用户名: 密码: 验证码:
巨厚火成岩下煤巷冲击地压机理及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采条件复杂性的加剧,煤矿冲击地压灾害在世界范围内越来越严重,已成为影响煤矿安全生产的重大灾害之一。为解决这一问题并基于冲击地压矿井一般具有上覆厚硬顶板条件,本文针对巨厚火成岩下煤层巷道冲击地压问题,通过理论分析、数值模拟、试验研究、现场实测等方法对巨厚火成岩下煤层开采过程中巨厚火成岩的稳定性和下部岩层矿压显现规律,煤巷应力演化特征及影响因素,巷道冲击地压发生机理,巨厚火成岩下煤巷冲击地压的防治技术进行了系统研究,主要得到以下研究成果:
     (1)基于现有的冲击倾向性理论提出了改进的弹性能量指数WE T、冲击能量指数KE,作为新的冲击倾向性判定指标,将其原有的两个指数进行了有机的融合,提高了判断的准确性,更符合实际煤体破坏后能量释放的准确计量,为巷道冲击破坏时的能量计算提供了准确方法。
     (2)采用应力解除法对巨厚火成岩下地应力进行了现场测量,得到了地应力的大小、方向及随深度的变化规律;结合地应力特征,采用数值分析方法研究了地应力对煤巷冲击地压的影响,得到了最大主应力方向与巷道轴线方向不同夹角情况下巷道围岩的应力、变形及破坏特征。
     (3)运用理论分析、数值模拟和现场实测方法研究了巨厚火成岩下煤层开采岩层运动和矿压显现规律,以及火成岩顶板自身应力、破断距和煤岩能量储备作用,从应力集中和能量的角度分析了巨厚火成岩顶板对煤巷冲击地压的高应力高能量环境的孕育作用。
     (4)采用弹性力学、复变函数理论计算了巷道围岩应力分布和破坏范围;通过数值模拟研究了巨厚火成岩下工作面推进对前方巷道围岩区域应力集中的影响,巷道区域应力叠加作用及巷道断面帮部应力演化规律;分析了弹性波、应力环境、顶底板弹性模量不同影响因素对巷道围岩冲击地压的影响。
     (5)根据冲击地压发生的时间相关性和具体的巷道区域环境,对巷道冲击地压分(四个)阶段分(四个)区域进行了研究,建立了巷道冲击地压煤炮模型。通过力的平衡和能量平衡,建立了巷道冲击地压发生的力和能量判据;基于系统的思想,研究了冲击地压产生破坏的综合作用及巷道围岩系统的稳定性平衡条件;通过设计试验装置,试验验证了巷道冲击地压机理研究的正确性。
     (6)针对巨厚火成岩下II102采区具有冲击倾向的10煤现场条件,提出了“连续监测,强变弱,弱变强”的巨厚火成岩下冲击地压防治思想。即通过“连续监测”巨厚火成岩运动、巷道围岩系统应力位移;改善煤层应力环境,降低煤的冲击倾向性的“强变弱”及维护巷道围岩系统力学平衡、加强煤巷支护和破碎煤体的支撑作用的“弱变强”的冲击地压防治技术,并采用相应的措施,保障了10煤的安全生产。
As the complexity of coal mining conditions intensifies, the damage resultingfrom rock burst in the worldwide has become more and more severe, which is one ofmajor disasters that affect coal mine safety. To solve this problem, the author willstudy on the rock burst in mining roadways under an extremely thick ingenious rock.By means of theoretical analysis, numerical simulation, physical experiments andmeasurement on site, a systematic study has been undertaken on the stability of anextremely thick igneous rock, the rule of pressure presentation in bottom stratum, theevolution features of stress and influential factors in preparatory working, themechanism of rock burst in the roadway during coal excavation under an extremelythick igneous rock and control techniques of rock burst in the roadway under anextremely thick igneous rock. The main innovative research results are as follows:
     (1)Based on the present theory of rock burst tendency, the author has putforward an improved elastic energy indexWE T and impact energy indexKE as the newdetermining index for rock burst tendency, which combine the former indicatorstogether to improve the correctness of judgments and correspond to the exactcalculation of energy release after the actual destruction of coal, thus providing anaccurate method to calculate the energy when the roadway is damaged by rock burst.
