用户名: 密码: 验证码:
静电纺丝技术构筑一维功能纳米结构材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁光双功能纳米材料因其同时具备磁性质和发光性质,在药物靶向、荧光标记、荧光成像等领域有潜在的应用价值。目前,磁光双功能纳米材料的研究主要集中在磁光双功能纳米颗粒的制备方面,而一维磁光纳米材料的制备与性质研究报道很少。因此,制备一维磁光纳米材料并研究其性质是一个迫切而有意义的研究课题。纳米ZnS、NiO具有特殊的光学、电学和光催化特性,可广泛应用于光催化降解废有机污染物。静电纺丝技术作为一种制备一维纳米材料的有效方法,具有成本低廉、设备简单、灵活多样、产物的尺寸和形貌容易调控等优点。本论文中采用静电纺丝技术,制备了发射红光和绿光的磁光双功能复合纳米纤维和磁光双功能两股并行复合纳米纤维束,以及红-黄-绿光色可调的荧光纳米纤维和磁光双功能两股并行复合纳米纤维束,并研究了它们的磁性质、发光性质以及磁、光性质的相互影响。同时采用静电纺丝技术制备了ZnS纳米纤维和NiO空心纳米管并研究了其光催化性质。
     1.通过单轴静电纺丝技术,将稀土配合物、Fe3O4纳米粒子和聚乙烯毗咯烷酮复合,构筑了发射红色荧光的Fe3O4/Eu(BA)3phen/PVP和发射绿色荧光的Fe3O4/Tb(BA)3phen/PVP磁光双功能复合纳米纤维,并研究了纤维形貌、最佳配台物掺入浓度以及掺入不同量Fe3O4纳米粒子对荧光性质和磁性质的影响。结果表明,所制备的Fe3O4/Eu(BA)3phen/PVP和Fe3O4/Tb(BA)3phen/PVP磁光双功能复合纳米纤维的直径为200-250nm。Fe3O4/Eu(B A)3phen/P VP复合纳米纤维在274nm紫外光激发下,在592m和616nm处出现Eu离子的橙光和红光发射峰,且Eu(BA)3phen:PVP的最佳比例为15%; Fe3O4/Tb(BA)3phen/PVP复合纳米纤维在276nm紫外光激发下,在490nm和545nm处出现Tb离子的绿色发射峰,且Tb(BA)3phen:PVP的最佳比例为20%。随着Fe3O4纳米粒子掺入量的增加,复合纳米纤维的荧光强度显著降低,饱和磁化强度增大。
     2.为了降低黑色的Fe3O4纳米粒子对激发光及发射光的强烈光吸收而导致磁光纳米纤维荧光强度的大幅下降,本文自行设计并制作了具有并列双喷丝头的并轴静电纺丝装置,首次构筑了Fe3O4/PVP//Eu(BA)3phen/PVP和Fe3O4/PVP//Tb(BA)3phen/PVP磁光双功能两股并行复合纳米纤维束。在两股并行复合纳米纤维束中,Fe3O4纳米粒子只分散在两股并行复合纳米纤维束的一股纤维中,而稀土配合物分散在另一股纤维中,从而使稀土配合物与Fe3O4纳米粒子有效地分离,减少了Fe3O4对稀土配合物荧光的吸收。结果表明,与单轴静电纺丝技术制备的磁光复合纳米纤维相比,当饱和磁化强度相同时,两股并行复合纳米纤维束具有更高的荧光强度,且增大Fe3O4纳米粒子的含量对荧光强度的影响较小。这种磁光双功能两股并行复合纳米纤维束兼具优异的磁性和较强的荧光强度。
     3.首次将发射红光的Eu(BA)3phen配合物、发射绿光的Tb(BA)3phen配合物和聚乙烯吡咯烷酮复合,利用单轴静电纺丝技术制备了一系列红-黄-绿荧光颜色可调的PVP/[Tb(BA)3phen+Eu(BA)3phen]复合纳米纤维。样品的发射光谱分析表明,同时掺入Eu(BA)3phen和Tb(BA)3phen的复合纤维既有Eu3+的橙光和红光发射,又有Tb3+的绿光发射,且复合纤维可通过掺入不同比例的Eu(BA)3phen和Tb(BA)3phen,实现在276nm单一激发波长下红-黄-绿的荧光可调控性。
     4.首次将Eu(BA)3phen配合物、Tb (BA)3phen配合物和Fe3O4纳米粒子,通过并轴静电纺丝技术构筑了一种既具有较高的荧光强度和磁性可调性,又具有发光颜色可调控特性的Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP磁光双功能两股并行复合纳米纤维束。其中,Fe3O4纳米粒子均匀分散在两股并行复合纳米纤维束的一股纤维中,而Eu(BA)3phen配合物和Tb(BA)3phen配合物分散在另一股纤维中。与Fe3O4/[Tb(BA)3phen+Eu(BA)3phen]/PVP复合纳米纤维相比,在相同饱和磁化强度时,Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP两股并行复合纳米纤维具有更高的荧光强度。Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP两股并行复合纳米纤维束的磁性可通过Fe3O4纳米粒子掺入量来调节,同时荧光颜色可通过Tb (BA)3phen配合物和Eu(BA)3phen配合物的掺入比例在红-黄-绿范围内调节,从而实现了磁-光色可调性。
     5.将单轴静电纺丝技术与硫化工艺相结合,制备了直径为200±79nm的ZnS纳米纤维。在紫外光照射60min后,ZnS纳米纤维对罗丹明B的光催化降解率达到了98.8%,ZnS纳米纤维具有优于ZnO纳米纤维的光催化性能。
     6.利用同轴静电纺丝技术制备了Ni(NO3)2/PVP空心纳米纤维,再经焙烧制备了外径为185nm,内径为40nm的NiO纳米管,NiO纳米管的光催化性能优于NiO纳米纤维。
Magnetic-photoluminescent nanomaterials have potential applications in drug targeting, fluorescence labeling and fluorescence imaging, etc due to their unique magnetic and photoluminescent bifunctional properties. At present, some investigations on magnetic-photoluminescent bifunctional nanoparticles have been reported, however, the fabrication and the properties research of one-dimensional magnetic-photoluminescent bifunctional nanomaterials are rarely reported in the literature, and has become an imperative and meaningful subject of study. Nano-ZnS and nano-NiO have special optical, electrical and catalytic properties, which have broad application prospects in photocatalytic degradation of organic pollutants. Electrospinning is an efficient way of fabricating one-dimensional nanomaterials. Compared with other techniques, electrospinning possesses a lot of priorities, such as more cost-effective, simpler, more flexible, and the size and morphology of the product are easy to control, etc. In this thesis, the red and green fluorescence magnetic-photoluminescent bifunctional composite nanofibers, bistrand aligned composite nanofibers bundles, and the luminescent nanofibers and magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundle with tunable emitting colour of red-yellow-green were fabricated by electrospinning. The magnetic and luminescent properties and their interactions between them were also investigated. Besides, Zn.S nanofibers and NiO nanotubes were prepared via electrospinning, respectively, and their photocatalytic properties were investigated.
     1. Red fluorescence Fe3O4/Eu(BA)3phen/PVP and green fluorescence Fe3O4/Tb(BA)3pben/PVP magnetic-photoluminescent bifunctional composite nanofibers based on ferroferric oxide nanoparticles, europium complex Eu(BA)3phen or terbium complexes Tb(BA)3phen and PVP were fabricated by single axial electrospinning. The morphology of the fibers, optimum adding concentration of the rare earth comlex and the impact of introducing various amounts of Fe3O4nanoparticles(NPs) on the magnetic and luminescent properties were studied. Results show that the diameters of the two kinds of nanofibers are200-250nm. The Fe3O4/Eu(BA)3phen/PVP composite nanofibers exhibited red emissions of predominant peaks at592nm and616nm of Eu3+under the excitation of274nm ultraviolet light, and the optimum concentration of Eu(BA)3phen to PVP as15%; Fe3O4/Tb(BA)3phen/PVP composite nanofibers exhibited green emissions of predominant peaks at490nm and545nm of Tb3+under the excitation of276nm ultraviolet light, and the optimum concentration of Tb(BA)3phen to PVP is20%. With introducing more Fe3O4nanoparticles into the composite nanofibers,the luminescent intensity of the fibers is greatly decreased while the saturation magnetization is enhanced.
