Transactions on Antennas and Propagation,1975,23(2):192~205.
    [76]Lienard M, Degauque P. Propagation in wide tunnels at2GHz:a statisticalanalysis [J]. IEEE Transactions on Vehicular Technology,1998,47(4):1322-1328.
    [77]Djadel M, Despins C, Affes S. Narrowband propagation characteristics at2.45and18GHz in underground mining environments[A]. Proceedings of GlobalTelecommunications Conference [C]. New York:GLOBECOM,2002.
    [78]Mahmoud S F, Wait J R. Geometrical optical approach for electromagnetic wavepropagation in rectangular mine tunnels [J]. Radio SCI,1974,9:1147-1158.
    [79]Kim Y M, Jung M S, Lee B. Analysis of radio wave propagation characteristics inrectangular road tunnel at800MHz and2.4GHz [A]. Proceedings of2003IEEEAntennas and Propagation Society International Symposium [C]. New York:APSIS,2003.
    [80]Linenard M.MIMO channel in tunnels: experimental approach and stochasticmodel [A]. Proceedings of ICT2003[C]. New York: ICT,2003.
    [81]Cocheril Y, Combeau P, Berbineau M, Pousset Y. MIMO propagation channelcharacteristics in tunnels [A]. Proceedings of7th International Conference onTelecommunications[C].New York: ICT,2007.
    [82]Ching G S, Ghoraishi M, Lertsirisopon N, etl. Wideband polarimetric directionalpropagation channel analysis inside an arched tunnel [J]. IEEE Trans. IEEEAntennas and Wireless Propagation Letters,2009,53(1):760-767.
    [83]Zheng H D, Nie X Y. GBSB model for MIMO channel and its space-timecorrelation analysis in tunnel [A]. Proceedings of KAM2008[C]. New York:KAM,2008.
    [84]Zheng H D, Nie X Y, Huo Y, Xu Z. Research and analysis of OSTBC in minetunnel [A]. Proceedings of The6th International Mining Science and TechnologyConference[C]. New York: IMSTC,2009.
    [85]张晓光,李蕾蕾等.煤矿井下MIMO系统建模与信道容量分析[J].西安电子科技大学学报,2011,(03):366-370.
    [86]Molina-Garcia-Pardo J M, Lienard M, Nasr A, Degauque P. On the possibility ofinterpreting field variations and polarization in arched tunnels using a model forpropagation in rectangular or circular tunnels [J]. IEEE Transactions on Antennasand Propagations.2008,56(4):1206-1211.
    [87]保罗德隆涅.漏泄馈线和地下无线电通信[M].北京:人民邮电出版社,1988.
    [88]Laakman K D, Steier W H. Waveguides: Characteristic modes of hollowrectangular dielectric waveguides[J]. Applied Optics,1976,15(50):1334-1340.
    [89]Beckmann P, Spizzichino A. The Scattering of electromagnetic waves from roughsurfaces [M]. New York: Macmillan,1963.
    [90]Zhang S, LI B Y. The influence of scattering on multipath channel characteristicof tunnel [A]. Proceedings of2003IEEE6th International Symposium onAntennas, Propagation and EM Theory [C]. New York: International Symposiumon Antennas, Propagation and EM Theory,2003.
    [91](西德)斯波莱德F,翁格尔H G.波导渐变器过度器和耦合器[M].北京:科学出版社,1984.
    [92]黄志洵.截止波导理论[M].北京:中国计量出版社,1991.
    [93]Seidl S Y, Rappaort T S. Site-specific propagation prediction for wirelessin-building personal communication system design [J]. IEEE Transactions onVehicular Technology,1994,43(4):879-891.
    [94]Schaubach K R, Davis N J, Rappaport T S. A ray tracing method for predictionpath loss and delay spread in microcellular environments [A]. Proceedings ofVehicular Technology Conference[C]. New York: VTC,1998.
    [95]Honcharenko W, Henry L, et al. Mechanisms governing UHF propagation onsingle floors in modern office buildings[J].IEEE Transactions on VehicularTechnology,1992,41(4):496-504.
    [96]Dottling M, Zwick T, Wieshbeck W. A novel ray-optical approach to model wavepropagation in curved tunnels[A]. Proceedings of Vehicular TechnologyConference[C]. New York: VTC,1999.
    [97]Sun H H, Mabande E, Kowalczylc K, Kellermann W. Joint DOA and TDOAestimation for3D localization of reflective surfaces using eigenbeam MVDR andspherical microphone arrays [A]. Proceedings of ICASSP [C]. New York: ICASSP2011.
    [98]黄河,石为人,许磊,王小刚.自适应无线传感器网络室内RSSI估计[J].华中科技大学学报,2010,(08):25-29.
    [99]Luo Y J, Law C L.Angle-of-arrival estimation with array in a line-of-sight indoorUWB-IR [A]. Proceedings of ICICS [C]. New York: ICICS,2009.
    [100] Ikeda S, Tsuji H, Ohtsuki T. Effects of spatial correlation between signalsubspaces on indoor localization using subspace matching[A]. Proceedings ofTENCON[C]. New York: TENCON,2007.
    [101] Zhao Y X, Zhou H B, Li M F. Indoor access points location optimization usingdifferential evolution[A]. Proceedings of Computer Science and SoftwareEngineering. International Conference[C]. New York: CSSEIC,2008.
    [102] Kurdi Y, de Haro L. DOA measurements on indoor channel based on music andMDL processing[A].Proceedings of IEEE Antennas and Propagation SocietyInternational Symposium and USNC/URSI National Radio Science Meeting[C].New York: Antennas and Propagation Society International Symposium andUSNC/URSI National Radio Science Meeting,2008.
    [103]王增福.煤矿井下电机车巷道环境电磁噪声的研究[J].中北大学学报.2012,33(4):457-461.
    [104]廖志强,陈东春,刘水文.煤矿井下电磁干扰远及干扰技术研究[J].工矿自动化2012,7:25-28.
    [105]孙继平,潘涛,田子健.煤矿井下电磁兼容性探讨[J].煤炭学报.2006,31(3):377-379.
    [106]王晓珠.煤矿井下电子设备防电磁干扰的方法[J].煤炭科技,2003,(4):25-27.
    [107]王艺华.煤矿井下甚高频电磁干扰分布的分析[J].电信科学,2002,18(3):83-84.
    [108]方舒,李立华,张平.空间相关随机MIMO信道建模[J].电子科技大学学报,2008,37(1):27-30.
    [109] Boutin M, Benzakour A, Charles L, Despins, et al. Radio wave characterizationand modeling in underground mine tunnels [J]. IEEE Trans. Antenna Propag,2008,56(2):540-549.
    [110] Nerguizian C, Despins C, Affes S, et al. Radio channel characterization of anunderground mine at2.4GHz[J].IEEE Trans. Wireless Commun,2005,4(5):2441-2453.
    [111] Zhang P, Hwang Y, Kouyoumjian R G. Ray-optical prediction of radio-wavepropagation characteristics in tunnel environments—part2: analysis andmeasurements [J].IEEE transactions on antennas and propagation,1998,46(9):1337-1345.
    [112]张晓光,朱丽萍,于浩,等.煤矿井巷多径电波接收信号特性分析[J].太原理工大学学报,2011,42(2):178-182.
    [113]李冰玉,张申.隧道内微波多径传播特性的仿真[J].微波学报,2003,19(4):37-41.
    [114] Lienard M, Degauque P, Baudet J, Degardin D. Investigation on MIMOchannels in subway tunnels[J].IEEE Journal on Selected Areas inCommunications,2003,21(3):332–339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700