     (2)The author used the method of stress relief to measure on-site stresses underan extremely thick igneous rock and got the sizes and directions of the stress and itschange rule under different depths. Combined with features of the stress, the authorused the method of numerical analysis to study the effect of stress on the rock burst inthe roadway and got the features of the stress, displacement and fracture under thecondition that the direction of the maximum principal stress and that of tunnel axisform different angles.
     (3)Using the method of theoretical analysis, numerical simulation and actualfield measurement, the author studied the rules of stratum migration and pressurepresentation of mine excavation under an extremely thick igneous rock, the roof stressof the igneous rock, breaking span and the energy accumulation of the coal rock.From the perspectives of stress concentration and energy, the effects of an extremelythick igneous rock on the generation of high stress environment in rock burst werealso studied.
     (4)The author used elastic mechanics and complex variable function to calculate the distribution and the destruction sphere of stress in the roadway. With thehelp of numerical simulation, the author also studied the influence of working facemovement on the stress concentration in the roadway under an extremely thickigneous rock, the effect of superimposed stresses in the roadway area and theevolution rule of stresses in the side roadway. The study is also on the differentfactors’ influence on the stability of surrounding rock system in the roadway such aselastic wave, stress environment and elasticity modulus of roof and floor.
     (5)According to the fact that the occurrence of rock burst is connected with thetime and specific roadway area, the study of rock burst was divided into four stagesand four areas, thus establishing rock burst models. Through the balance of strengthsand energies, the author established the criteria of strengths and energies in theroadway. Based on the systematic idea, the author studied the comprehensivedestruction effects of rock burst and the equilibrium condition of system stability. Theauthor also designed experimental facilities and tests to prove that the research on themechanism of rock burst in the coal roadway is correct.
     (6)Based on the site condition that the tenth coal in mining area II102under anextremely thick igneous rock tends to have rock burst, the author put forward thecontrol measures of continual monitoring and making the strong to weak and weak tostrong for rock burst. Through monitoring the movement of the extremely thickigneous rock and the displacement of the stress of the surrounding rock system, thestress environment of coal seam will be improved and rock burst tendency will bereduced from the strong to weak to ensure mechanical equilibrium of the system.Besides, the control measures of changing the weak to strong with enhanced roadwaysupporting and the supporting effect of broken coal, corresponding measures will betaken to guarantee the safe production of the tenth coal.
引文
[1]章梦涛.我国冲击地压预测和防治[J].辽宁工程技术大学学报(自然科学版),2001(4):434-435.
    [2]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003(11):1844-1851.
    [3]石强,潘一山,李英杰.我国冲击矿压典型案例及分析[J].煤矿开采,2005(2):13-17.
    [4]Bukowska, M. The probability of rockburst occurrence in the Upper Silesian Coal Basin areadependent on natural mining conditions[J]. Journal of Mining Science.2006.42(6):570-577.
    [5]Frid, V. Calculation of electromagnetic radiation criterion for rockburst hazard forecast in coalmines[J]. Pure and Applied Geophysics,2001(5):931-944.
    [6]刘文岗,姜耀东,单晓云等.赵各庄矿深部巷道冲击地压诱发因素分析[J].煤炭科学技术,2006(11):60-63.
    [7]安润东,杨占秋.赵各庄矿深部冲击地压区域内煤柱安全开采[J].煤炭科学技术,2008(11):21-22.
    [8]施龙青,翟培合,魏久传等.顶板突水对冲击地压的影响[J].煤炭学报,2009(1):44-49.
    [9]周峰,傅玉祥.深部冲击地压煤层开采有新技术[J].矿业安全与环保,2004(3):53.
    [10]魏建平,王恩元,何学秋等.华丰煤矿应用电磁幅射连续监测冲击矿压[J].煤矿安全,2004(7):39-41.
    [11]徐方军,毛德兵.华丰煤矿底板冲击地压发生机理[J].煤炭科学技术,2001(4):41-43.
    [12]缪协兴,孙海,吴志刚.徐州东部软岩矿区冲击矿压机理分析[J].岩石力学与工程学报,1999(4):60-63.
    [13]姜红兵,王黑丑,张松军.义马跃进煤矿冲击地压发生原因分析[J].煤炭技术,2008(3):161-162.