     2. In order to decrease the absorption of the exciting and emitting light when black-coloured Fe3O4nanoparticles were scattered in the composite nanofibers. Fe3O4/PVP//Eu(BA)3phen/PVP and Fe3O4/PVP//Tb(BA)3phen/PVP magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundles were fabricated by employing a homemade parallel axial electrospinning setup with the side by side dual spinnerets for the first time. Fe3O4NPs and rare earth complex were respectively dispersed into the individual strand fiber of the bistrand aligned composite nanofibers bundles, so that the rare earth complex was effectively isolated from Fe3O4NPs, which greatly reduced the effect of Fe3O4NPs on the luminescence of complex. The results indicated that the fluorescence intensity of bistrand aligned composite nanofibers bundles was obviously higher than that of the above composite nanofibers prepared by single axial electrospinning when the two nanostructures have the same saturation magnetization. The luminescent intensity is hardly decreased when more Fe3O4NPs were added. This kind of magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundles possesses excellent magnetic properties and higher fluorescence intensity.
     3. A new kind of color-tunable PVP/[Tb(BA)3phen+Eu(BA)3phen] luminescent composite nanofibers which consisted of europium complex, terbium complex and PVP were prepared by single axial electrospinning for the first time. The emission spectrum analysis of samples showed that the emitting color of the PVP/[Tb(BA)3phen+Eu(BA)3phen] luminescent composite nanofibers can be tuned under the excitation of276nm single-wavelength ultraviolet light by adjusting the ratio of terbium and europium complexes in a wide color range of red-yellow-green.
     4. For the first time, a new kind of Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundles with high fluorescence intensity, magnetism-tunable and colour-tuned characteristics were successfully prepared by parallel axial electrospinning. Fe3O4NPs and rare earth complex (Tb(BA)3phen and Eu(BA)3phen) were respectively dispersed into the individual strand fiber of the bistrand aligned composite nanofibers bundles. The fluorescence intensity of the Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP bistrand aligned composite nanofibers bundles was obviously higher than that of Fe3O4/[Tb(BA)3phen+Eu(BA)3phen]/PVP composite nanofibers when they have the same saturation magnetization. The magnetism of the bistrand aligned composite nanofibers bundles could be tuned by adding different amounts of Fe3O4nanoparticles. The emitting color of the Fe3O4/PVP//[Tb(BA)3phen+Eu(BA)3phen]/PVP bistrand aligned composite nanofibers bundles can be tuned by adjusting the ratio of europium and terbium complexes in a wide color range of red-yellow-green. Thus, a kind of magnetic and color-tunable bifunctional bistrand aligned composite nanofibers bundles were obtained.
     5. ZnS nanofibers with the diameters of200±79nm were prepared by the combination of single axial electrospinning with vulcanization technology, and their photocatalytic properties were investigated. The results showed that the photocatalytic degradation rate of ZnS nanofibers on rhodamine B was higher than ZnO nanofibers, and reached up to98.8%after UV illumination for60min.Therefore, the prepared ZnS nanofibers had outstanding photocatalytic property.
     6. Ni(NO3)2/PVP hollow composite nanofibers were prepared by coaxial electrospinning, and NiO nanotubes with the outside diameters of185nm and inside diameters of40nm were fabricated by calcining the relevant composite nanofibers. The photocatalytic properties were studied. The results showed that the photocatalytic degradation effect of NiO nanotubes on rhodamine B was better than NiO nanofibers.
引文
[1]郦剑,李昆仑,倪兆荣等.纳米线研究进展.材料科学与工程学报.2005,23(2):290-292
    [2]倪永红,葛学武,徐相凌等.纳米材料制备研究的若干新进展.无机材料学报.2000,15(1):9-15
    [3]Y. Cui, C. M. Lieber. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science,2001,291(5505):851-853
    [4]W. Y, Y. H, H. M, et al. Inorganic semiconductor nanowires:rational growth, assembly, and novel properties. Chem. Eur. J,2002,8(6):1260-1268
    [5]S. Kodambaka, J. Tersoff,M. C. Reuter, et al. Germanium Nanowire Growth Below the Eutectic Temperature. Science, 2007,316(5825):729-732
    [6]T W Ebbesen, H J Lezec, H Hiura, et al. Electrical conductivity of individual carbon nanotubes. Nature,1996,382 (6586):54-56
    [7]R S Lee, H J Kim, J E Fischer, et al. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature,1997,388(6639):255-257
    [8]Sander J Tans, Michel H Devoret, Remco J A Groeneveld, et al. Electron-electron correlations in carbon nanotubes. Nature,1998,394(6695):761-764
    [9]White C T, TN Todorov. Carbon nanotubes as long ballistic conductors. Nature,1998,393(6682):240-242
    [10]Philippe Poncharal, Z. L. Wang, Daniel Ugarte, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science,1999,283(5407):1513-1516
    [11]Yu Wang, Idalia Ramos, Jorge Santiago-Aviles. Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air. Nanotechnology,2007,18:435704
    [12]Xudong Wang, Jinhui Song, Jin Liu, et al. Direct-current nanogenerator driven by ultrasonic waves. Science,2007, 316(5821):102-105
    [13]Xiang Yang Kong, Zhong Lin Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters,2003,3(12):1625-1631
    [14]赵晓华,安娜,王晓兵等.纳米氧化镍研究进展.无机盐业.2007,39(7):1-4
    [15]冯博学,陈冲,何毓阳等.电致变色材料及器件的研究进展.功能材料.2004,(35):145-150
    [16]Jiao Z, Wu M H, Qin Z, et al. The electrochromic characteristics of sol-gel-prepared NiO thin fihn.Nanotechnology, 2003, (14):458
    [17]Ferreira F F, Tabacniks M H, Fantinia M C A. Electrochromic nickel oxide thin films deposited under different sputtering conditions.Solid State Ionics,1996, (86):971-976
    [18]Garcia-Miquel J L, Zhang Q, Allen S J, et al. Nickel oxide sol-gel films from nickel discetate for electrochromic applications. Thin Solid Films,2003,424:165-170
    [19]Nuli Yan-Na, Zhao Sheng-Li, Qin Qi-Zong. Nanocrystallinetin oxides and nickel film anodes for Li-ion batteries. Journal of Powder Sources,2003,114:113-120
    [20]Huang X H, Tu J P, Zhang C Q, et al. Hollow microspheres of NiO as anode materials for lithium-ion batteries. Electrochimica Acta,2010, (55):8981-8985
    [21]Kawano M, Yoshida H, Hashino K, et al. Synthesis and evaluation of NiO-Ce0.8Sm0.2O1.9 nanocomposite powders for low-temperature solid oxide fuel cells. J. Power Sources,2007, (173):45
    [22]J.J.He, M.Lindstrom, A.Hagfeldt, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. The Journal of Physical Chemistry,1999,103:8940
    [23]K.W.Nam, W.S.Yoon. X-ray absorption spectroscopy studies of nickle oxide thin film electrodes for supercapacitors. Electrochemical Acta,2002,47(19):3201-3209
    [24]王晓峰,孔祥华,刘国庆等.氧化镍超电容器的研究.电子元件与材料.2000,19(5):26-28
    [25]K. W.Nam, W.S.Yoon, et al. X-ray absorption spectroscopy studies of nickle oxide thin film electrodes for supercapacitors. Electrochemical Acta,2002,47(19):3201-3209
    [26]Zhang Fei-bao, Zhou Ying-ke, Li HU-lin. Nanocrystalline NiO as an electrode material for electrochemical capacitor. Materials Chemistey and Physics,2004,83:260-264
    [27]X.M.Liu, X.G.Zhang, S.Y.Fu, et al. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Materials Research Bulletin,2006,41:620-627
    [28]Y.G.Wang, Y.Y.Xia. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochemica Acta,2006,51(19):3223-3227
    [29]Xu C H, Sun J, Gao L. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources,2011, (196):5138-5142
    [30]李越.纳米纤维PANI及PPy/NiHCF复合膜的单极脉冲电沉积及其超级电容性能:[硕士学位论文].山西:太原理工大学化学工程系,2011
    [31]Yuan J L, Wang G L. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J. Fluoresc.,2005,15(4):559-568
    [32]K. Binnemans. Lanthanide-based luminescent hybrid materials. Chem. Rev.,2009,109(9):4283-4374.