    [14]吴永纯.鹤岗南山煤矿煤层冲击地压实验[J].煤炭科技,2012(3):109-112.
    [15]郑树良,李东斌.鹤岗矿区冲击地压发生原因及防治措施[J].煤炭技术,2008(4):75-77.
    [16]张凤鸣,许晓艳,张世忠等.鹤岗富力煤矿冲击地压的研究[J].世界地震工程,1999(3):88-94.
    [17]许正强.三河尖煤矿冲击地压防治工作的实践[J].煤炭科技,2012(4):67-68.
    [18]王存文,姜福兴,刘金海.构造对冲击地压的控制作用及案例分析[J].煤炭学报,2012(S2):263-268.
    [19]李静.煤矿冲击地压防治技术研究与应用[J].煤炭技术,2012(2):69-71.
    [20]潘俊锋,毛德兵,夏永学等.基于关联因素前兆监测的冲击地压发生区域与时期初探[J].岩石力学与工程学报,2012(8):1650-1656.
    [21]潘一山,徐连满.钻屑温度法预测冲击地压的试验研究[J].岩土工程学报,2012(12):2228-2232.
    [22]潘俊锋,张寅,夏永学等.基于地球物理响应的冲击地压危险源辨识研究[J].煤炭工程,2012(1):96-98.
    [23]潘一山,赵扬锋,李国臻.冲击地压预测的电荷感应技术及其应用[J].岩石力学与工程学报,2012(S2):3988-3993.
    [24]Zhang, X. C.,Miao, X. X.,Yang, T. Q. A time-dependent study on rockburst in coal mines[J].Structural Engineering And Mechanics,.1999(1):1447-1452.
    [25]刘世明.回采巷道冲击地压事故分析与防治措施[J].山东煤炭科技,2011(6):164-166.
    [26]张良海,原明星.邻采邻掘巷道冲击地压规律研究及对策[J].煤炭科学技术,2010(9):47-49.
    [27]张寅.深部特厚煤层巷道冲击地压机理及防治研究[D]:中国矿业大学,2010.
    [28]鞠文君.急倾斜特厚煤层水平分层开采巷道冲击地压成因与防治技术研究[D]:北京交通大学,2009.
    [29]吕有厂.突出煤层掘进巷道冲击地压防治技术[J].煤炭科学技术,2008(4):43-46.
    [30]章梦涛潘一山李国臻.回采巷道冲击地压危险指标的确定[J].矿山压力与顶板管理,1994(1):56-60.
    [31]兰大奇.唐山矿采准巷道冲击地压机理初探[J].煤矿开采,1994(2):61.
    [32]卢新伟,窦林名,王国瑞等.巨厚火成岩下矿震分布特征分析[J].煤炭工程,2010(7):54-57.
    [33]靳春华,潘一山,石强.王营煤矿火成岩型冲击矿压浅析[J].煤矿开采,2006(1):59-61.
    [34]闫立章.峻德煤矿“8·29”冲击地压事故分析[J].煤炭科技,2012(3):84-86.
    [35]谭诚.煤层巨厚坚硬顶板超前深孔爆破强制放顶技术研究[D]:安徽理工大学,2011.
    [36]姚精明,何富连,窦林名等.坚硬顶板对冲击矿压发生的影响(英文)[J].吉首大学学报(自然科学版),2007(3):83-88.
    [37]牟宗龙,窦林名,张广文等.坚硬顶板型冲击矿压灾害防治研究[J].中国矿业大学学报,2006(6):737-741.
    [38]窦林名,曹胜根,刘贞堂等.三河尖煤矿坚硬顶板对冲击矿压的影响分析[J].中国矿业大学学报,2003(4):50-54.
    [39]王刚,黄滚.冲击地压机理研究综述[J].中国矿业,2012(S1):400-405.
    [40]苗小虎,姜福兴,王存文等.微地震监测揭示的矿震诱发冲击地压机理研究[J].岩土工程学报,2011(6):971-976.
    [41]邹德蕴,武玉梁,商威威.煤岩体储能与冲击矿压机理的探讨[J].矿山压力与顶板管理,2004(1):91-93.
    [42]缪协兴,孙海,吴志刚.徐州东部软岩矿区冲击矿压机理分析[J].岩石力学与工程学报,1999(4):60-63.