    [33]Wenwen Ma, Xiangting Dong, Jinxian Wang, et al. Electrospinning preparation of LaOBr.Tb3+ nanostructures and heir photoluminescence properties. J. Mater. Sci,2013,48 (6):2557-2565.
    [34]Tsukasa Torimoto, Tomohiro Adachi, Ken-ichi, et al.Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore. J. Am. Chem. Soc,2007,129 (41):12388-12389
    [35]Srirupa Mukherjee, Dimple P. Dutta, N. Manoj, et al.Sonochemically synthesized rare earth double-doped zirconia nanoparticles:probable candidate for white light emission. J.Nanopart Res.,2012,14:814-818
    [36]陈红旗.基于稀土发光纳米粒子荧光能量转移分析新方法研究:[博士学位论文].上海:上海交通大学应用化学专业,2012
    [37]徐宇兴,唐子龙:张中太.氧化钨纳米线的制备及表征和一氧化碳的气敏性能.硅酸盐学报.2009,37(3):387-
    391
    [38]徐甲强,陈玉萍,李亚栋等.一维纳米材料在气体传感器中的应用.传感器技术.2005,24(1):4-6
    [39]郑瑞防.基于核壳NiO@ZnO一维纳米管的气体传感器的研究:[硕士学位论文].长春:吉林大学电路与系统专业,2012
    [40]袁波.基于Zn0和ZnS纳米带光敏、压敏传感器研究:[硕士学位论文].湘潭:湘潭大学微电子学与固体电子学专业,2011,5
    [41]梁海伟.纳米纤维宏观组装体的制备及功能化研究:[博士学位论文].安徽:中国科学技术大学无机化学专业,2011
    [42]包理,小林诚,林嗣郎等.空气过滤器用过滤材料以及空气过滤器.公开号:CN101795747A
    [43]周明.PAN/CA复合纳米纤维的制备及性能表征:[硕士学位论文].江苏:江南大学纺织工程专业,2011
    [44]覃小红,王善元.静电纺纳米纤维的过滤机理及性能.东华大学学报(自然科学版).2007,33(1):52-56
    [45]刘瑞雪,刘太奇,操彬彬.静电纺丝纳米过滤材料的研究进展.新技术新工艺.2011,(2):73-76
    [46]Tsaia PP, Schreuder-Gibson H, Gibson P. Different electrostatic methods for making electret filters. Journal of Electrostatics,2002,54:333-341.
    [47]Groitzsch D, Fahrbach E. US patent 4,618,524,1986
    [48]Stenoien MD, Drasler WJ, Scott RJ, Jenson ML. US patent.5866217,1999
    [49]Scopelianos AG. US patent,5522879,1996
    [50]Schreuder-Gibson HL, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers. Journal of Advanced Materials,2002,34(3):44-55
    [51]王小飞,薛聪,黄争鸣.PEI微孔纤维及PMMA/PEI复合纳米纤维的制备与表征.过程工程学报.2009,9(1):176-180
    [52]Yael Dror,Wael Salalha,Rafail L. Khalfin.Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning. Langmuir,2003,19 (17):7012-7020
    [53]S. Chuangchote, J. Jitputti, T. Sagawa, et al. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces,2009,1(5):1140-1143
    [54]冯光建,修志亮,刘素文等.可见光响应型TiO2光催化剂的机理研究进展.稀有金属材料与工程,2009,38(1):185-188
    [55]颜秀茹,李晓红,宋宽秀等.纳米SnO2@TiO2包覆催化剂的制备及表征.高等学校化学学报.2001,22(4):61O-613
    [56]I. Bedja, P. V. Kamat. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2capped
    [57]M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid, et al. Thin films of photocatalytic TiO2 and ZnO deposited inside a tubing by spray pyrolysis. Thin Solid Films,2002,419(1-2):60-64
    [58]李芳柏,古国榜,李新军等WO3/TiO2纳米材料的制备及光催化性能.物理化学学报.2000,16(11):997-1002
    [59]C. E., Y. A. Y., A. A. N. F., et al. Preparation and characterization of Fe2O3-TiO2 thin films on glass substrate for photocatalytic applications. Materials Science and Engineering:B,2006,129(1-3):193-199
    [60]郝恩才,孙轶鹏.CdS/TiO2复合纳米微粒的原位合成及性质研究.高等学校化学学报.1998,19(8):1191-1194
    [61]J. Liu, R. Yang, S. Li. Preparation and characterization of the TiO2-V2O5 photocatalyst with visible-light activity. Rare Metals,2006,25(6):636-642
    [62]邢婵娟,延卫,张耀君等.Cr203-TiO2负载金属光催化剂及其光分解水产氢性能研究.西安交通大学学报.2005,39(5):511-513
    [63]H. Einaga, T. Ibusuki, S. Futamura. Improvement of Catalyst Durability by Deposition of Rh on T1O2 in Photooxidation of Aromatic Compounds. Environmental Science and Technology,2004,38(1):285-289
    [64]张湘辉,汪灵,龙剑平等.基底温度复合控制对化学气相沉积纳米金刚石薄膜的影响.功能材料.2012,43(21):3018-3022
    [65]Y. Wu, P. Yang. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc,2001,123:3165-3166
    [66]G. G, D. F. L, G. A, et al. Carbothermal Synthesis of the Nanostructures of Al2O3 and ZnO:Advances in the Design, Synthesis, and Characterization of Heterogeneous Catalysts.Topics in Catalysis,2003,24(1-4):137-146
    [67]Y. C. Zhu, Y. Bando, Y. Uemura. ZnS-Zn nanocables and ZnS nanotubes. Chem Commun (Camb),2003.7:836-837
    [68]F.L. Deepak, G. Gautam, G. A, et al. Nanowires and nanotubes of BN, GaN and Si3N4. Bulletin of the Polish Academy of Science. Chemistry,2002,50:165-174
    [69]郝永皓,赵建伟,秦丽溶等.基于四针状ZnO纳米结构的高灵敏紫外探测器件.西南大学学报(自然科学版.2012,34(5):53-56
    [70]侯娟.氧化锌纳米结构的气相合成与表征:[硕士学位论文].山东:山东师范大学,2012
    [71]张锐,张永恒.以Na2O2为催化剂气相沉积纳米碳材料.科技创新导报.2011,22:38
    [72]W. Han, S. Fan, Q. Li, et ai. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. Science,1997,227(5330):1287-1289
    [73]W. Han, S. Fan, Q. Li, et al. Synthesis of silicon nitride nanorods using carbon nanotube as a template. Applied Physics Letters,1997,71(16):2271-2273
    [74]W. Han, S. Fan, Q. Li, et al. Continuous synthesis and characterization of siliconcarbide nanorods.Chemical Physics Letters,1997,265(3-5):374-378
    [75]王影影.石墨型氮化碳纳米管的模板方法制备.济宁学院学报.2009,30(6):40-42
    [76]Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides. Science,2001,291(5510):1947-1949
    [77]R. M. Penner, C. R. Martin. Preparation and electrochemical characterization of ultramicroeiectrode ensembles. Analytical Chemistry,1987,59(21):2625-2630
    [78]X. Wang, Y. Li. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. Journal of the American Chemical Society,2002,124(12):2880-2881
    [79]Z. Liu, Y. Yang, J. Liang, et al. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process. The Journal of Physical Chemistry B,2003,107(46):12658-12661
    [80]H.-W. Liao, Y.-F. Wang, X.-M. Liu, et al. Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chemistry of Materials,2000,12(10):2819-282.1
    [81]M. Mo, J. Zeng, X. Liu, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Advanced Materials,2002,14(22):1658-1662