    [43]王淑坤.冲击地压机理[J].岩石力学与工程学报,1996(S1):500-503.
    [44]兰大奇.唐山矿采准巷道冲击地压机理初探[J].煤炭工程师,1993(3):40-42.
    [45]章梦涛,赵本钧,徐曾和.冲击地压机理、预报及防治[J].煤矿安全,1988(5):43-44.
    [46]李玉生.冲击地压机理及其初步应用[J].中国矿业学院学报,1985(3):42-48.
    [47]牵梦涛.冲击地压机理的探讨[J].阜新矿业学院学报,1985(S1):65-72.
    [48]姜耀东,赵毅鑫,何满潮等.冲击地压机制的细观实验研究[J].岩石力学与工程学报,2007(5):901-907.
    [49]秦玉红,窦林名,牟宗龙.义马千秋煤矿冲击地压危险性分析[J].贵州工业大学学报(自然科学版),2004(1):30-31.
    [50]茅献彪,陈占清,徐思朋等.煤层冲击倾向性与含水率关系的试验研究[J].岩石力学与工程学报,2001(1):49-52.
    [51]赵毅鑫,姜耀东,韩志茹.冲击倾向性煤体破坏过程声热效应的试验研究[J].岩石力学与工程学报,2007(5):965-971.
    [52]李宏艳.煤岩物理力学性质与冲击倾向性关系[J].煤矿开采,2011(3):43-46.
    [53]南存全,段克信,张文军.用物理相态法确定煤岩体应力状态和冲击倾向性[J].煤矿开采,1998(2):18-19.
    [54]潘一山,耿琳,李忠华.煤层冲击倾向性与危险性评价指标研究[J].煤炭学报,2010(12):1975-1978.
    [55]齐庆新,彭永伟,李宏艳等.煤岩冲击倾向性研究[J].岩石力学与工程学报,2011:2736-2742.
    [56]张绪言,康立勋,杨双锁.煤岩冲击倾向性与剩余能量释放速度的关系[J].煤矿安全,2009(2):74-76.
    [57]姚精明,闫永业,李生舟等.煤层冲击倾向性评价损伤指标[J].煤炭学报,2011:353-357.
    [58]窦林名,陆菜平,牟宗龙等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006(1):43-46.
    [59]万志军,刘长友,卫建清等.煤层与顶板冲击倾向性研究[J].矿山压力与顶板管理,1999:208-210.
    [60]冯涛,尹光志,黄国良等.煤层冲击倾向性的模糊综合评判[J].湘潭矿业学院学报,64-70.
    [61]Wang, A. W.,Pan, Y. S.,Li, Z. H.et al. Mechanism and real-time continuous monitoring andwarning technology for rock burst of section coal pillar in deep island face[J]. DisasterAdvances,2012(4):457-462.
    [62]Stec, K.,Drzewiecki, J. Mine tremor focal mechanism: An essential element for recognisingthe process of mine working destruction[J]. Acta Geophysica,2012(2):449-471.
    [63]徐学锋,窦林名,刘军等.煤矿巷道底板冲击矿压发生的原因及控制研究[J].岩土力学,2010(6):1977-1982.
    [64]窦林名,陆菜平,牟宗龙等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005(6):690-694.
    [65]窦林名,陆菜平,牟宗龙等.煤岩体的强度弱化减冲理论[J].河南理工大学学报(自然科学版),2005(3):169-175.
    [66]Cook, N. E.,Ko, H. Y.,Gerstle, K. H. Variability and anisotropy of mechanical properties ofthe pittsburgh coal seam[J]. Rock Mechanics Felsmechanik Mecanique des Roches,197(81):185-201.
    [67]谢和平,彭瑞东,鞠杨等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005(15):2603-2608.
    [68]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008(2):26-31.
    [69]夏昌敬,谢和平,鞠杨等.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006(9):1-5.
    [70]华安增,孔园波,李世平等.岩块降压破碎的能量分析[J].煤炭学报,1995(4):389-392.
    [71]高玮,汪磊,杨大勇.岩石损伤演化的能量方法研究[J].岩石力学与工程学报,2011(S2):4087-4092.
    [72]章梦涛,宋维源,潘一山.煤层注水预防冲击地压的研究[J].中国安全科学学报,.2003(10):73-76.