    [82]张丽.不同形貌纳米四氧化三钻的液相合成表征及性能研究:[硕士学位论文].湖南:湖南大学,2012.5
    [83]赵艳.铜系金属及其氧化物纳米材料的低温液相合成与性能研究:[博士学位论文].长春:吉林大学物理化学专业,2012
    [84]A. Formhals. Process and apparatus for preparing artificial threads:United States, US1975504.1934
    [85]C. L.Norton. Method of and apparatus for producing fibrous or filamentary material:United States, US2048655.1936
    [86]A. Formhals. Method and apparatus for spinning:United States, US2349950.1944
    [87]G. Taylor. The force exerted by an electric field on a long cylindrical conductor. Proceedings of the royal society of london A:mathematical, Physical & Engineering Sciences,1966,291(1425):145-158
    [88]J. R. Melcher, G. I. Taylar. Electrohydrodynamics:a review of the role of interfacial shear stresses. Available Review
    [88]J. R. Melcher, G. I. Taylar. Electrohydrodynamics:a review of the role of interfacial shear stresses. Available Review of Fluid Mechanics,1969,1(1):111-146
    [89]G. Taylor. Electrically Driven Jets. Proceedings of the royal society of london A:mathematical, Physical & Engineering Sciences,1969,313:453-475
    [91]S.N. Reznik, A. L. Yarin, A. Theron, et al. Transient and steady shapes of droplets attached to a surface in a strong electric field. Journal of Fluid Machanics,2004,516:349-377
    [92]M. M. Hohman, M. Shin, G. Rutledge, et al. Electrospinning and electrically forced jets:Ⅰ. Stability theory. Physics of Fluids,2001,13(8):2201-2220
    [93]薛聪,胡影影,黄争鸣.静电纺丝原理研究进展.高分子通报.2009,16(6):38-47
    [94]A. Das, Saiyed Muzaffar Ishtiaque, Sanjaykumar Kalidas Parmar. Study on spliced yarns of different spinning technologies. Part Ⅰ:tensile characteristics. Journal of the Textile Institute,2012,103(3):244-255
    [95]A. Das, S. M. Ishtiaque, S. K. Parmar. Study on spliced yarns of different spinning technologies. Part Ⅱ:structural characteristics. Journal of the Textile Institute,2012,103(3):256-268
    [96]Jonn A. Foulk, Danny E. Akin, Roy B. Dodd. Miniature Spinning Enzyme-Retted Flax Fibers. Journal of Natural Fibers,2009,6(1):1-13
    [97]E. B. Sonin. Spin currents and spin superfluidity. Advances in Physics,2010,59(3):181-255
    [98]A. P. Pyatakov, A. K. Zvezdin, A. M. Vlasov, et al. Spin Structures and Domain Walls in Multiferroics Spin Structures and Magnetic Domain Walls in Multiferroics. Ferroelectrics,2012,438(1):79-88
    [99]Zheng-Ming Huang, Y. Z. Zhang, M. Kotaki, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,2003,63:2223-2253
    [100]E. B. Sonin. Spin currents and spin superfluidity. Advances in Physics,2010,59(3):181-255
    [101]Y. Filatov, A. Budyka, V. Kirichenko. Electrospinning of micro-and nanofibers:fundamentals and applications in separation and filtration processes. Redding, CT USA:Begell House, Inc.,2007
    [102]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J. Electrostatics,1995, 35(2-3):151-160.
    [103]J. X. Wang, X. T. Dong, Q.Z. Cui, et al. Preparation and characterization of polycrystalline La2Zr2O7 ultrafine fibres via electrospinning. J. Nanosci. Nanotech.,2011,11(3):2514-2519
    [104]C. Song, X.T. Dong. Synthesis and formation mechanism of TiO2/SnO2 composite nanobelts by electrospinning. Optoelectron. Adv. Mater.-RC.,2011,5(12):1296-1300
    [105]Liying Yang, Jinxian Wang, Xiangting Dong, et al.Synthesis of Y2O2S:Eu3+ luminescent nanobelts via electrospinning combined with sulfurization technique. J. Mater. Sci,2013,48(2):644-650
    [106]Han-Ki Kim, Wataru Honda, Byoung-Suhk Kim, et al.Preparation and magnetic properties of electrospun CuO/NiO bimetallic nanofibers via sol-gel electrospinning J. Mater. Sci,2013,48 (3):1111-1116
    [107]Yi-Fan Goh, Imran Shakir, Rafaqat Hussain. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. Journal of Materials Science,2013,48(8):3027-3054
    [108]Mataz Alcoutlabi, Hun Lee, Jill V. Watson, et al. Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. J. Mater, Sci,2013,48-(6):2690-2700
    [109]刘莹,王进贤,董相廷等.静电纺丝技术制备Gd3Ga5O12:Eu3+多孔发光纳米带.高等学校化学学报.2010。31(7):1291-1296
    [110]M. L. H. C., O. R. D., W. D. F., et al. Effect of relative humidity on the morphology of electrospun polymer fibers. Canadian Journal of Chemistry,2008,86(6):590-599
    [111]Zheng-Ming Huanga, Y.-Z. Zhangb, M. Kotakic, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,2003,63:2223-2253
    [112]C. J. Thompson, G. G. Chase, A. L. Yarin, et al. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer,2007,48(23):6913-6922
    [113]Bergshoef MM, Vancso GJ. Transparent nanocomposites with ultrathin, electrospun Nylon-4,6 fiber reinforcement. Adv Mater 1999,11(16):1362-1365.
    [114]Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001,42:261-272.
    [115]Koombhongse S, Liu WX, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polymer Sci:
    [116]Baumgarten PK. Electrostatic spinning of acrylic microfibers. J of Colloid and Interface Science,1971,36-71-79.
    [117]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostatics,1995,35(2-3):151-160.
    [118]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer,1999,40:4585-4592.
    [119]Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer,2002,43:3303-3309
    [120]Fong H, Reneker DH. Elastomeric nanofibers of styrene-butadiene-styrene triblockcopolym er. J Polym Sci; Part B Polym.Phys,1999,37(24):3488-3493.
    [121]S. N. Reznik, A. L. Yarin, E. Zussman, et al. Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Physics of Fluids,2006,18(6):1-13
    [122]S. Wongsasulak, K. M. Kit, D. J. McClements, et al. The effect of solution properties on the morphology of ultrafine electrospun egg albumen-PEO composite fibers. Polymer,2007,48(2):448-457
    [123]刘芸,戴礼兴.静电纺丝纤维形态及其主要影响因素.合成技术及应用.2005,20(1):25-29
    [124]I. G. Loscertales, A, Barrero, M. Marquez, et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J Am Chem Soc,2004,126(17):5376-5377
    [125]C. Song, X. T. Dong. Preparation and characterization of tricomponent SiO2/SnO2/TiO2 composite nanofibers by electrospinning. Optoelectron, Adv. Mater.-RC.,2012,6(1-2):225-229
    [126]孙良奎,程海峰,楚增勇等.同轴静电纺丝再经两步后处理制备PAN基中空碳纤维.高分子学报.2009,1:61-64
    [127]李梅,高珊,霍晓燕.复合同轴生物碳纳米管纤维制备方法.高分子材料科学与工程.2009.25(3):134-137
    [128]D. Li, J. T. McCann, Y. Xia. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small,2005,1(1):83-86
    [129]E. Zussman, A. L. Yarin. A. V. Bazilevsky, et al.Electrospun polyaniline/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Advanced Materials,2006,18(3):348-353
    [130]M. Wang, J. H. Yu, D. L. Kaplan, et al. Production of submicron diameter silk fibe under benign processing conditions by two-fluid electrospinning. Macromolecules,2006,39(3):1102-1107
    [131]X.-J. Han, Z.-M. Huang, C.-L. He, et al. Coaxial Electrospinning of PC(Shell)/PU(Core) Composite Nanofibers for Textile Application. Polymer Composites,2006,27(4):381-387
    [132]H. Jiang, P. Zhao, K. Zhu. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method. Macromolecular Bioscience,2007,7(4):517-525
    [133]刘亦节,黎雁,蒋宏亮等.同轴电纺制备刚性多糖纳米纤维膜功能.功能高分子学报.2008,21(1):20-24
    [134]靳钰,聂俊,周应山等.核-壳结构壳聚糖/聚乙烯醇-聚碳酸亚丙酯超细纤维的制备.高分子学报.2008,9(5):410-415
    [135]王小飞,薛聪,黄争鸣.PEI微孔纤维及PMMA/PEI复合纳米纤维的制备与表征.过程工程学报.2009,9(1):176-180
    [136]曹惠,陈新,邵正中.羟基磷灰石/丝素蛋白复合纤维的制备及其矿化研究.化学学报.2008,66(18):2059-2064
    [137]孙良奎,程海峰,楚增勇等C/SiO2同轴复合纤维的制备及性能研究.无机材料学报.2009,24(2):310-314
    [138]陈影声,陈震,陈日耀等NiO-TiO2同轴纳米纤维的制备及光催化.复合材料学报.2011,28(2):36-41
    [139]张贺,王进贤,董相廷等.静电纺丝技术制备Al2O3/SiO2同轴超微电缆.硅酸盐学报.2009,37(10):1712-1717
    [140]王进贤,张贺,董相廷等.ZnO@SiO2同轴纳米电缆的静电纺丝技术制备与表征.无机化学学报.2010,26(1):29-34
    [141]王进贤,张贺,董相廷等.同轴静电纺丝技术制备Y2O3:Eu3+@SiO2豆角状纳米电缆与表征.化学学报.2010,68(6):501-507
    [142]P. Zhao, H. Jiang, H. Pan, et al. Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning. J Biomed Mater Res A,2007,83(2):372-382
    [143]C.-L. He, Z.-M. Huang, X.-J. Han, et al. Coaxial Electrospun Poly(L-Lactic Acid) Ultrafine Fiber for Sustained Drug Delivery. Journal of Macromolecular Science Park B Physics,2006,45(4):515-524
    [144]H. Jiang, Y. Hu, P. Zhao, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res B Appl Biomater,2006,79(1):50-57
    [145]A. Townsend-Nicholson, S. N. Jayasinghe. Cell electrospinning:a unique biotechnique for encapsulating living organisms for generating active Biological microthreads/scaffolds. Biomacromolecules,2006,7(12):3364-3369
    [146]吕丹,刘太奇,于建香.同轴共纺技术制备聚苯乙烯中空亚微米纤维.高分子材料科学与工程.2008,24(12):
    [146]吕丹,刘太奇,于建香.同轴共纺技术制备聚苯乙烯中空亚微米纤维.高分子材料科学与工程.2008,24(12):172-175
    [147]张双虎,徐淑芝,董相廷等.静电纺丝技术制备PVP空心纳米纤维与表征.长春理工大学学报(自然科学版).2007.30(4):15-18
    [148]Y. Zhao, X. Cao, L. Jiang. Bio-mimic multichannel microtubes by a facile method. Journal of the American Chemical Society,2007,129(4):764-765
    [149]常国庆,郑曦,陈日耀等.同轴静电纺丝法在纳米中空Ti02纤维中填充Ag的应用.物理化学学报.2008,24(10):1790-1796
    [150]徐淑芝,张双虎,董相廷等.静电纺丝技术制备TiO2空心纳米纤维与表征.硅酸盐学报.2007,35(10):1302-1305
    [151]张双虎,董相廷,徐淑芝等.静电纺丝技术制备TiO2@SiO2复合中空纳米纤维与表征.复合材料学报.2008.25(3):138-143
    [152]张双虎,董相廷,徐淑芝等.静电纺丝技术制备金红石型TiO2多孔空心纳米纤维.稀有金属材料与工程.2008,37(12):2196-2199
    [153]S. Zhan, D. Chen, X. Jiao. Co-electrespun SiO2 hollow nanostructured fibers with hierarchical walls. Journal of Colloid and Interface Science,2008,318(2):331-336
    [154]余淑娴,胡六根,郑湘娟.稀土有机配合物发光材料及电致发光器件的研究和设计.江西科学.2005,23(2):109-115
    [155]边丽娟.含铕稀土配合物及其纳米复合材料的制备与性能研究:[博士学位论文].上海:上海交通大学材料学专业.2002.6
    [156]梁春军.稀土配合物电致发光及有机电致发光器件模型:[博学位论文].长春:中国科学院长春光学精密机械与物理研究所,2000
    [157]臧法欣.稀土配合物电致发光器件的瞬态特性和红外发光研究:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [158]Zuyun Huang, Ruxiu Cai, Ke Zhang,et al. Micelle Enhanced Spectrofluorimetric Determination of Norfloxacin Using Terbium as Fluorescent Probe. Analytical Letters,1997,30(8):1531-1539
    [159]David T. Pegg, Stephen M. Barnett. Optical state measurement by information transfer. Journal of Modern Optics,1999,46(11):1657-1667
    [160]R. Yamaguchi, K. Moriyama,. S. Sato. Improvement of White Fluorescent Liquid Crystal Display. Molecular Crystals and Liquid Crystals,2008,488(1):210-218
    [161]C. L. Choi, Y. M. Cheung, W. K. Wong, et al. Electrochemical doping of porous silicon with rare earth element. Ferroelectrics,1997,196(1):309-315
    [162]Ching-Shen Su. The determination of uranium concentrations in seaweeds by nuclear track detectors. Radiation Effects,1972,14(1-2):109-112
    [163]Zhendi Wang, Scott A. Stout, Merv Fingas. Forensic Fingerprinting of Biomarkers for Oil Spill Characterization and Source Identification. Environmental Forensics,2006,7(2):10-146
    [164]Yugang Sun, John A. Rogers. Semiconductor Nanowires:Macroelectronics Applications. Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition,2009,24
    [165]Anne-Sophie Chauvin, Frederic Gumy, Daniel Imbert, et al. Europium and Terbium tris(Dipicolinates) as Secondary Standards for Quantum Yield Determination. Spectroscopy Letters,2004,37(5):517-532
    [166]A. A. Alemi, E. Karimpour-Nahari, H. Shokri. Synthesis, studies and luminescent properties of terbium oxide-doped LaMn0.9Zn0.1O3+d nanoperovskite by sol-gel method. Radiation Effects and Defects in Solids,2008,163(8):685-692
    [167]Elisabeta I. Szerb, Alessandra Crispini, Massimo La Deda, et al. Europium(Ⅲ) and Terbium(Ⅲ) Luminescent Lanthanidomesogens. Molecular Crystals and Liquid Crystals,2011,549(1):86-99.
    [168]J. Guzman-Mendoza, D. Albarran-Arreguin, O. Alvarez-Fragoso, et al. Photoluminescent characteristics of hafnium oxide layers activated with trivalent terbium (HfO2:Tb+3). Radiation Effects and Defects in Solids,2007,162(10-11):723-729
    [169]V. F. Zolin. Evaluation of the lanthanide compression by spectra of europium and terbium compounds. Molecular Physics,2004,102(11-12):1377-1380
    [170]王勇.新型稀土配合物掺杂体系光电特性研究:[硕士学位论文].北京:北京交通大学凝聚态物理专业,2006. 机化学专业,2008
    [172]Hongjian Wang, Yusheng Wang, Chongqiu Jiang. Fluorimetric Study of the Interaction Between Heparin and Norfloxacin-Terbium Complex and its Application. Analytical Letters,2007,38(1):167-178.
    [173]Xia Li, Yan-Ling Ju, Yan-Qiu Li. Synthesis, crystal structure and properties of two terbium complexes with 2,2'-bipyridine. Journal of Coordination Chemistry,2008,61 (5)692-704
    [174]Li-Qun Zhou, Fen Wang, Zi-Wei Tang, et al. Synthesis and Spectroscopic Study of a Terbium(Ⅲ) 2,6-Pyridinedicarboxylate Complex.SpectroscopyLetters,2010,43(2):108-113
    [175]Ying-Xia Zhou, Xiao-Qing Shen, Hong-Yun Zhang, et al. Crystal structures and luminescence properties of two new terbium complexes with aromatic carboxyiic acid. Journal of Coordination Chemistry,2008,61(24):3981-3992
    [176]Yu-Long Sui, Bing Yan, Qian-Ming Wang. Facile and Efficient Route to Prepare Luminescent Terbium Containing Covalently Anchored Hybrids Equipped with Molecular Bridge. Molecular Crystals and Liquid Crystals,2006,457(1):193-207
    [177]肖尊宏,谭松庭,邹应萍等.A-烯丙基对乙酰丙酮稀土配合物发光性能的影响研究.光谱学与光谱分析2004,24(1)18-20.