    [73]章梦涛,潘一山,王来贵等.冲击地压的预测[J].煤矿开采,1998(1):24-26.
    [74]潘一山,章梦涛,王来贵等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997(4):49-56.
    [75]章梦涛,梁冰.采区冲击地压的数值预测[J].矿山压力与顶板管理,1995(2):12-15.
    [76]齐庆新,李宏艳,潘俊锋等.冲击矿压防治的应力控制理论与实践[J].煤矿开采,2011(3):114-118.
    [77]齐庆新,毛德兵,王永秀.冲击地压的非线性非连续特征[J].岩土力学,2003(S2):575-579.
    [78]齐庆新,陈尚本,王怀新等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003(11):1852-1858.
    [79]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997(2):34-38.
    [80]武玉梁.基于MATLAB人工神经网络预测预报冲击地压的研究[D]:山东科技大学,2005.
    [81]王淑坤,张万斌,吴耀坤.模糊综合评判煤的冲击倾向性的研究[J].矿山压力与顶板管理,1992(1):75-79.
    [82]陶慧,马小平,乔美英.基于微震时间序列的冲击地压混沌特性分析[J],煤矿安全.2012(2):140-143.
    [83]李文秀,孟庆立,吉占华等. FANN模型在金属矿冲击地压预测中的应用[J].模糊系统与数学,2010(5):156-160.
    [84]刘晓悦.基于模糊神经网络的煤层冲击地压预测模型研究[J].工矿自动化,2008(1):8-11.
    [85]姜永东,鲜学福,尹光志.采掘工作面发生冲击地压的尖点突变模型研究[J].中国矿业,2007(12):65-67.
    [86]潘立友,杨慧珠.冲击地压前兆信息识别的扩容理论[J].岩石力学与工程学报,2004:4528-4530.
    [87]高玮,冯夏庭.基于进化神经网络的冲击地压非线性动力系统建模[J].岩土力学,2003:48-52.
    [88]宋维源,潘一山,沈连山.冲击地压的非线性动力反演及预报问题[J].辽宁工程技术大学学报(自然科学版),1999(5):500-502.
    [89]刘万琴,郑治真,鲁振华等.用微震记录监测冲击地压前的应力变化[J].中国地震,1991(3):82-89.
    [90]许正强.三河尖煤矿冲击地压防治工作的实践[J].煤炭科技,2012(4):67-68.
    [91]周澎.特厚煤层综放开采冲击地压防治技术与实践[J].煤炭科学技术,2011(4):35-39.
    [92]吕有厂.突出煤层掘进巷道冲击地压防治技术[J].煤炭科学技术,2008(4):43-46.
    [93]侯志鹰,王家臣.忻州窑矿两硬条件冲击地压防治技术研究[J].煤炭学报,2004(5):550-553.
    [94]朱月明,张玉林,潘一山.急倾斜煤层冲击地压防治的可行性研究[J].辽宁工程技术大学学报,2003(3):332-333.
    [95]张兆平,赵本钧,梁政国.老矿井孤立煤柱开采与冲击地压防治研究[J].阜新矿业学院学报(自然科学版),1990(4):47-52.
    [96]胡景义,徐曾和,赵本钧.龙凤矿冲击地压防治的试验研究[J].阜新矿业学院学报,1985(S1):29-38.
    [97]Zhao, T. B.,Yin, Y. C.,Tan, Y. L. Safe mining and new prediction model in coal seam withrock burst induced by roof[J]. Disaster Adbances,2012(4):961-965.
    [98]Fujii, Y.,Ishijima, Y.,Ichihara, Y.et al. Mechanical properties of abandoned and closedroadways in the Kushiro Coal Mine, Japan[J]. International Journal of Rock Mechanics andMining Sciences,2011(4):585-596.
    [99]Zhao, T. B.,Tan, Y. L.,Chen, Y. J.et al. A New Method of Coal Mine Roof WeightingAnalysis and Prediction Based on Electromagnetic Radiation Information[J]. DisasterAdvances,2010(4):379-382.
    [100]高明涛,王玉英.断顶爆破治理冲击地压技术研究与应用[J].煤炭学报,2011(S2):326-331.