    [178]张瑞霞,高保娇,位霄鹏.芳羧酸功能化的聚砜与Tb(Ⅲ)形成的高分子-稀土配合物的结构与荧光发射性能.物理化学学报.2012,28(1):223-231
    [179]Hasegawa Y., Yamamuro M., Wada Y., et al. Luminescent polymer containing the Eu (Ⅲ) complex having fast radiation rate and high emission quantum efficiency. Physical Chemistry,2003,107.1697
    [180]刘文敏,汪联辉.一顺丁烯二酸异丙酯酰氧基二异丙氧基镝的合成和聚合.中国稀土学报.1999,(1):20-23
    [181]Chenxia Du, Lin Ma, Yan Xu,et al Synthesis and fluorescent properties of europium-polymer complexes containing naphthoate and 1.10-phenanthroline ligands. Journal of Applied Polymer Science,1997,66(7):1405-1410
    [182]Guojian Duan, Ying Yang, Yuming Cui. Study on Macromolecular Rare Earth Complexes (Ⅳ)-Synthesis, Characterization and Fluorescent Properties of Rare Earth Complexes with Polymethyl Acrylic Acid. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2006,36(6):459'-463
    [183]C. Wang, Y. M. Zhang, X. Q. Pei, et al. Ordered luminescent nanohybrid thin films of Eu(BA)3Phen nanoparticle in polystyrene matrix from diblock copolymer self-assembly. Appl. Surf. Sci,2010,256(9):2818-2825
    [184]王冬梅,林权,杨柏.原位复合法制备含铽(Ⅲ)配合物光学数值及其荧光性质的研究.研究快报.2002,940-942
    [185]Taihong Yan, Yu Tang, Minyu Tan. Synthesis and Luminescence Properties of Rare Earth Complexes with Multipodal Ligands Containing N-hydroxymethylsalicyiamide. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2007,37(1):1-5
    [186]Sahoo Y, Goodarzi A, Swihart M T, et al. Aqueous Ferrofluid of Magnetite Nanoparticles:Fluorescence Labeling and Magnetophoretic Control. J. Phys. Chem. B,2005,109(9):3879-3885
    [187]Cheng F Y, Su C H, Yang Y S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications.Biomaterials,2005,26(7):729--738
    [188]H. Basti, L. Ben Tahar, L. S. Smiri, et al. Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interf. Sci.,2010,341(2):248-254
    [189]C.W. Lai, Y.H. Wang, C.H. Lai, et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles:a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small.,2008,4(2):218-224
    [190]A. Ted watson, Jeromy T. Hollenshead, C.T. Philip chang. Developing nuclear magnetic resonance imaging for engineering applications. Inverse Problems in Engineering,2001,9(5):487-505
    [191]Hossien Nemati, Mohammad Rafienia, Ahmad Jamshidi, et al. Investigation of Drug Release from Biodegradable Polymeric Delivery System by Infrared Spectrometry Mohammadreza Khanmohammadi. International Journal of Polymer Analysis and Characterization,2008,13(5):353-368
    [192]颜爱国,刘浩梅,刘聘婷等.Fe3O4和Zn2+掺杂型Zn1-xFe2+x04纳米晶的溶剂热合成和电磁性能.高等学校化学学报.2010,31(3):447-451
    [193]李冬梅,徐光亮,熊坤等.微波水热法制备超顺磁性Fe3O4纳米粒子.化工进展.2008,27(7):1056-1060
    [194]Yan A, Liu X, Qin G, et al. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd.,2008,458(1-2):487-491 Alloys Compd.,2008,458(1-2):487-491
    [195]汪汉斌,刘祖黎,卢强华.柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响.无机化学学报.2004,20(11):1279-1283
    [196]陈汝芬.可控粒径纳米Fe3O4的制备及其磁性研究.无机化学学报.2010,26(7):1207-1212
    [197]邵晓萍,代波,马拥军.共沉淀制备不同粒径Fe3O4纳米颗粒及磁性能的研究.功能材料.2011,42(1):178-181
    [198]Q. Gao, G. Y. Hong, J. Z. Ni, et al. The study of novel Fe3O4@γ-Fe2O3 core/shell nanomaterials with improved properties. J. Magn. Mater,2009,321(8):1052-1057
    [199]Shufeng Si, Chunhui Li, Xun Wang, et al. Magnetic monodisperse Fe3O4 nanoparticles. Crystal Growth & Design, 2005,5(2):391-393
    [200]Nasser A. M. Barakat. Synthesis and characterization of maghemite iron oxide (γ-Fe2O3) nanofibers:novel semiconductor with magnetic feature. J. Mater. Sci.,2012,47(17):6237-6245
    [201]Shi-Yong Yu, Hong-Jie Zhang, Jiang-Bo Yu, et al. Bifuntional magnetic-optical nanocomposites:grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. Langmuir,2007,23,7836-7840
    [202]王显祥,钟娇懿,刘怡等.磁性荧光双功能纳米材料的合成及其用于葡萄糖的分离检测.化学学报.2010,69(20):2063-2068.
    [203]黄孟琼,王秀玲,刘勇健.双官能Fe3O4/CdSe/CdS荧光磁性复合物的制备和表征.化学学报.2010,68,(16):1623-1628
    [204]刘桂霞,彭红霞,范水高Fe3O4@Gd2O3:Eu3+磁光双功能复合粒子的制备与表征.化学学报.2011,69:1081-1086
    [205]严长浩,孙海平,王志峰.铽-甲基丙烯酸-邻菲罗啉配合物复合磁性发光微球的研究.中国稀土学报.2008,26(5):656-660
    [206]黄孟琼,王秀玲,刘勇健等.双功能荧光磁性复合物的合成及应用.应用化工.2010,39(4):595-599
    [207]H. G. Wang, Y. X. Li, L. Sun, et al. Electrospun novel bifuncticnal magnetic-photoluminescent nanofibers based on Fe2O3 nanoparticles and europium complex. J. Colloid Interf. Sci..,2010,350(2):396-401.
    [208]Q. L. Ma, W. S. Yu, X. T. Dong, et al. Electrospinning preparation and properties of Fe3O4/Eu(BA)3phen/PVP magnetic-photoluminescent bifunctional composite nanofibers. J. Nanopart. Res,2012,14(1):1203-1209
    [209]Ma Qianli, Yu Wensheng, Dong Xiangting, et al. Electrospianing Fabrication and Properties of Fe3O4/Eu(BA)3phen/ PMMA Magnetic-photoluminescent Bifunctional Composite Nanoribbons. Optical Materials,2013,35:526-530
    [210]Q. L. Ma, J. X. Wang, X. T. Dong, et al. Electrospinning Preparation and Properties of Magnetic-photoluminescent Bifunctional Coaxial Nanofibers. J. Mater. Chem.,2012,22:14438-14442.
    [211]龚慧.近紫外激发白光LED荧光粉的合成与发光特性:[硕士学位论文].福建:福建师范大学凝聚态物理专业,2012
    [212]邓楷模.稀土掺杂的红外量子剪裁材料和WLED红光材料研究:[博士学位论文].安徽:中国科学技术大学凝聚态物理专业,2012
    [213]张星,胡鹏,曹月斌等.白光LED用高效荧光粉的制备研究进展.过程工程学报.2010,10(6):1242-1248.
    [214]吴静.LED用单基白光焦硅酸盐荧光粉的制备与发光性能:[硕士学位论文].湖南:湖南师范大学无机化学专业,2012
    [215]严小松,李万万,刘霁等.一种适用于近紫外光LED激发的单一相白光发光粉.发光学报.2010,31(1):39-43
    [216]WoanJen Yang, Liyang Luo, Teng-Ming Chen, et al. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2Si208 as a potential phosphor for White-Light UVLED. Chem. Mater.,2005,17:3883-3888
    [217]'Wenbo Ma, Zhaopu Shi, Rong Wang. Luminescence properties of full-color single-phased phosphors for white LEDs. J. Alloys Compd,2010,503:118-121
    [218]Chien-Hao Huang and Teng-Ming Chen. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+, Mn2+,Tb3+ phosphor for UV-Light Emitting Diodes. J. Phys. Chem. C,2011,115:2349-2355
    [219]肖志国.白光电致发光二极管用发光材料研究进展.化学通报.2009,29:18-25
    [220]Tsukasa Torimoto, Tomohiro Adachi, Ken-ichi, et al. Facile Synthesis of ZnS-AglnS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore. J. Am. Chem. Soc.,2007,129 (41):12388-12389
    [221]Srirupa Mukherjee, Dimple P. Dutta, N. Manoj, et al.Sonochemically synthesized rare earth double-doped zirconia nanoparticles:probable candidate for white light emission. J.Nanopart Res.,2012,14:814-818
    [222]Yang Yu, Zijun Liu, Nengli Dai, et al. Ce-Tb-Mn co-doped white light emitting glasses suitable for long-wavelength
    [223]Armelao Lidia, Bottaro Gregorio, Quici Silvio, et al. Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes. Chemical Communications,2007,28:2911'2913
    [224]B.Kokuoz, J.R.DiMaio, C.J.Kucera, et al. Color kinetic nanoparticles. J. Am. Chem. Soc,2008,130(37):12222-12223
    [225]G.J.He, D.Guo, C.He, et al. A Color-Tunable Europium Complex Emitting Three Primary Colors and White Light. Angew.Chem,Int.ed,2009,48(33):6132-6135
    [226]R.Shunmugam,G.N.Tew.Dialing in color with rare earth metals:facile photoluminescent production of true white light. Polym.Adv.Technol,2007,18(11):940-945
    [227]M.S.Tremblay, M.Halim, D.Sames. Cocktails of Tb3+ and Eu3+ Complexes:A General Platform for the Design of Ratiometric Optical Probes. J. Am. Chem. Soc.,2007,129 (24):7570-7577.
    [228]Hai-Ching Su, Hsiao-Fan Chen, Fu-Chuan Fang,et al.Solid-State White Light-Emitting Electrochemical Cells Using Iridium-Based Cationic Transition Metal Complexes. J. Am. Chem. Soc.,2008,130 (11):3413-3419
    [229]Jian-Guo Tang, Yao Wang, Ji-Xian Liu, et al. Adjustable Fluorescent Material of Terbium Hybrid in Poly (Methyl Methacrylate)-SiO2 Copolymer Host. Integrated Ferroelectrics,2012,138(1):83-93.
    [230]Qingling Lai, Haufeng Lu, Dengxu Wang, et al. Color-Tunable Luminescent Materials Based on Functional Polysiloxane and Lanthanide Ions. Macromolecular Chemistry and Physics,2011,212:1435-1442
    [231]葛素香.新型半导体光催化剂的低温制备及其可见光光催化性能调控:[博士学位论文].武汉:华中师范大学农药学,2012
    [232]孙宏刚.基于能带调控的高效无机半导体光催化剂结构设计与性能研究:[博士学位论文].山东:山东大学材料学.2012
    [233]胡元方.硫化物半导体光催化剂的制备、改性及其性能研究:[硕士学位论文].南昌:南昌大学无机化学专业,2008
    [234]刘勇.新型高效半导体光催化剂的合成及其光催化性能研究:[硕士学位论文].中南民族大学物理化学专业,2011
    [235]S. Z. Lin, X. T. Dong, J. X. Wang, et al. Fabrication of Eu(III) complex doped nanofibrous membranes and their oxygen-sensing properties. Spectrochim. Acta. A.,2010,77(4):885-889
    [236]Hongbo Li, Keyan Zheng, Ye Sheng, et al. Facile synthesis and luminescence properties of TiO2:Eu3+ nanobelts. Optics & Laser Technology,2013,49:33-37
    [237]Lianlian Wang, Bin Li, Liming Zhang, et al. An optical anion chemosensor based on a europium complex and its molecular logic behavior. Dyes and Pigments,2013,97 (1):26-31
    [238]K. Binnemans. Lanthanide-based luminescent hybrid materials. Chem. Rev.,2009,109(9):4283-4374.
    [239]Y. Q.Wan, J. H. He,Y. Wu, J. Y. Yu. Vibrorheological effect on electrospun polyacrylonitrile (PAN) nanofibers. Mater. Lett.,2006,60(27):3296-3300
    [240]Y. Wu, J. Y. Yu, J. H. He, et al. Controlling stability of the electrospun fiber by magnetic field. Chaos. Soliton. Fract.,2007,32(1):5-7
    [241]J. H. He, Y. Liu, L. Xu, et al. BioMimic fabrication of electrospun nanofibers with high-throughput. Chaos, Soliton. Fract.,2008,37(3):643-651
    [242]Wenwen Ma, Xiangting Dong, Jinxian Wang, et al. Electrospinning preparation of LaOBr:Tb3+ nanostructures and their photoluminescence properties. J. Mater. Sci,2013,48 (6):2557-2565.
    [243]Jiqing Bao, Zhenfeng Zhang, Ruiren Tang, et al. Synthesis and fluorescence properties of Tb(Ⅲ) complex with a novel aromatic carboxylic acid (L) as well as spectroscopic studies on the interaction between Tb(III) complex and bovine serum albumin. Journal of Luminescence,2013,136:68-74
    [244]Kouichi Nakashima, Yoshitaka Masuda, Takeko Matsumura-Inoue et al. Microwave-assisted synthesis of (tris-acetylacetonato) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) terbium(Ⅲ) complex with outstanding high green luminescence. Journal of Luminescence,2009,129(3):243-245
    [245]Ying-Nan Chen,Huan-Huan Li,Bin Yue,etal. Synthesis, characterization and luminescent property of metal-ion-doped terbium complexes of 2,3-Pyrazinedicarboxylate.Journal of Luminescence,2012,132(6).1414-1419
    [246]Liming Zhang, Bin Li, Shumei Yue,et al.A terbium(III)complex with triphenylamine-functionalized ligand for organic electroluminescent device. Journal of Luminescence,2008,128(4):620-624
    [247]Hong Wang, Chongyue Yi, Xue Li,et al.Sensitization effects of supramolecular assemblies on the luminescence of
    [247]Hong Wang, Chongyue Yi, Xue Li,et al.Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes. Journal of Luminescence,2011,131(4):603-607
    [248]Wen-Xian Li, Yu-Shan Zheng, Lahu Saiji, et al. Fluorescence enhancement of terbium(III) perchlorate by 1,10-phenanthroline on acetophenonylcarboxymethyl sulfoxide complex and luminescence mechanism. Journal of Luminescence,2013,134:847-852
    [249]Hongfang Jiu, Lixin Zhang, Guode Liu, et al. Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix. Journal of Luminescence,2009,129(3):317-319
    [250]Bredol M,Merikhi J. ZnS precipitation:morphology control. J Mater Sci,1998,33(2):471-476.