    [101]刘文岗.冲击地压灾害结构失稳机理的组合体试验研究[J].西安科技大学学报,2012(3):287-294.
    [102]刘建新,唐春安,朱万成等.煤岩串联组合模型及冲击地压机理的研究[J].岩土工程学报,2004(2):276-280.
    [103]潘一山,张永利,徐颖等.矿井冲击地压模拟试验研究及应用[J].煤炭学报,1998(6):32-37.
    [104]Li, Q. Mine coal and gas outburst prediction area[J]. Mechatronics And Applied Mechanics,2012(1):484-488.
    [105]Yang, M.,Liu, G. J.,Sun, R. Y.et al. Characterization of intrusive rocks and REEgeochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China[J].International Journal OF Coal Geology,2012(SI):283-295.
    [106]Islam, M. R.,Shinjo, R. Numerical simulation of stress distributions and displacementsaround an entry roadway with igneous intrusion and potential sources of seam gas emissionof the Barapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology,2009(4):249-262.
    [107]王亮,程远平,聂政等.巨厚火成岩对煤层瓦斯赋存及突出灾害的影响[J].中国矿业大学学报,2011(1):29-34.
    [108]轩大洋,许家林,冯建超等.巨厚火成岩下采动应力演化规律与致灾机理[J].煤炭学报,2011(8):1252-1257.
    [109]李宏艳.煤岩物理力学性质与冲击倾向性关系[J].煤矿开采,2011(3):43-46.
    [110]蔡武,窦林名,曹安业等.煤层冲击倾向性试验数据分析系统的编制与应用[J].矿业研究与开发,2011(4):66-70.
    [111]张国华,蔡武.基于主成分的煤层冲击倾向性研究[J].煤炭科技,2011(3):15-17.
    [112]吴吉利.岩石抗压强度测量不确定度评定[J].科学之友,2011(6):27-28.
    [113]朱珍德,邢福东,王军等.基于灰色理论的脆性岩石抗压强度尺寸效应试验研究[J].岩土力学,2004(8):1234-1238.
    [114]何满潮,胡江春,熊伟等.岩石抗拉强度特性的劈裂试验分析[J].矿业研究与开发,2005(2):12-16.
    [115]张少华,缪协兴,赵海云.试验方法对岩石抗拉强度测定的影响[J].中国矿业大学学报,1999(3):43-46.
    [116]王鹏,李安贵,蔡美峰等.基于随机–模糊理论的岩石抗剪强度参数的确定[J].岩石力学与工程学报,2005(4):547-552.
    [117]徐剑坤,王恩元,王超.基于未确知测度理论的煤层冲击倾向性研究[J].煤矿安全,2011(3):19-22.
    [118]王超,王恩元,刘晓斐.基于熵权-理想点法的煤层冲击倾向性分类[J].辽宁工程技术大学学报(自然科学版),2012(6):838-841.
    [119]张绪言,康立勋,杨双锁.煤岩冲击倾向性与剩余能量释放速度的关系[J].煤矿安全,2009(2):74-76.
    [120]陈强,王志亮.分离式霍普金森压杆在岩石力学实验中的应用[J].实验室研究与探索,2012(11):146-149.
    [121]张新,候兵,李玉龙.基于霍普金森压杆系统的动态压痕实验[J].爆炸与冲击,2011(3):256-262.
    [122]左宇军,唐春安,李术才等.基于大直径霍普金森压杆数值试验的非均匀介质动态破坏过程分析[J].岩土力学,2011(1):230-236.
    [123]李为民,许金余.大直径分离式霍普金森压杆试验中的波形整形技术研究[J].兵工学报,2009(3):350-355.
    [124]王强,王通,于长滨等.用分段式霍普金森压杆对水泥石动态弹性模量和破碎吸收能的实验研究[J].地震工程与工程振动,2006(2):92-95.
    [125]袁亮,彭邦兴.锦屏二级水电站引水隧洞岩爆段TBM穿越技术[J].水电站设计,2012(S1):13-17.
    [126]赵奎,苏井社.高地应力条件下煤矿井巷支护方法研究[J].科技传播,2012(24):34-46.
    [127]寇建新,吕有厂.地应力对平顶山东部矿区动力灾害影响程度分析[J].中州煤炭,2012(3):81-84.