    [251]Bhargava R N. Doped nanocrystalline materials-physics and applications.J Lumin,1996,70(1-6):85-94
    [252]Dimitrova V,Tate J. Synthesis and characterization of some ZnS-based thin film phosphors for electro-luminescent device applications/Thin Solid Films,2000,365(1):134-138
    [253]Falcony C,Garcia M,Ortiz A,et al. Luminescent properties of ZnS:Mn films deposited by spray pyrolysis.J Appl Phys,1992,72(4):1525
    [254]Bin W,Yue Z,Jiahua M, et al.Photoluminescence in ZnO film prepared by electrostatic-enhanced ultrasonic spray pyrolysis. Optoelectronics and Advanced Materials-Rapid Communications,2009,3(5):450
    [255]Tang W,Cameron D C.Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid films,1996,280(1-2):221-226
    [256]WU Xiao, WANG Hao.Hydrothermal synthesis and photocatalytic properties of ZnS microspheres. Chinese Journal of Inorganic Chemistry,2010,26(3):453-458
    [257]P.Gowthaman,M.Saroja,M.Venkatachalam, et al.Photocatalytic degradation of methelene blue dye using hydrothermally synthesized ZnO nanorods.Optoelectronics and Advanced Materials-R.apid Communications,2011,5(12):1307-1311
    [258]Ma J,Huang X,Cheng H, et al.Preparation of nanosized ZnS particles in water/oil emulsions by microwave heating.J Mater Sci,1996,15:1247
    [259]Hirai T,Sato H,Komasaw I.Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles[J], Ind Eng Chem Res,1994,33(12):3262
    [260]Yang Y,Hang J M,Liu S Y,et al.Preparation, characterization and electroluminescence of ZnS nanocrystals in a polymer matrix.J Mater Chem,1997,7(1):131
    [261]Zhang Y N,Raman N,Bailey J K, et al.A new Sol-Gel route for the preparation of nanometer-scale semiconductor particles:that exhibit quantum optical behavior.J Phys Chem,1992,96(23):9098
    [262]Guiton T A,Czekaj C L,Pantano C. G. Organometallic sol/gel chemistry of metal sulfides.J Non-Cryst Solids,1990,121(1-3):7
    [263]Qian Y T,Su Y.Chen Q W, et al.Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite.Mater Res Bull,1995,30(5):601-605
    [264]Huang F.Zhang H Z,Banfield J F.The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS.J Phy Chem B,2003,107(38):10470-10475
    [265]Sun X L,Hong C Y.Preparing nano-ZnS by solid state reaction at room temperature.Chin Chem Lett.,2001,12(2):187
    [266]Xi-Bin Yu,Li-Hong Mao, Zhang-Fan, et al.The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photo-luminescence characteristics.Materials Letters,2004,58:3661-3664
    [267]Chao Song,Xiangting Dong. Synthesis and formation mechanism of TiO2/SnO2 composite nanobelts by electrospinning. Optoelectronics and Advanced Materials-Rapid Communications,2011,5(12):1296-1300
    [268]Haiying Wang,Xiaofeng Lu,Yiyang Zhao,et al. Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning. Materials Letters,2006,60(20):2480-2484
    [269]Yanbin Tong,Zijiang Jiang,Cheng Wang, et al.Effect of annealing on the morphology and properties of ZnS:Mn nanoparticles/PVP nanofibers.Materials Letters,2008,62(19):3385-3387
    [270]Jun-ping LI,Yao XU,Ning ZHAO,et al. Fabrication and characterization of honeycomb-like superstructures consisting of ZnS nanosheets.Transactions of Nonferrous Metals Society of China,2006,16,Supplement:365-368
    [271]MA Y,QI L,MA J, et al. Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir,2003,19(9):4040-4042
    [272]赵晓华,安娜,王晓兵等.纳米氧化镍研究进展.无机盐业.2007,39(7):1-4
    [273]冯博学,陈冲,何毓阳等.电致变色材料及器件的研究进展.功能材料.2004,(35):145-150 2003, (14):458
    [275]Ferreira F F, Tabacniks M H, Fantinia M C A. Electrochromic nickel oxide thin films deposited under different sputtering conditions.Solid State Ionics,1996, (86):971-976
    [276]Garcia-Miquel J L, Zhang Q, Allen S J, et al. Nickel oxide sol-gel films from nickel discetate for electrochromic applications. Thin Solid Films,2003,424:165-170
    [277]Hotovy I, Rehacek V, Siciliano P, et al. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films, 2002,418:9-15
    [278]Huran J, Spiess L, Hascik S, et al. Preparation of nickel oxide thin films for gas sensors applications. Sensor and Actuators B,1999,57:147-152
    [279]Hotovy I, Huran J, Siciliano P, et al. Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification.Sensors and Actuators B,2004,103:300-311
    [280]何为民,安金霞,王疆英等.锰镍复合氧化物半导体纳米陶瓷的微观结构和电性能研究.新疆师范大学学报.1996,(2):33-38
    [281]Nuli Yan-Na, Zhao Sheng-Li, Qin Qi-Zong. Nanocrystallinetin oxides and nickel film anodes for Li-ion batteries. Journal of Powder Sources,2003,114:113-120
    [282]Huang X H, Tu J P, Zhang C Q, et al. Hollow microspheres of NiO as anode materials for lithium-ion batteries. Electrochimica Acta,2010, (55):8981-8985
    [283]Kawano M, Yoshida H, Hashino K, et al. Synthesis and evaluation of NiO-Ce0.8Sm0.2O1.9 nanocomposite powders for low-temperature solid oxide fuel cells. J. Power Sources,2007, (173):45
    [284]J.J.He, M.Lindstrom, A.Hagfeldt, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. The Journal of Physical Chemistry,1999,103:8940
    [285]K.W.Nam, W.S.Yoon. X-ray absorption spectroscopy studies of nickle oxide thin film electrodes for supercapacitors. Electrochemical Acia,2002,47(19):3201-3209
    [286]Wang Yanping, Zhu Junwu, Yang Xujie, et al. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochinica Acta,2005,437:106-109
    [237]Gu Zheng, Hohn Keith L. Catalytic oxidation of methanol on nanoscale copper oxide and nickel oxide. Ind Eng Chem Res,2004,43:30-35
    [288]李秋荣,李俊华,贺君等.低温等离子体处理对NiO/Al2O3吸附NOx的促进作用.催化学报.2011,(32):572-581
    [289]Zhao B, Ke X K, Bao J H, et al. Synthesis of flower-like NiO and effects of morphology on its catalytic propeities.J.Phys.Chem.C,2009, (113):14440-14447
    [290]Choudhary V R, Uphade B S, Mamman A S. Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen. Applied Catalysis A:General,1998, (168):33-46
    [29j]徐占林,毕颖丽,甄开吉.甲烷催化二氧化碳重整制合成气反应研究进展.化学进展.2000,(]2):121-130
    [292]Y. Wu, T. Chen, X.D.Cao. Low temperature oxidative dehydrogenation of ethane to ethylene catalyzed by nano-sized NiO.Chinese Journal of Catalysis,2002,47(19):3221-3229
    [293]Song X F, Gao L. Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties. J. Phys. Chem. C,2008, (112):15299-15305
    [294]Wang Wenzhong, Liu Yingkai, Xu Congkang,et al. Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chemical Physics Letters,2002,362:119-122
    [295]Wang Y P, Zhu J W. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochimica Acta,2005,437:106-109
    [296]Liu B, Yang H Q, Zhao H, et al. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowire assembled with NiO anocrystals.Sensor. Actuat.B,2011,(156):251-262
    [297]Bai L Y, Yuan F L, Hua P, et al. A facile route to sea urchin-like NiO architectures.Materials Letters,2007. (61):1698-1700
    [298]Wu Z Y, Liu C M, Guo L,et al. Structural characterization of nickel oxide nanowires by X-ray absorption near-edge structure spectroscopy. J Phys Chem B,2005,109:2512-2515
    [299]Keitaro Matsui, Bhabendra K Pradhan, Takashi Kyotani, et al.Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes. J Phys Chem B,2001,105:5682-5688
    [300]Lin Yu, Xie Ting, Cheng Baochang, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chemical Physics Letters,2003,380:521-525
    [300]Lin Yu, Xie Ting, Cheng Baochang, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chemical Physics Letters,2003,380:521-525
    [301]Xu Congkang, Hong Kunquan, Liu Sheng, et al. A novel wet chemical route to NiO nanowires. Journal of Crystal Growth,2003,255:308-312
    [302]Yang Qing, Sha Jian, Ma Xingyang, et al. Synthesis of NiO nanowires by a sol-gel process. Materials Letters,2005, 59:1967-1970
    [303]Tiwari S D, Rajeev K P. Magnetic properties of NiO nanoparticles. Thin Solid Films,2006, (505):113-117
    [304]陈翌庆.准一维纳米材料的气相合成、结构表征和物性:[博士学位论文].合肥:中国科学技术大学,2003
    [305]邵长路,关宏宇,温尚彬等.静电纺丝法制备NiO纳米纤维及其表征.高等学校化学学报.2004,25(6):1013-1015
    [306]张湘辉,汪灵,龙剑平等.基底温度复合控制对化学气相沉积纳米金刚石薄膜的影响.功能材料.2012,43(21):3018-3022
    [307]Liu Hua-jun, Peng Tian-You, Zhao De, et al. Fabrication of nickel oxide nanotubules by anionic surfactant-mediated tempiating method. Materials Chemistry and Physics,2004,87(1):81-86
    [308]Xu C H, Sun J, Gao L. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources,2011, (196):5138-5142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700