    [128]李志强,鲜学福,黄滚.地应力地温场中煤层气富集区高精度定量预测的力学方法[J].煤炭学报,2012:395-400.
    [129]郭延华,姜福兴,张常光.高地应力下圆形巷道临界冲击地压解析解[J].工程力学,2011(2):118-122.
    [130]岳晓蕾,李术才,陈启辉等.多元多方程地应力反演与工程应用研究[J].山东大学学报(工学版),2010(2):66-70.
    [131]许博,谢和平,涂扬举.瀑布沟水电站地下厂房开挖过程中岩爆应力状态的数值模拟[J].岩石力学与工程学报,2007(S1):2894-2900.
    [132]刘允芳,钟作武,汪洁.水压致裂法三维地应力测量成果计算与分析的探讨[J].岩石力学与工程学报,2002(6):833-838.
    [133]刘允芳,何建华.地应力研究与西部大开发[J].岩石力学与工程学报,2001:1638-1644.
    [134]李家祥,李大普,张文泉等.原始地应力与煤层底板突水的关系[J].岩石力学与工程学报,1999(4):51-55.
    [135]王双红,蔡美峰,张海涛.各向异性岩体条件下的地应力计算程序[J].勘察科学技术,1998(3):11-14.
    [136]尹光志,鲜学福,金立平等.地应力对冲击地压的影响及冲击危险区域评价的研究[J].煤炭学报,1997(2):22-27.
    [137]李彦恒,谭可可,冯利.基于岩饼几何形态测量的原地应力测定方法[J].岩土力学,2012:224-228.
    [138]蔡美峰,刘卫东,李远.玲珑金矿深部地应力测量及矿区地应力场分布规律[J].岩石力学与工程学报,2010(2):227-233.
    [139]刘允芳,罗超文,景锋.水压致裂法三维地应力测量及其修正和工程应用[J].岩土工程学报,1999(4):465-470.
    [140]轩大洋,许家林,朱卫兵等.注浆充填控制巨厚火成岩下动力灾害的试验研究[J].煤炭学报,2012(12):1967-1974.
    [141]聂政.巨厚火成岩下高突煤层工作面瓦斯综合治理技术应用研究[J].矿业安全与环保,2011(4):50-53.
    [142]罗文柯.上覆巨厚火成岩下煤与瓦斯突出灾害危险性评估与防治对策研究[D]:中南大学,2010.
    [143]王亮,程远平,聂政等.巨厚火成岩对煤层瓦斯赋存及突出灾害的影响[J].中国矿业大学学报,2011(1):29-34.
    [144]Shemshad, J.,Aminossadati, S. M.,Bowen, W. P.et al. Effects of pressure and temperaturefluctuations on near-infrared measurements of methane in underground coal mines[J].Applied Physics-Lasers and Optics,2012(4):979-986.
    [145]Hu, M. H.,Lv, Y. L.,Wang, N. The Analysis of an Accident in Coal Mine Which Caused byShort-circuit of6kv High-pressure Explosion-proof Switch[J]. Electrical Information andMechatronics and Applications,2012(1):27-31.
    [146]Wang, Q. B. New Developments and Applications of Coal Mine Pressure and ForceMonitoring Technology[J]. Advances in Metallurgical and Mining Engineering,2012(3):583-587.
    [147]Bhandar, V.,Budania, S.,Jaipuria, J. Intra-Abdominal Pressure in Acute Pancreatitis: Canaryin Coal Mine?; Result After a Rigorous Validation Protocol[J]. Gastroenterology,2012(5):1058-1059.
    [148]Xing, P. W.,Song, X. M.,Fu, Y. P. Study on similar simulation of the roof strata movementlaws of the large mining height workface in shallow coal seam[J]. Trends in BuildingMaterials Research,2012(1):1318-1322.
    [149]Altounyan, P.,Taljaard, D. Developments in controlling the roof in South African coal mines-a smarter approach[J]. Journal of the South African institute Institute of Mining andMetallurgy,2001(1):33-40.
    [150]Jiang, Y. D.,Xiong, L.,Zhou, W. X.et al. Research on High Ground Stress and Soft RockRoadway Supporting Technology of Bide Coal Mine[J]. Trends in Civil Engineering,2012(1):2156-2161.
    [151]Chang, J. C.,Xie, G. X. Investigation on Deformation and Failure Characteristics andStability Control of Soft Rock Roadway Surrounding Rock in Deep Coal Mine[J]. Advancesin Civil Engineering,2011(1):711-716.
    [152]Islam, M. R.,Shinjo, R. Mining-induced fault reactivation associated with the main conveyorbelt roadway and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEMsimulations[J]. International Journal of Coal Geology,2009(4):115-130.
    [153]Liu, Q. S.,Liu, Y. H.,Liao, Y. Y. Stability and support measures of rock mass surroundingthe diphead of a coal mine[J]. Experimental Mechanics in Nano and Biotechnology,2006(2):1611-1615.
    [154]Wang, C. G. Joint support system for roadway within extremely soft rock in undergroundcoal mine[J]. Geotechnics of Hard Soils-Soft Rocks,1998(1):1021-1026
    [155]Wang, Y. F.,Liu, Z. Q.,Jiang, B. S. The Stability Control Technology of Crosscut WhileMining without Coal Pillar in Steep Seam[J]. Advances in Civil Engineering,2011(1):90-93.
    [156]Jiang, Y. D.,Lu, S. L.,Liu, C. H.et al. Comprehensive analysis of coal mine roadwaydeformations in weak rock[J]. Mining Science and Technology,1999(3):321-324.
    [157]张传玖,蓝航,杜涛涛.一次浅埋采场冲击地压发生的原因及防治研究[J].煤炭科技,.2011(4):5-7.
    [158]陈庆敏,张农,赵海云等.岩石残余强度与变形特性的试验研究[J].中国矿业大学学报,1997(5):53-59.
    [159]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D]:中国矿业大学,2008.
    [160]兰大奇.煤矿采准巷道冲击地压机理初探[J].河北能源职业技术学院学报,2002(2):55-56.
    [161]李长青,任春辉.海孜矿离层注浆充填技术的实践[J].科技创新导报,2011(17):83-84.
    [162]郑志军,张金彪,王文娟.利用岩石声发射效应测定海孜煤矿地应力[J].煤田地质与勘探,2008(2):68-72.
    [163]琚宜文,侯泉林,姜波等.淮北海孜煤矿断层与层间滑动构造组合型式及其形成机制[J].地质科学,2006(1):35-43.
    [164]牛建龙,曹佩永,李忠凯.海孜矿煤巷锚杆支护技术[J].矿山压力与顶板管理,2004(2):86-88.
    [165]陈法兵,毛德兵,蓝航等.不规则煤柱影响下旋采工作面冲击地压防治技术[J].煤炭科学技术,2012(2):8-11.
    [166]韩猛,王连国.巷道围岩蠕变特性及支护效果数值模拟研究[J].矿业工程,2011(4):61-64.
    [167]李玉杰,王连国,陆银龙等.地下水对巷道围岩稳定性影响的数值模拟[J].徐州工程学院学报(自然科学版),2011(1):34-39.
    [168]Hirano, T.,Hirata, A.,Kameoka, Y. Safety control to rock burst in tunneling[J]. Contributionof Rock Mechanics to the New Century,2004(1):367-372.
    [169]何欢.集贤煤矿工作面深部开采冲击地压防治与灾害治理[J].煤,2012(4):28-29.
    [170]许正强.三河尖煤矿冲击地压防治工作的实践[J].煤炭科技,2012(4):67-68.
    [171]张宗文,王元杰,赵成利等.微震和地音综合监测在冲击地压防治中的应用[J].煤炭科学技术,2011(1):44-47.
    [172]赵雪林.冲击地压防治技术在峻德煤矿的应用[J].煤炭技术,2011(6):137-138.
    [173]张新科.高压水力压裂技术在冲击地压防治中的应用[J].煤矿安全,2010(8):51-52.
    [174]周澎.华亭煤矿综放煤柱区冲击地压防治研究[D]:西安科技大学,2010.
    [175]刘丁.富力煤矿冲击地压防治实践[J].煤炭技术,2009(5):105-107.
    [176]李伟.南屯煤矿冲击地压防治技术研究与应用[J].煤炭科学技术,2008(4):39-42.
    [177]任勇杰.新汶矿区深部冲击地压防治技术研究[J].山东国土资源,2007(9):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700